首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs.

Results

An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish.

Conclusions

This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.  相似文献   

2.
Plasma levels of catecholamines, cortisol, and glucose were monitored in rainbow trout during a 6-week forced swimming exercise programme. Compared to resting non-exercised controls, resting trained fish had lower levels of epinephrine, norephinephrine, cortisol, and glucose during the last 3 weeks of training. Initially, trained fish that were swimming had higher levels of epinephrine than resting trained fish. After 2 weeks of exercise, swimming did not significantly elevate epinephrine levels in trained fish. Glucose levels were consistently greater in swimming fish than in resting fish. At the end of the training period, exercised trout had lower (15–20%) oxygen consumption rates while resting or swimming than unexercised fish.
After a 5-month forced swimming exercise programme plasma levels of catecholamines and glucose were monitored in trained and untrained cannulated rainbow trout after 2 min of mild agitation. Trained fish showed an immediate (within 1 min) increase in the levels of epinephrine, but not norepinephrine and a delayed (within 15 min) increase in the levels of plasma glucose. Epinephrine levels returned to pre-stress levels within 15 min. Untrained fish had no significant increase in the plasma levels of norepinephrine, epinephrine, or glucose.  相似文献   

3.
为探讨运动训练和停训对鲈鲤Percocypris pingi幼鱼运动能力的影响,将480尾(体质量为2.18g±0.12g,体长为5.33cm±0.09cm)鲈鲤幼鱼随机分为4组(每组120尾):对照组(C)、无氧训练组(An)、4BL·s^-1组(BL为体长)(H)和2BL·s^-1组(L)(H组和L组每天均训练8h),在15℃±2℃条件下持续训练30d后停训。分别在训练前(T0)、训练30d后(T30)、停训20d后(DT20)和停训50d后(DT50)测定鲈鲤幼鱼的临界游泳速度(Ucrit)和1.5Ucrit条件下的耐受时间。结果显示:(1)持续运动训练显著提高了鲈鲤幼鱼的有氧和无氧运动能力,而力竭运动训练只提高了鲈鲤幼鱼的无氧运动能力;(2)停训20d后,L组的Ucrit显著高于An组和C组,An组、H组和C组间的差异无统计学意义,而An组和H组的耐受时间仍显著高于对照组,L组和C组间的差异无统计学意义;(3)停训50d后,实验组和C组间Ucrit和耐受时间的差异均无统计学意义。因此,运动训练显著提高了鲈鲤幼鱼的有氧和无氧运动能力,但不同训练方式的提升效果及其维持时间不同。  相似文献   

4.
鱼类对环境的行为和生理适应能力与其在自然界的资源变动状况密切相关,研究选取胭脂鱼(Myxocyprinus asiaticus)和中华倒刺鲃(Spinibarbus sinensis)幼鱼为研究对象,考察1周捕食者(乌鳢, Channa argus)驯化对2种鱼类的运动能力(最大匀加速速度)、特异(血浆IgM水平)和非特异免疫(血浆溶菌酶含量)指标和抗氧化能力(血浆超氧化物歧化酶活性)的影响,及在有无捕食者急性暴露两种条件下的驯化和非驯化鱼群自发游泳行为(游泳速度、运动时间比和个体间距离)和应激反应(血浆皮质醇水平)。研究发现:(1)总体上中华倒刺鲃比胭脂鱼有更快的游泳速度、更为活跃的自发游泳行为、更高的血浆皮质醇和IgM水平;(2)1周捕食驯化导致两种鱼类血浆皮质醇水平、特异免疫和非特异免疫水平的上升,并且中华倒刺鲃比起胭脂鱼表现的更加明显;(3)急性捕食者暴露导致血浆皮质醇水平上升,个体间距离下降,但后者仅在非驯化组有所体现。研究表明:(1)捕食驯化鱼类通过皮质醇动员特异和非特异免疫应对应激,这些生理和行为的改变可能有利于鱼类增强避敌能力或加快非致死捕食损伤的快速恢复。这表明捕食驯...  相似文献   

5.
Rats were treated by daily swimming or running exercises for 7 weeks. One group of rats was also trained under the influence of propranolol, while another group received daily propranolol injections only. The rat groups trained without beta blockade maintained a higher tail skin temperature when exposed to 5 degrees C after the 7-week training period. This phenomenon was not observable in the animals having received their training under the influence of beta-blockade. Both rat groups trained without beta-blockade showed increased vasodilatatory response to isoprenaline, as judged from a higher elevation of the tail skin temperature in response to the drug. This response was absent in the animal group having performed its training periods under the influence of propranolol. After the injection of phenylephrine the trained rats had a higher tail skin temperature than did the controls or propranolol-treated rats. The present results suggest an elevated sensitivity of beta 2-adrenoceptors and/or decreased sensitivity of alpha-adrenoceptors in trained rats. It is suggested that for the development of these changes repeated activation of the sympathetic nervous system by exercise periods is needed. That is why they are preventable if the training is performed under the influence of beta-blockade.  相似文献   

6.
周龙艳  李秀明  付世建 《生态学报》2022,42(17):7288-7295
近年来,长江流域鱼类资源急剧下降,而有关鱼类对环境变化的行为和生理响应对于评估环境变化对种群动态的影响具有重要意义,相关研究亟待开展。选取中华倒刺鲃(Spinibarbus sinensis)和胭脂鱼(Myxocyprinus asiaticus)幼鱼为实验对象,考察两种鱼类在1-2周禁食后的自发群体运动时间比、游泳速度、个体间距离、最大匀加速速度、溶菌酶含量、鱼体免疫球蛋白(IgM)水平、血清皮质醇水平和超氧化物歧化酶活性的响应。研究发现:(1)相比之下,胭脂鱼的自发游泳行为表现不太活跃,游泳能力和IgM水平更低,超氧化物歧化酶SOD水平更高;(2)胭脂鱼在正常摄食条件下比中华倒刺鲃生长更慢,但是在1-2周短期禁食条件下其体重下降更少;(3)1-2周的短期禁食结束后,两种实验鱼的SOD活性和游泳能力变化不明显,但是其IgM水平和皮质醇都提高,胭脂鱼表现不及中华倒刺鲃;(4)胭脂鱼的溶菌酶含量在1-2周短期禁食后明显提高,但是中华倒刺鲃的溶菌酶含量没有受到1-2周短期禁食的显著影响。研究表明:(1)相比于中华倒刺鲃,胭脂鱼不太活跃,免疫和运动能力也更低,当食物充足时生长优势不明显,但在食物短缺时,营养物质和能量损失更少;(2)两种实验鱼的生理机能(比如游泳行为和免疫功能)对短期禁食有不同的响应,胭脂鱼更加不敏感(溶菌酶除外)。总体而言,研究表明同样的食物资源波动可能导致同一水域不同鱼类不同的生态后果,更多鱼类的相关研究亟待开展。  相似文献   

7.
为了考察1—2周禁食对胭脂鱼(Myxocyprinus asiaticus)幼鱼游泳能力、热耐受能力和自发运动的影响,以胭脂鱼幼鱼[体质量(3.26±0.64) g,体长(5.32±0.32) cm]为实验对象,将其随机分成对照组、1周禁食组和2周禁食组测定其有氧运动能力及其代谢、热耐受能力和自发运动行为相关参数。结果发现:1周禁食组和2周禁食组的静止代谢和临界游泳速度与对照组没有显著性差异,但其最大代谢率、代谢空间、单位位移能量消耗、头高/头长及体高/体长显著低于对照组(P<0.05); 1周禁食组和2周禁食组的临界低温和致死低温与对照组没有显著性差异,但其临界高温和致死高温显著高于对照组(P<0.05); 1周禁食组和2周禁食组的运动总距离、平均运动速度和运动时间百分比与对照组没有显著性差异。综上所述:胭脂鱼幼鱼采取有氧运动能力和自发运动行为的维持策略应对1—2周禁食胁迫,这可能有利于维持其日常的觅食活动。此外,尽管对低温耐受没有显著影响,但1—2周的禁食显著提高了胭脂鱼幼鱼的高温耐受能力。  相似文献   

8.
Red blood cell (RBC) mechanical properties were investigated after swimming exercise in trained and untrained rats. A group of rats was trained for 6 wk (60 min swimming, daily), and another group was kept sedentary. Blood samples were obtained either within 5 min or 24 h after 60 min swimming in both groups. In the untrained rats, the RBC aggregation index decreased to 2.60 +/- 0.4 immediately after exercise from a control value of 6.73 +/- 0.18 (P < 0.01), whereas it increased to 13.13 +/- 0.66 after 24 h (P < 0.01). RBC transit time through 5-microm pores increased to 3.53 +/- 0.16 ms within 5 min after the exercise from a control value of 2.19 +/- 0. 07 ms (P < 0.005). A very significant enhancement (166%) in RBC lipid peroxidation was detected only after 24 h. In the trained group, the alterations in all these parameters were attenuated; there was a slight, transient impairment in RBC deformability (transit time = 2.64 +/- 0.13 ms), and lipid peroxidation was found to be unchanged. These findings suggest that training can significantly limit the hemorheological alterations related to a given bout of exercise. Whether this effect is secondary to the training-induced reduction in the degree of metabolic and/or hormonal perturbation remains to be determined.  相似文献   

9.
Exercise training has been used for treatment/prevention of many cardiovascular diseases, but the mechanisms need to be clarified. Thus, our aim was to compare oxidative stress parameters between rats submitted to a swimming training and sedentary rats (control). Twelve male rats were divided into two groups: control and exercise training. The exercise training had daily 1 h swimming sessions for 8 weeks and a load (5% of its body mass) was placed in rat's tail. Thereafter the animals were killed, aorta and heart were surgically removed and blood was collected. Body mass gain, thiobarbituric acid reactive species (TBARS), carbonyl content, total reactive antioxidant potential (TRAP), total antioxidant reactivity (TAR), superoxide dismutase (SOD) activity and catalase (CAT) activity were evaluted. The trained rats showed a lower body mass gain and no modifications on heart. An increased SOD activity was observed on aorta after the training, but no changes were seen for CAT activity, which led to an increased SOD/CAT ratio. The arterial TBARS was also increased for trained rats. The decrease in TRAP in exercise training was the single modification on plasma. Our findings suggest that the increased SOD activity could play a role in vascular adaptations to exercise training. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The swimming performance of two fish species, the brown trout and whitefish, having initially different swimming strategies, was measured after nine different training programs in order to relate the effects of exercise on Ca2+ handling and oxidative capacity of swimming muscles. The time to 50% fatigue was measured during the training period, and compared with the density of dihydropyridine (DHP) and ryanodine (Ry) receptors and succinate dehydrogenase (SDH) and phosphorylase activity determined by histochemical analysis of the swimming muscles. Overall, both trained brown trout and whitefish had superior swimming performance as compared to control ones. Interestingly, the training programs had different effect on the two species studied since brown trout achieved the highest swimming performance, swimming against the water flow velocity of 2 BL s−1 while among whitefish the best efficiency was seen after training with lower swimming velocities. Training also induced a significant increase in DHP and Ry receptor density in both species. Generally, in brown trout the most notable increase in the receptor densities was observed in red muscle sections from the fish swimming for 6 weeks against water currents of 1 BL s−1 (DHPR 176.5 ± 7.7% and RyR 231.4 ± 11.8%) and white muscle sections against 2 BL s−1 (DHPR 129.6 ± 12.4% and RyR 161.9 ± 15.5%). In whitefish the most prominent alterations were noted in samples from both muscle types after 6 weeks of training against water current of 1.5 BL s−1 (DHPR 167.1 ± 16.9% and RyR 190.4 ± 19.4%). Finally, after all the training regimens the activity of SDH increased but the phosphorylase activity decreased significantly in both the species. To conclude, our findings demonstrate an improved swimming performance and enhanced Ca2+ regulation and oxidative capacity after training. Moreover, there seems to be a connection between the swimming performance and receptor levels, especially in white swimming muscles of different fish species, regardless of their initially deviant swimming behaviours. However, depending on the training regimen the divergent swimming behaviours do cause a different response, resulting in the most prominent adaptational changes in the receptor levels of red muscle samples with lower swimming velocities in brown trout and with higher ones in whitefish.  相似文献   

11.
Previous studies suggested that hypoxia and exercise may have a synergistic effect on cardiovascular and metabolic risk factors. We conducted a single blind study in overweight to obese subjects to test the hypothesis that training under hypoxia (HG, n = 24, FiO2 = 15%) results in similar or even greater improvement in body weight and metabolic risk markers compared with exercise under normoxia (NG, n = 21, FiO2 = 21%). After an initial metabolic evaluation including incremental exercise testing, subjects trained in normoxic or hypoxic conditions thrice weekly over a 4‐week period at a heart rate corresponding to 65% of maximum oxygen uptake (VO2max). The experimental groups were similar at the start of the investigation and weight stable during the training period. Subjects in the hypoxia group trained at a significantly lower workload (P < 0.05). Yet, both groups showed similar improvements in VO2max and time to exhaustion. Respiratory quotient and lactate at the anaerobic threshold as well as body composition improved more in the hypoxia group. We conclude that in obese subjects, training in hypoxia elicits a similar or even better response in terms of physical fitness, metabolic risk markers, and body composition at a lower workload. The fact that workload and, therefore, mechanic strain can be reduced in hypoxia could be particularly beneficial in obese patients with orthopedic comorbidities.  相似文献   

12.
Schools of herring exposed to progressive hypoxia show a peak in velocity during severe hypoxia, at 15–34% oxygen saturation, followed by a decrease in swimming speed until school disruption occurred. The observed increase in swimming speed during severe hypoxia reveals a graded response, since the lower the fish's swimming speed prior to severe hypoxia ( U 95−50, the speed at oxygen saturations between 95 and 50%), the greater the relative increase in swimming speed. The oxygen saturations at which both peak velocity and school disruption occurred were lower for fish with lowest U 95−50, suggesting that the fish with the slowest speed U 95−50 reach their critical PO2 (at which there is respiratory distress) last, i.e. at lower oxygen saturation. At a functional level, it is suggested that herring encountering hypoxia increase their speed in order to find more favourable conditions, and the magnitude of this increase is modulated by their respiratory distress. It is also hypothesised that the observed increase in speed may be related to an increase in the rate of position shifting within the school. Since the oxygen saturation at which the response to hypoxia occurs and the magnitude of the response are related to the fish's preferred speed prior to severe hypoxia, it is suggested that such a preferred speed should be measured in experiments testing the effect of hypoxia on fish behaviour.  相似文献   

13.
Iron distribution in different tissues in rats following exercise   总被引:7,自引:0,他引:7  
Iron plays an essential role in blood oxygen transport and in muscle physiology. No conclusive data exist in the literature concerning its tissue distribution and behavior following exercise and training. The aim of the present work was to analyze the Fe content in different tissues following a single session of swimming to exhaustion and after swimming training in rats in order to more extensively describe the changes of Fe distribution provoked by exercise. Animals were divided into four groups (n=10): control group at rest, trained group at rest, control group after exercise, and trained group after exercise. First, rats swam until exhaustion and the maximal swimming time was noted. The training protocol consisted of swimming (5 d/week for 3 wk), limiting the time to 60% of the maximum obtained during the first session to exhaustion of each rat. The variables measured were erythrocytes, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and, Fe in liver, kidney, erythrocytes, heart, muscle, bone, and serum. Variations in plasma volume were also calculated. Tissues presented two different profiles with regard to the changes of Fe concentration provoked by training: those displaying higher values of Fe after training, such as liver, heart, muscle, and serum, and those displaying lower values, such as bone, kidney, and red blood cells. These changes in the distribution of Fe in different tissues could be the result of an increase in the needs and use of Fe, shown by active tissues at exercise, and it is possible that the hormonal changes provoked by stress lead to a different behavior of Fe proteins.  相似文献   

14.
In Experiment 1 a double-phase test diet (high-protein low-carbohydrate phase (HP): 5 days, high-carbohydrate phase (HC): 2 days) was compared to a normal diet by measuring all-out performance in rats trained by steady or interval swimming exercise. The tests carried out on the 8th day showed the swimming performance to be improved to a similar extent by the two training procedures, to be further improved by the test diet in the exercised animals; changes in liver glycogen, blood glucose and serum corticosterone reflected especially in the influence of exercise which in some cases was potentiated by the test diet. In Experiment 2 the 5 days of high protein intake were treated separately from the effect of the double-phase test diet as a whole in order to study the mechanism. These aminals were exercised by treadmill running of 7 days. Cytochrome P450 content of the liver rose under the effect of exercise as well as the HP phase, thus supplying additional evidence for the enzyme inducer effect of physical exertion. Glycogen decreased both in the muscle and liver during the HP phase and returned to normal after the HC phase. Liver glycogen rose to an even higher level than normal in the trained groups, but muscle glycogen values remained lower, this may be related to the shortness of training and to an accelerated rate of turnover. High protein intake associated with a depletion of carbohydrate stores was found to have an effect of its own which, when followed by replenishment of calories reserves, might be used to advantage in improving physical performance.  相似文献   

15.
为了研究摄食和饥饿对鱼类游泳运动能力和低氧耐受的影响; 以大口黑鲈(Micropterus salmoides)为对象, 在25℃下, 测定对照组(禁食2d)、摄食组(摄食后3h)和饥饿组(禁食16d)实验鱼的日常代谢率(RMR)、活跃代谢率(AMR)、代谢范围(MS)、临界游泳速度(Ucrit)、临界氧压(Pcrit)和失去平衡点(LOE)。研究显示摄食后实验鱼RMR显著提升, AMR没有显著变化, 而MS和Ucrit显著下降(P<0.05); 饥饿后实验鱼RMR、AMR和MS均没有显著变化, 而Ucrit显著下降(P<0.05); 摄食后实验鱼Pcrit显著上升, 溶解氧(DO)高于Pcrit时的代谢率(MR)与DO之间的关系的斜率显著大于对照组所对应的斜率, 而LOE没有变化(P<0.05); 饥饿后实验鱼Pcrit和LOE均没有显著变化, 而DO 低于Pcrit时的MR与DO之间的关系的斜率显著小于对照组所对应的斜率(P<0.05)。结果表明, 摄食削弱大口黑鲈游泳运动能力是因为“心鳃”系统对其有氧代谢能力的限制; 饥饿后大口黑鲈游泳运动能力下降可能与其无氧代谢能力下降相关; 摄食削弱大口黑鲈的低氧耐受, 而饥饿后其低氧耐受有所增强, 但大口黑鲈低氧耐受总体趋于保守。  相似文献   

16.
The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.  相似文献   

17.
Aerobic training led to enhancement of lipase activity in type IIA type muscles. Still more obvious changes were found in rats trained to aerobic swimming with maximal intensity. In latter activity, a rise of the fatty acid-binding protein (FABP) was revealed in types I and IIA skeletal muscles. These adaptive changes led to enhancement of lipid metabolism. It was also shown that the FABP content decreased after physical exercise more obviously in the trained animals due, probably, to their substance turnover enhancement.  相似文献   

18.
Endurance capacity and the effects of different post-exercise states on skeletal muscle glycogen have been studied in rats trained by swimming or running and in sedentary controls. Regular endurance exercise resulted in increased skeletal muscle glycogen stores. A greater depletion was observed in trained animals than in non-trained animals after a training bout or exhaustive exercise. While muscle glycogen levels did not reflect a differential training stimulus (running vs swimming), swimming as a measure of exhaustive exercise was deemed invalid because of the ability of trained swimmers to avoid stenuous exercise by an alteration of swimming pattern.  相似文献   

19.
目的:探讨游泳运动对大鼠肺组织新的小分子活性肽apelin及其受体(APJ)表达的影响。方法:45只雄性大鼠随机分成三组:正常对照组、低氧组(七周)和游泳组(低氧+游泳锻炼七周组,低氧3周后,于每天入低氧舱前行无负重游泳运动60 min,每天1次)。七周后测定各组大鼠平均肺动脉压(mPAP)、右心室与左心室加室间隔的重量比[RV/(LV+S)]、肺细小动脉管壁面积/管总面积(WA/TA)、管腔面积/管总面积(CA/TA)及中膜厚度(PAMT)。免疫蛋白印迹与免疫组化法测定肺组织apelin/APJ的蛋白表达。结果:①低氧组mPAP和RV/(LV+S)比正常对照组分别高73.6%和31.2%(P均<0.01),而游泳组比低氧组分别低21.1%和8.9%(P均<0.05)。②低氧组WA/TA和PAMT较正常对照组分别高70.8%和102%,而游泳组较低氧组分别低24.8%和40.1%(P均<0.01)。低氧组CA/TA较正常对照组低15.1%,而游泳组较低氧组高10.3%(P均<0.01)。③低氧组肺组织apelin蛋白表达较正常对照组上调374%(P<0.01),而APJ蛋白表达下调87.1%(P均<0.01);游泳组肺组织apelin蛋白表达较低氧组下调48%,而APJ蛋白表达上调287%(P均<0.01)。④apelin蛋白主要在血管外膜及炎症细胞胞浆内表达,APJ蛋白主要在血管内膜、外膜及炎症细胞上表达。结论:游泳运动减缓肺动脉高压和肺血管重塑作用可能与调节肺组织apelin/APJ系统的表达有关。  相似文献   

20.
耐力运动对大鼠骨骼肌ERK1/2活性的影响   总被引:2,自引:0,他引:2  
目的:探讨耐力运动对大鼠骨骼肌蛋白总量(t-ERK1/2)及磷酸化ERK1/2(p-ERK1/2)及ERK2mRMA表达的影响。方法:SD大鼠随机分为对照组和运动组。运动组分为1h/d和1.5h/d组,共7周,运动结束后24h和48h取材,测定葡萄糖和胰岛素浓度;Westernblot法检测骨骼肌t-ERK1/2、p-ERK1/2蛋白表达;RT-PCR法分析ERK2mRNA表达。结果:与对照组比较,运动组胰岛素浓度降低;各运动组p-ERK1/2升高;1.5h/d-24h和-48h组t-ERK1/2增高;1h/d-24h组与1.5h/d-24h和-48hERK2mRNA表达增高。结论:耐力运动可能通过增加ERK1/2活性,提高大鼠骨骼肌对胰岛素的敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号