首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
机械敏感离子通道(mechanosensitive ion channels, MSC)是一类受机械压力影响而产生兴奋电信号的离子通道,广泛分布于生物各组织器官中,参与生物体内的多种生理过程。最近在哺乳动物体内发现了一种新型的MSC蛋白Piezo1,它与其他MSC蛋白不具有同源性,在细胞感应机械应力的过程中发挥着重要作用。大量研究结果表明,Piezo1在动脉血压的控制、红细胞体积的改变、心脏相关因子的分泌等生理过程中扮演了重要角色,与心血管系统关系密切。在哺乳动物心血管系统中,心脏、动脉血管、毛细微血管和红细胞等都可感受来自细胞外环境机械应力刺激,而Piezo1将机械应力转化为生物电信号,进而影响后续的生理过程。本文介绍了Piezo1在心血管系统中的作用,并总结Piezo1蛋白的具体作用机制及其差异,以期为进一步的研究提供有益参考。  相似文献   

2.
2010年科学家在小鼠神经瘤母细胞中筛选鉴定出Piezo1和Piezo2蛋白.Piezo2是一个由机械刺激直接激活且可将机械刺激转换为电信号进而形成机械敏感性电流通道的蛋白质.Piezo2自发现以来一直受到广泛的关注,在触觉、本体感觉、痛觉、肿瘤癌症等多种生理病理过程中发挥重要作用.本文在前期研究的基础上阐述了机械敏感...  相似文献   

3.
2010年,Coste等首次在小鼠神经母细胞瘤中筛选鉴定出Piezo1,其为一种受力学信号刺激影响的新型机械敏感性离子通道蛋白.这类蛋白质嵌于细胞膜上,可将机械信号通过变形传递到其孔核结构,在毫秒内将机械刺激转化为电信号或生化信号,是细胞对力学产生感知和响应的分子基础.Piezo1蛋白自发现以来一直备受关注.本文详细介...  相似文献   

4.
目前心血管系统疾病已成为人类发病率、致残率和病死率最高的疾病之一,严重影响着人们的生活质量.Piezo1 是一种机械敏感性阳离子通道,可将机械刺激转化为电化学信号,介导信息的传递.越来越多的证据表明,Piezo1 在心血管系统的代谢过程中可发挥广泛的生物学作用.本文对近年来Piezo1 参与血流剪切应力感受转导、血管发...  相似文献   

5.
Piezo1是哺乳动物中新发现的一种机械敏感(mechanosensitive,MS)离子通道,在不同组织和器官中发挥着重要功能,包括骨骼、泌尿道、眼球和动脉等。然而,异常的Piezo1机械传导会造成多种疾病的发生并促进病程的发展。纤维化疾病几乎可以发生在任何一个组织和器官中,其主要特征是胶原蛋白和其他细胞外基质(extracellular matrix,ECM)成分的过度交联与累积,最终导致组织器官刚度增加,生理功能受到影响。目前,越来越多的研究表明,Piezo1在纤维化疾病的发生和发展中扮演着重要的调控作用,与其基质力学状态变化有着密切联系。本文叙述了Piezo1的结构和激活机理,并且系统地总结了Piezo1在心、肾、胰和肝等多种器官纤维化疾病中的研究进展,以期为纤维化疾病的治疗提供新的视角和策略。  相似文献   

6.
以人的骨髓间充质干细胞为种子,在体位构建体外细胞机械牵张应力模型,探究新型机械敏感性离子通道Piezo1在干细胞向皮肤成纤维细胞转化的作用。采用梯度离心与贴壁筛选相结合的方法,体外培养人的骨髓间充质干细胞,隔代培养后,取生长状态良好的第3代干细胞,进行后面的研究。根据预实验结果,将干细胞分成以下几组:0 h机械牵张应力组、6 h机械牵张应力组、12 h机械牵张应力组和48 h机械牵张应力组,以及Piezo1蛋白的抑制剂Gs MTx4组。将各组细胞种植在Flexcell公司的膜性6孔板中,待融合率在80%左右时,进行体外机械牵张应力的干预。然后采用RT-qPCR、Western-blotting以及激光共聚焦免疫荧光的实验方法检测各组细胞中Piezo1的表达水平,以及干细胞向表皮成纤维细胞的转化水平。原代骨髓间充质干细胞大多呈短梭形,Piezo1表达水平较低。在周期性机械牵张应力的干预下,细胞向成纤维细胞的长梭形的形态学上发展,并且随着时间的延长,变化越明显。RT-qPCR、Western-blotting以及激光共聚焦免疫荧光均发现Piezo1和Vimentin蛋白的表达水平随着干预时间的延长,其表达量也相应增加。机械敏感性离子通道Piezo1蛋白可以介导骨髓间充质干细胞向表皮成纤维细胞转化,为体外构建组织工程皮肤提供种子细胞。  相似文献   

7.
对力的感知和响应是生命的特征之一,其分子机制一直是生命科学中最引人入胜、最富挑战性的系列问题之一。近年来人们发现,机械力敏感离子通道在细胞感知和响应机械力信号的过程中扮演了"哨兵"的重要角色。越来越多的离子通道被发现能够被机械力激活,从而开启下游的信号通路。其中,MscL和MscS是原核生物中研究最早、最深入的两种离子通道;在真核生物中,Piezo1和Piezo2两种离子通道因为其独特的曲率结构和在哺乳动物各种生理过程中的重要作用而逐渐成为研究的热点。该文主要对以上四种离子通道的研究历史、结构、门控机制以及潜在应用进行综述。  相似文献   

8.
<正>Nature:研究揭示蛋白Piezo2调节肺部充气在一项新的研究中,来自美国几个研究机构的研究人员发现证据证实一种被称作Piezo2的蛋白起着对小鼠呼吸过程存在一定控制的作用。相关研究结果发表在Nature期刊上,论文标题为"Piezo2 senses airway stretch and mediates lung inflation-induced apnoea"。来自法国巴黎高等师范大学生物研究所的Christo Goridis针对这项研究发表一篇新闻与观点类型的文章。  相似文献   

9.
目的 本研究旨在探讨细胞外基质刚度变化对神经干细胞(neural stem cells,NSCs)分化的影响及其作用机制。方法 本研究基于成功构建脊髓损伤大鼠模型,并制备不同刚度(0.7 kPa、40 kPa)的聚丙烯酰胺凝胶基底,将大鼠原代NSCs于不同刚度基底上培养。压电型机械敏感离子通道组件1(piezo type mechanosensitive ion channel component 1,Piezo1)shRNA质粒转染NSCs细胞。免疫荧光染色检测神经元标志物双皮质醇(doublecortion,DCX)和星形胶质细胞标志物胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)阳性细胞百分比。免疫组织化学及蛋白质免疫印迹(Western blot)法检测损伤组织及NSCs细胞中Piezo1蛋白的表达水平。结果 与0.7 kPa基质刚度组相比,40 kPa基质刚度组中DCX阳性细胞数增加,而GFAP阳性细胞数减少,Piezo1蛋白表达量上升。脊髓损伤大鼠损伤组织Piezo1蛋白表达显著高于空白对照(sham)组。40 kPa基质刚度条件下沉默Piezo1后,DCX阳性细胞数减少,而GFAP阳性细胞数增加,差异具有统计学意义(P<0.05)。机制研究发现,沉默Piezo1导致IV型胶原及纤连蛋白表达下降。重组纤连蛋白逆转了Piezo1 shRNA对NSCs分化的影响,即DCX阳性细胞数增加,而GFAP阳性细胞数减少。结论 综上可见,硬基底刚度通过促进Piezo1蛋白表达,上调IV型胶原及纤连蛋白表达,从而调控NSCs细胞分化。本研究为基于生物材料治疗脊髓损伤提供了新的视角。  相似文献   

10.
机械敏感离子通道(mechanosensitive channels,MSCs)是一类分布于各种细胞膜上可将细胞受到的机械刺激转化为电信号或化学信号的特殊膜蛋白。由于机械敏感通道所具有的特性,使其成为超声调控的重要潜在靶点。超声由于具有良好的空间分辨率和聚焦效果,并且理论上可实现无创条件下的全脑范围定位,具有用于进行物理性神经调制和治疗神经系统疾病的潜力。近年来,越来越多的离子通道被鉴定出具有机械敏感特性,但其中有明确报道可以被超声激活的依然数量较少。此外,现阶段超声激励下机械敏感通道的开放过程和机制仍未被阐明。本文着重介绍了大电导机械敏感通道、瞬时受体电位通道、退化蛋白/上皮钠通道、双孔钾通道和Piezo通道等机械敏感离子通道在超声神经调制中的研究进展及其应用,为未来超声神经调制的深入研究和临床应用提供参考。  相似文献   

11.
整合素在细胞响应机械应力中的作用   总被引:7,自引:1,他引:6  
机械应力在细胞生长、分化和基因表达等生理学过程和某些病理学过程中起了重要的作用.细胞粘附分子——整合素是机械信号转导中重要的跨膜分子.细胞通过整合素与胞外基质蛋白、细胞骨架蛋白以及聚焦粘附激酶等的反应,将感应的力信号转化为化学信号,从而调节细胞的生理机能,其中整合素与胞外基质蛋白之间的动态和特异性反应在细胞的机械信号转导过程中起了功能性作用.  相似文献   

12.
创面愈合是指机体遭受外力作用,皮肤组织出现离断或缺损后愈合恢复的连续过程,包括各种组织再生、肉芽组织增生和瘢痕形成。创面愈合涉及多个细胞群、细胞外基质和各种信号分子,可以分为3个阶段:止血与炎症期、增殖期和重塑期。机械力作为细胞结构和功能的调节因素,参与调节创面愈合中多个细胞群的增殖、迁移和分化等生理过程,影响创面愈合的进程。现从细胞角度讨论机械力对创面愈合的影响。  相似文献   

13.
哺乳动物细胞线粒体融合-分裂与钙离子信号的关系   总被引:2,自引:0,他引:2  
Zhao GJ  Lu ZQ  Yao YM 《生理科学进展》2010,41(3):171-176
线粒体是一种高度动态的细胞器,通过融合和分裂两个相反的过程来维持正常的形态结构。在哺乳动物中,多种因素影响线粒体的融合-分裂的平衡,但现已明确,线粒体融合的主要调节因子为Mfn1/2、OPA1,介导线粒体分裂的主要调节因子为Drp1、Fis1。新近研究发现,线粒体融合-分裂平衡的紊乱将导致线粒体结构和在细胞内分布的异常,进而影响细胞和线粒体对钙离子信号的反应;同时,钙离子也可通过多种机制影响线粒体的形态结构与分布。  相似文献   

14.
Exo70是胞外分泌复合体(exocyst)中的关键亚基,广泛存在于酵母、哺乳动物和植物中。在酵母和哺乳动物细胞的胞外分泌过程中,Exo70介导运输囊泡与目的质膜的锚定与融合过程。除此之外,在哺乳动物细胞中,Exo70还参与细胞迁移、细胞连接构建等过程,并参与调节exocyst复合体的装配。对Exo70的结构研究表明,不同物种Exo70在结构上存在一定差异,其功能的差异可能与其结构密切相关。在结构、定位及功能等方面对Exo70的研究进展进行综述,将为全面了解Exo70在细胞中的功能提供参考。  相似文献   

15.
Ⅰ型酪蛋白激酶的研究进展   总被引:2,自引:2,他引:0  
Ⅰ型酪蛋白激酶(CKI)属丝氨酸/苏氨酸蛋白激酶,在真核生物中广泛存在,结构高度保守。在生物生长发育过程中CKI参与多种细胞功能及发育过程的调节,具有非常重要的作用。本文从CKI的结构、生理功能、调节机制以及近年来CKI在哺乳动物、酵母和植物中的分类与功能等方面进行综述,为进一步研究其在代谢及信号转导中的作用,明确其在生长发育等调控网络中的地位提供理论指导。  相似文献   

16.
胚胎干细胞的生长、增殖、分化和形状改变等过程受微环境、机械力等多种因素的影响。胚胎干细胞能够感知微小机械力刺激,并将其转化成生物化学信号,进而通过F-肌动蛋白、肌球蛋白-II、Cdc42、Rho和Src等产生一系列分子水平的应答反应,最终导致基因差异表达。胚胎干细胞应答外力基本过程的研究对于胚胎早期发育和分化机制研究、克隆和再生药物的研制与开发等均有重要意义。该文就机械力对胚胎干细胞结构、形态和分化的影响及其潜在机制等进行论述。  相似文献   

17.
Ca2+对骨骼肌钙释放通道的调节   总被引:4,自引:0,他引:4  
Han HM  Yin CC 《生理科学进展》2006,37(2):132-135
钙释放通道(calcium release channel)又称Ryanodine受体(RyR),是细胞内质网膜上介导细胞内钙信号转导的离子通道。RyR1在骨骼肌细胞的兴奋-收缩偶联过程中起重要作用,是肌质网快速释放Ca^2+的通道。许多调节因素,如一些内源性蛋白(FK结合蛋白、钙调素、钙结合蛋白)和一些离子(Ca^2+、Mg^2+),通过不同的作用位点与RyR1结合,调控RyR1的结构与功能。研究表明,Ca^2+是众多调节RyR1因素中的核心成分和前提条件,其对RyR1的结构与功能有重要的调控作用。  相似文献   

18.
HAX-1研究进展   总被引:1,自引:0,他引:1  
HAX-1为凋亡调节蛋白,其结构与Bcl-2家族相近,含有BH1、BH2结构域。HAX-1在成年人心肌细胞中通过抑制caspase9的活化从而起到抗凋亡作用,同时也是促凋亡蛋白Omi/HtrA2的底物,在凋亡过程中被其降解。另外,HAX-1能够与蛋白的3'非翻译区结合,可能参与了对mRNA的调节。HAX-1在机体细胞内广泛表达,与多种蛋白存在相互作用,具有多种生物学功能。简要综述了近年来有关HAX-1蛋白的抗细胞凋亡、参与细胞迁移,以及在病毒感染、疾病中的作用。  相似文献   

19.
FoxO1是Fox家族中FoxO亚家族的成员之一,其氨基酸序列在不同物种间高度保守,但 磷酸化位点存在差异.此外,FoxO1在不同物种间染色体定位不同.FoxO1转录活性的调节包括 基因表达水平、翻译后修饰、蛋白质的稳定性及蛋白质之间的相互作用等多个层次.FoxO1在 肌纤维类型转化过程中发挥重要作用,肌纤维类型与肉品质密切相关,直接影响肌肉色泽、 嫩度和肌内脂肪含量.因此,研究FoxO1调控肌纤维类型转化的机理,将为改善肉品质奠定理 论基础.本文系统介绍了Fox的命名与分类,FoxO1的结构特点及转录活性的调节,并着重综 述了FoxO1调控肌纤维类型转化的最新研究进展.  相似文献   

20.
植物AP1基因研究进展(综述)   总被引:2,自引:0,他引:2  
AP1(APETALA1)基因属于植物花分生组织特征基因和花器官形态特征基因,在控制植物花分生组织特性与花器官的形成过程中起着重要的作用。本文综述了近年来植物AP1基因结构、功能、表达调节及其与物种进化关系研究的新进展,并对其在果树上的应用研究进行分析和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号