首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bifunctional indicating complex was created by immobilization of extracellular oxidases (glucose oxidase and peroxidases) of luminous fungus Neonothopanus nambi onto modified nanodiamonds (MNDs) synthesized by detonation. It was found that the enzymes firmly adsorb onto MND particles and exhibit their catalytic activity. Model in vitro experiments showed that the created MND–enzymes complex is suitable for repeated use for analyte (glucose and phenol) testing and retains its activity after storage at 4°C in deionized water for 1 month. The data obtained offer the prospects for developing a new class of reusable multifunctional indicating and diagnostic test systems on the basis of MNDs and higher fungal enzymes for medical and ecological analytics.  相似文献   

2.
Muscle force is typically proportional to muscle size, resulting in constant force normalized to muscle fiber cross-sectional area (specific force). Mice overexpressing insulin-like growth factor-1 (IGF-1) exhibit a proportional gain in muscle force and size, but not the myostatin-deficient mice. In an attempt to explore the role of the cytoplasmic volume supported by individual myonuclei [myonuclear domain (MND) size] on functional capacity of skeletal muscle, we have investigated specific force in relation to MND and the content of the molecular motor protein, myosin, at the single muscle fiber level from myostatin-knockout (Mstn(-/-)) and IGF-1-overexpressing (mIgf1(+/+)) mice. We hypothesize that the addition of extra myonuclei is a prerequisite for maintenance of specific force during muscle hypertrophy. A novel algorithm was used to measure individual MNDs in 3 dimensions along the length of single muscle fibers from the fast-twitch extensor digitorum longus and the slow-twitch soleus muscle. A significant effect of the size of individual MNDs in hypertrophic muscle fibers on both specific force and myosin content was observed. This effect was muscle cell type specific and suggested there is a critical volume individual myonuclei can support efficiently. The large MNDs found in fast muscles of Mstn(-/-) mice were correlated with the decrement in specific force and myosin content in Mstn(-/-) muscles. Thus, myostatin inhibition may not be able to maintain the appropriate MND for optimal function.  相似文献   

3.
Motor neuron disorders (MNDs) are a clinically heterogeneous group of neurological diseases characterized by progressive degeneration of motor neurons, and share some common pathological pathways. Despite remarkable advances in our understanding of these diseases, no curative treatment for MNDs exists. To better understand the pathogenesis of MNDs and to help develop new treatments, the establishment of animal models that can be studied efficiently and thoroughly is paramount. The zebrafish (Danio rerio) is increasingly becoming a valuable model for studying human diseases and in screening for potential therapeutics. In this Review, we highlight recent progress in using zebrafish to study the pathology of the most common MNDs: spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and hereditary spastic paraplegia (HSP). These studies indicate the power of zebrafish as a model to study the consequences of disease-related genes, because zebrafish homologues of human genes have conserved functions with respect to the aetiology of MNDs. Zebrafish also complement other animal models for the study of pathological mechanisms of MNDs and are particularly advantageous for the screening of compounds with therapeutic potential. We present an overview of their potential usefulness in MND drug discovery, which is just beginning and holds much promise for future therapeutic development.KEY WORDS: ALS, HSP, SMA, Zebrafish, Drug discovery, Motor neuron disorders  相似文献   

4.
The motor neuron diseases (MND) are a group of related neurodegenerative diseases that cause the relative selective progressive death of motor neurons. These diseases range from slowly progressive forms including hereditary motor neuropathy (HMN), to the rapidly progressive disorder amyotrophic lateral sclerosis (ALS). There is clinical and genetic overlap among these MNDs, implicating shared pathogenic mechanisms. We recruited a large family with a MND that was previously described as juvenile ALS and distal HMN. We identified a novel MND/HMN locus on chromosome 7q34-q36 following a genome-wide scan for linkage in this family. The disease causing mutation maps to a 26.2 cM (12.3 Mb) interval flanked by D7S2513 and D7S637 on chromosome 7q34-q36. Recombinant haplotype analysis including unaffected individuals suggests that the refined candidate interval spans 14.3 cM (6.3 Mb) flanked by D7S2511 and D7S798. One gene in the candidate interval, CDK5, was selected for immediate mutation analysis based upon its known association with an ALS-like phenotype in mice however, no mutations were identified. Identification of genes causing familial MND will lead to a greater understanding of the biological basis of both familial and sporadic motor neuron degeneration including ALS. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Simian immunodeficiency virus (SIV) infection in African nonhuman primate (NHP) natural hosts is usually nonpathogenic, despite high levels of virus replication. We have previously shown that chronic SIV infection in sooty mangabeys (SMs) and African green monkeys (AGMs) is associated with low levels of immune activation and bystander T cell apoptosis. To compare these features with those observed in another natural host, the mandrill (MND), we conducted a cross-sectional survey of the 23 SIV-infected and 25 uninfected MNDs from the only semifree colony of mandrills available worldwide. Viral loads (VLs) were determined and phenotypic and functional analysis of peripheral blood- and lymph node-derived lymphocytes was performed. We found that mandrills chronically infected with SIVmnd-1 or SIVmnd-2 have similar levels of viral replication, and we observed a trend toward lower CD4+ T cell counts in chronically SIVmnd-2-infected MNDs than SIVmnd-1-infected MNDs. No correlation between CD4+ T cell counts and VLs in SIV-infected MNDs could be established. Of note, the levels of T cell activation, proliferation, and apoptosis were comparable between SIVmnd-1- and SIVmnd-2-infected MNDs and to those observed in uninfected animals, with the only exception being an increase in tumor necrosis factor alpha-producing CD8+ T cells in SIVmnd-2-infected MNDs. Overall, these findings recapitulate previous observations in SIV-infected SMs and AGMs and lend further evidence to the hypothesis that low levels of immune activation protect natural SIV hosts from disease progression.  相似文献   

6.
The motor neuron diseases (MNDs) are a group of related neurodegenerative diseases that cause the relative selective progressive death of motor neurons. Exploring the molecular mechanisms underlying MND phenotypes has been hampered by their multifactorial nature and high incidence of sporadic cases, although genetic factors are considered to play a considerable role at present. However, environmental factors, especial exposure to neurotoxic substances, could induce neurotoxicity with the same phenotypes of specific MNDs. Organophosphate-induced delayed neuropathy (OPIDN) is a neurodegenerative disorder characterized by ataxia and progression to paralysis, with a concomitant distal axonal degeneration and secondary demyelination of central and peripheral axons. The inhibition and subsequent aging of neuropathy target esterase (NTE) by organophosphate has been proposed to be the initiating event in OPIDN. NTE is characterized to be a lysophospholipase/phospholipase B mostly in the nervous system to regulate phospholipid homeostasis. Brain-specific deletion of mouse NTE contributes to the behavioral defects characterized by neuronal loss. Recently, mutations in human NTE have also been shown to cause a hereditary spastic paraplegia called NTE-related motor neuron disorder with the same characteristics of OPIDN, which supported the role of NTE abnormalities in OPIDN, and raised the possibility that NTE pathway disturbances contribute to other MNDs. Together with the identified association of paraoxonase polymorphisms with amyotrophic lateral sclerosis, there is a possibility that neurotoxic substances contribute to MND in genetically vulnerable people by gene-environment interactions.  相似文献   

7.
Lysosomal storage diseases (LSDs) are genetically inherited disorders affecting most patients in pediatric age and progressively lead to severe, even lethal, multiorgan dysfunction and brain neurodegeneration. Motor neuron diseases (MNDs) or Amyotrophic Lateral Sclerosis (ALS)-related syndromes are neurodegenerative disorders occurring in the majority of cases sporadically and affect adult middle-aged patients. Despite being divergent in most pathological and physiological hallmarks, both MNDs and LSDs are characterized by tremendous clinical heterogeneity due to poor prognosis and variable onset of the symptoms. Moreover, both LSDs and MNDs are characterized by the concurrence of multiple pathogenetic processes, such as the development of inflammatory and excitotoxic environments. Furthermore, pharmacological, enzyme or genetic therapies have proven to be ineffective and no cure is currently available for the neurodegeneration in either LSD or ALS affected patients. Recent studies have identified non-neuronal cell types, such as astrocytes and microglia, as being involved in non cell-autonomous effects on MND or LSD progression. These findings have prompted the use of neural stem cells for the replacement of non-neuronal cells rather than neuronal cells, which may result in neuroprotection and immunomodulation. The choice of an appropriate tissue source and the establishment of standardized paradigms to culture human neural stem cells (hNSC) will allow their use for future clinical trials on both ALS and LSD affected patients and parallel drug screening studies with novel breakthroughs in the knowledge of neurodegenerative diseases.  相似文献   

8.
Motor neuron diseases (MNDs) are a group of neurodegenerative disorders with involvement of upper and/or lower motor neurons, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), progressive bulbar palsy, and primary lateral sclerosis. Recently, we have mapped a new locus for an atypical form of ALS/MND (atypical amyotrophic lateral sclerosis [ALS8]) at 20q13.3 in a large white Brazilian family. Here, we report the finding of a novel missense mutation in the vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) gene in patients from this family. Subsequently, the same mutation was identified in patients from six additional kindreds but with different clinical courses, such as ALS8, late-onset SMA, and typical severe ALS with rapid progression. Although it was not possible to link all these families, haplotype analysis suggests a founder effect. Members of the vesicle-associated proteins are intracellular membrane proteins that can associate with microtubules and that have been shown to have a function in membrane transport. These data suggest that clinically variable MNDs may be caused by a dysfunction in intracellular membrane trafficking.  相似文献   

9.
The skeletal muscle fibre is a syncitium where each myonucleus regulates the gene products in a finite volume of the cytoplasm, i.e., the myonuclear domain (MND). We analysed aging‐ and gender‐related effects on myonuclei organization and the MND size in single muscle fibres from six young (21–31 years) and nine old men (72–96 years), and from six young (24–32 years) and nine old women (65–96 years), using a novel image analysis algorithm applied to confocal images. Muscle fibres were classified according to myosin heavy chain (MyHC) isoform expression. Our image analysis algorithm was effective in determining the spatial organization of myonuclei and the distribution of individual MNDs along the single fibre segments. Significant linear relations were observed between MND size and fibre size, irrespective age, gender and MyHC isoform expression. The spatial organization of individual myonuclei, calculated as the distribution of nearest neighbour distances in 3D, and MND size were affected in old age, but changes were dependent on MyHC isoform expression. In type I muscle fibres, average NN‐values were lower and showed an increased variability in old age, reflecting an aggregation of myonuclei in old age. Average MND size did not change in old age, but there was an increased MND size variability. In type IIa fibres, average NN‐values and MND sizes were lower in old age, reflecting the smaller size of these muscle fibres in old age. It is suggested that these changes have a significant impact on protein synthesis and degradation during the aging process.  相似文献   

10.
MNDs (motorneuron diseases) are neurodegenerative disorders in which motorneurons located in the motor cortex, in the brainstem and in the spinal cord are affected. These diseases in their inherited or sporadic forms are mainly characterized by motor dysfunctions, occasionally associated with cognitive and behavioural alterations. Although these diseases show high variability in onset, progression and clinical symptoms, they share common pathological features, and motorneuronal loss invariably leads to muscle weakness and atrophy. One of the most relevant aspect of these disorders is the occurrence of defects in axonal transport, which have been postulated to be either a direct cause, or a consequence, of motorneuron degeneration. In fact, due to their peculiar morphology and high energetic metabolism, motorneurons deeply rely on efficient axonal transport processes. Dysfunction of axonal transport is known to adversely affect motorneuronal metabolism, inducing progressive degeneration and cell death. In this regard, the understanding of the fine mechanisms at the basis of the axonal transport process and of their possible alterations may help shed light on MND pathological processes. In the present review, we will summarize what is currently known about the alterations of axonal transport found to be either causative or a consequence of MNDs.  相似文献   

11.
The possibility that organophosphorus (OP) compounds contribute to motor neuron disease (MND) is supported by association of paraoxonase 1 polymorphisms with amyotrophic lateral sclerosis (ALS) and the occurrence of MND in OP compound-induced delayed neuropathy (OPIDN), in which neuropathy target esterase (NTE) is inhibited by organophosphorylation. We evaluated a consanguineous kindred and a genetically unrelated nonconsanguineous kindred in which affected subjects exhibited progressive spastic paraplegia and distal muscle wasting. Affected subjects resembled those with OPIDN and those with Troyer Syndrome due to SPG20/spartin gene mutation (excluded by genetic linkage and SPG20/spartin sequence analysis). Genome-wide analysis suggested linkage to a 22 cM homozygous locus (D19S565 to D19S884, maximum multipoint LOD score 3.28) on chromosome 19p13 to which NTE had been mapped (GenBank AJ004832). NTE was a candidate because of its role in OPIDN and the similarity of our patients to those with OPIDN. Affected subjects in the consanguineous kindred were homozygous for disease-specific NTE mutation c.3034A-->G that disrupted an interspecies conserved residue (M1012V) in NTE's catalytic domain. Affected subjects in the nonconsanguineous family were compound heterozygotes: one allele had c.2669G-->A mutation, which disrupts an interspecies conserved residue in NTE's catalytic domain (R890H), and the other allele had an insertion (c.2946_2947insCAGC) causing frameshift and protein truncation (p.S982fs1019). Disease-specific, nonconserved NTE mutations in unrelated MND patients indicates NTE's importance in maintaining axonal integrity, raises the possibility that NTE pathway disturbances contribute to other MNDs including ALS, and supports the role of NTE abnormalities in axonopathy produced by neuropathic OP compounds.  相似文献   

12.
An enantioselective high-performance liquid chromatography method was developed for the simultaneous determination of disopyramide (DP) and mono-N-dealkyldisopyramide (MND) enantiomers in plasma and urine. The drugs were extracted from plasma samples by liquid–liquid extraction with dichloromethane after protein precipitation with trichloroacetic acid; the urine samples were processed by liquid–liquid extraction with dichloromethane. The enantiomers were resolved on a Chiralpak AD column using hexane–ethanol (91:9, v/v) plus 0.1% diethylamine as the mobile phase and monitored at 270 nm. Under these conditions the enantiomeric fractions of the drug and of its metabolite were analyzed within 20 min. The extraction procedure was efficient in removing endogenous interferents and low values for the relative standard deviations were demonstrated for both within-day and between-day assays. The method described in this paper allows the determination of DP and MND enantiomers at plasma levels as low as 12.5 ng/ml and can be used in clinical pharmacokinetic studies.  相似文献   

13.
In the past decade, algal waste has been used as useful natural resource for production of enormous range of products that have wide economical and commercial importance. Pectinases are group of enzymes that have wide commercial applications. Hence, current study was designed to utilize algal biomass for the production of pectinases using submerged (SmF) and solid state fermentation (SSF) techniques. Different algal sources including brown (Dictyopteris polypodioides, Sargassum wightii and Dictyopteris divaricata) and green algae (Ulva lactuca and Codium tomentosum) were used and U. lactuca was found to be the most suitable substrate. Several bacterial and fungal strains were screened and among them Bacillus licheniformis KIBGE-IB4 was selected based on maximum pectinase production. SmF and SSF were studied utilizing U. lactuca as a substrate and results revealed that enzyme production was favoured by SmF (2457?±?3.31?U?mg?1) as compared to SSF (1432?±?1.46?U?mg?1). Parametric optimization of pectinase production indicated that B. licheniformis KIBGE-IB4 requires 10.0?g L–1 U. lactuca as a biomass in the medium with a pH 7.0 when incubated at 37?°C for 24 hours. Likewise, production of pectinase using algal resource was also compared with that of the conventional agricultural biomass and it was observed that when U. lactuca was used, the selected bacterial isolate produced a higher yield of enzyme than sugarcane bagasse and rice husk. Hence, it is anticipated that algal biomass can be efficiently utilized as an environmental friendly bioresource for the production of industrially important hydrolytic enzymes.  相似文献   

14.
In model experiments in vitro, the applicability of the EPR spectrometry method for the detection of modified nanodiamonds (MNDs) in blood and homogenates of mouse organs has been established. A characteristic signal (g = 2.003, ΔH ≈ 10 G) is observed in the samples of biomaterials containing MNDs, the intensity of which increases linearly with the concentration of nanoparticles in the range of 1.6–200 μg MNDs per 1 mL of the sample. The EPR method in biomaterials reveals the presence of intrinsic paramagnetic centers, signals from which are superimposed on the signal from the MNDs. However, the intensity of these signals is small, which makes it possible to register the MNDs using EPR spectrometry with the necessary accuracy. The data obtained open up the prospects of using the EPR method for studies of the interorgan distribution, accumulation, and elimination of MNDs during their intravenous injection into experimental animals.  相似文献   

15.
Abstract

Hg(II) and Pb(II) tolerance, removal, bioaccumulation and effects on antioxidant enzymes of thermophilic Exiguobacterium profundum were investigated. The results indicated that Hg(II) was more toxic than Pb(II) to E. profundum. E. profundum was also more tolerant in solid medium than in liquid medium for Pb(II) and Hg(II). The bacterial growth was not significantly influenced at 1.0 and 2.5?mg/L Pb(II) and Hg(II) for 24?h. The highest Hg(II) and Pb(II) bioaccumulation amounts were determined as 37.56 and 54.35?mg metal/dried bacteria, respectively. Bioaccumulation capacities of the cell membrane of E. profundum for Hg(II) and Pb(II) were determined. The different concentrations of Pb(II) and Hg(II) enhanced the SOD and CAT enzymes. In addition, variations of the surface macrostructure and the functionality of E. profundum after the interaction with Hg(II) and Pb(II) were investigated by the scanning electron microscope (SEM) and the Fourier transform infrared spectroscopy (FT-IR), respectively.

This investigation obviously showed that thermophilic E. profundum can also be applied for removal and recovery of toxic metals from industrial wastewater. Clearly, a further investigation should be utilized by thermophilic microorganisms. According to antioxidant enyzme activities, E. profundum can be also used as a bioindicator for the detection of toxic metal pollution in natural water samples.  相似文献   

16.
Motor neuron diseases (MND) are a heterogeneous group of disorders that includes amyotrophic lateral sclerosis (ALS) and result in death of motor neurons. These diseases may produce characteristic perturbations of the metabolome, the collection of small-molecules (metabolites) present in a cell, tissue, or organism. To test this hypothesis, we used high performance liquid chromatography followed by electrochemical detection to profile blood plasma from 28 patients with MND and 30 healthy controls. Of 317 metabolites, 50 were elevated in MND patients and more than 70 were decreased (p<0.05). Among the compounds elevated, 12 were associated with the drug Riluzole. In a subsequent study of 19 subjects with MND who were not taking Riluzole and 33 healthy control subjects, six compounds were significantly elevated in MND, while the number of compounds with decreased concentration was similar to study 1. Our data also revealed a distinctive signature of highly correlated metabolites in a set of four patients, three of whom had lower motor neuron (LMN) disease. In both datasets we were able to separate MND patients from controls using multivariate regression techniques. These results suggest that metabolomic studies can be used to ascertain metabolic signatures of disease in a non-invasive fashion. Elucidation of the structures of signature molecules in ALS and other forms of MND should provide insight into aberrant biochemical pathways and may provide diagnostic markers and targets for drug design.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. S.R., M.E.C. and M.B. contributed equally to this work. W.R.M. and B.S.K. contributed equally to this work. S.R., M.B., W.R.M., B.S.K., C.B., S.H., P.V., M.F.B., and R.K-D. have financial interests in Metabolon Inc., a company engaged in metabolic profiling. ††Electronic supporting figures, tables and datasets are available at the Journal’s website.*To whom corrsepondence should be addressed.E-mail: kaddu001@mc.duke.eduCurrent address: Duke University Medical Center, Department of Psychiatry, P.O. Box 3950, Durham, NC 27710.  相似文献   

17.
Summary It has been shown that dehydration markedly affects the activity of a number of enzymes connected with energy metabolism in the yeastSaccharomyces cerevisiae. Independently of the drying method used, there was found to be an inverse relationship between the activity of mitochondrial enzymes — NADH-dehydrogenase (EC 1.6.2.1), succinate dehydrogenase (EC 1.3.99.1) and cytochrome C oxidase (EC 1.9.3.1) - and the viability of yeast cells at the stationary growth phase. Dehydration led to an increase in activity only in exogenous NADH-dehydrogenase compared with activity in the initial compressed yeast. On the basis of alcohol dehydrogenase (EC 1.1.1.1) and catalase (EC 1.11.1.6) as examples, an ambivalent effect of the dehydration process on the activity of cytoplasmic enzymes has been demonstrated. The results obtained lead to the conclusion that the activity of individual electron-transport enzymes in yeastSaccharomyces cerevisiae is a sufficiently sensitive to be used as an indicator of the physiological state and to monitor a microbial biomass dehydration procedure.  相似文献   

18.
We developed a sensitive chemiluminescent sandwich-type enzyme immunoassay (CLEIA) of alpha-fetoprotein (AFP) using b?-D -galactosidase (b?-gal) as a label and 5-bromo-4-chloro-3-indolyl-b?-D -galactopyranoside as a substrate. The CL-EIA for AFP was performed using two monoclonal antibodies, one antibody is labelled with b?-gal, the other is coated onto the inside surface of a polystyrene tube. The detection limit for AFP was 0.5 ng/mL, equivalent to 10 pg/assay tube. The coefficient of variation for within and between assay imprecision were 2.0%?4.9% (n = 10) and 4.4%?9.8% (n = 5), respectively. AFP values in serum determined by this method correlated well with those obtained by radioimmunoassay (n = 26, r = 0.99). This sensitive AFP assay can be performed within 4 h and can be used as a routine assay in clinical diagnosis.  相似文献   

19.
G6PD, 6PGD and GR have been purified separately in the single step from rat lung using 2′, 5′-ADP Sepharose 4B affinity chromatography. The purified enzymes showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of the enzymes were estimated to be 134?kDa for G6PD, 107?kDa for 6PGD and 121?kDa for GR by Sephadex G-150 gel filtration chromatography, and the subunit molecular weights was respectively found to be 66, 52 and 63?kDa by SDS-PAGE. Optimum pH, stable pH, optimum ionic strength, optimum temperature, KM and Vmax values for substrates were determined. Product inhibition studies were also performed. The enzymes were inhibited by levofloxacin, furosemide, ceftazidime, cefuroxime and gentamicin as in vitro with IC50 values in the range of 0.07–30.13?mM. In vivo studies demonstrated that lung GR was inhibited by furosemide and lung 6PGD was inhibited by levofloxacin.  相似文献   

20.
Peroxidases are ubiquitous enzymes that play an important role in living organisms. Current spectrophotometrically based peroxidase assay methods are based on the production of chromophoric substances at the end of the enzymatic reaction. The ambiguity regarding the formation and identity of the final chromophoric product and its possible reactions with other molecules have raised concerns about the accuracy of these methods. This can be of serious concern in inhibition studies. A novel spectrophotometric assay for peroxidase, based on direct measurement of a soluble aniline diazo substrate, is introduced. In addition to the routine assays, this method can be used in comprehensive kinetics studies. 4-[(4-Sulfophenyl)azo]aniline (λmax?=?390?nm, ??=?32 880 M?1 cm?1 at pH 4.5 to 9) was introduced for routine assay of peroxidase. This compound is commercially available and is indexed as a food dye. Using this method, a detection limit of 0.05?nmol mL?1 was achieved for peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号