首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All four stereoisomers of pyriculol were synthesized to assist in forming a correlation between their chemical structure and biological activity. The (R,E)-2-hydroxy-3-pentenal derivative was coupled with a lithium acetylide derivative to give a diastereomeric mixture of the acetylenic alcohol, which led to the antipode of pyriculol and its 3′-epimer. Similarly obtained were the natural pyriculol and its 3′-epimer from the (S)-isomer of this aldehyde.  相似文献   

2.
Pseudolaric acid B (1) is a natural product with potent antifungal activity. We discovered that pseudolaric acid B did not kill but only suppress the growth of the filamentous fungus Chaetomium globosum. It was proposed that pseudolaric acid B was converted to metabolites with decreased antifungal activities. In this study, a scaled-up biotransformation of pseudolaric acid B by C. globosum produced five metabolites, including three new compounds, pseudolaric acid I (2), pseudolaric acid B 18-oyl-alanine (4) and pseudolaric acid B 18-oyl-serine (6), together with two known compounds, pseudolaric acid F (3) and pseudolaric acid B 18-oyl-glycine (5). The structures were characterized by NMR and MS spectroscopy. The major biotransformation reaction was conjugation with amino acids. None of the metabolites showed inhibitory effects on the growth of Candida albicans. The results suggested that biotransformation might be a detoxification process for fungi to resist antifungal drugs.  相似文献   

3.
The transformation of schizandrin (I) into gomisin A (II) was accomplished by use of a combination of biotransformation and chemical reactions. The biotransformation, microbial O-demethylation of I by Cuntiinghamella echinulata var. elegans (ATCC 9245) produced two novel metabolites [3-norschizandrin (IV) and 2-norschizandrin (VI)] and two known metabolites [gomisin T (III) and 13-norschizandrin (V)]. Among those metabolites, compound III was derived to II by the O-demethylation with a Lewis acid in the presence of an acid scavenger, followed by methylenation.  相似文献   

4.
In this study, Nocardia iowensis was used to transform oleanolic acid (OA) into oleanane derivatives. The first derivative, which was found after 24 h of cultivation, was the known and already described OA methyl ester. After 1 week, two other derivatives (oleanonic acid methyl ester and an unknown metabolite) were identified as new products of a biotransformation by N. iowensis. These oleanane metabolites were characterized by HPLC, HPLC‐ESI‐MS, and HPLC‐1H NMR spectroscopy. The biotransformation was performed by suspended and immobilized cells (ICs) of N. iowensis. Cells immobilized in alginate beads were used in order to prepare a continuous process. The substrate uptake of free and ICs was similar, whereas the peak area of OA methyl ester of the ICs was only about 10% of the native cells. However, the final product (oleanonic acid methyl ester) concentrations were similar in both approaches, whereas the unknown metabolite 3 was only detected transiently in the medium of ICs. Based on these results, a new biosynthetic pathway for the biotechnological production of oleanonic acid methyl ester is proposed.  相似文献   

5.
Pyridoxamine ( PM ), a natural derivative of vitamin B6, possesses a high biological and biomedical significance by virtue of its acting as enzyme cofactor in amino acid metabolism and as inhibitor in the nonenzymatic glycation of proteins. Both types of processes require the initial formation of a Schiff base. In this work, we used NMR spectroscopy to study the formation mechanism for a Schiff base between PM and formaldehyde ( FA ). This allowed the Schiff base and an intermediate carbinolamine ( CA ) to be detected. The Schiff base was found to be in isomeric equilibrium with a hemiaminal ( HE ) form. The formation equilibrium constants for the CA and HE over the pD range of 6.0–13.0 were determined and compared with those for the reaction between 4‐picolylamine ( PAM ) and formaldehyde ( FA ). The comparison revealed a strong influence of the phenol group on the equilibrium constant. Based on the results, the phenol group in PM is a key structural element towards stabilizing the resulting carbinolamine and Schiff base.  相似文献   

6.
Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α‐linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA‐Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5‐dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild‐type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering.  相似文献   

7.
ABSTRACT

The biotransformation of citral, an industrially important monoterpenoid, has been extensively studied using many microbial biocatalysts. However, the metabolic pathways involved in its biotransformation are still unclear, because citral is a mixture of the trans-isomer geranial and the cis-isomer neral. Here, we applied the heterologous expression of geoA, a gene encoding geraniol dehydrogenase that specifically converts geraniol to geranial and nerol to neral, to identify the metabolic pathways involved in the biotransformation of citral. Acinetobacter sp. Tol 5 was employed in order to demonstrate the utility of this methodology. Tol 5 transformed citral to (1R,3R,4R)-1-methyl-4-(1-methylethenyl)-1,3-cyclohexanediol and geranic acid. Biotransformation of citral precursors (geraniol and nerol) by Tol 5 transformant cells expressing geoA revealed that these compounds were transformed specifically from geranial. Our methodology is expected to facilitate a better understanding of the metabolic pathways involved in the biotransformation of substrates that are unstable and include geometric isomers.  相似文献   

8.
Ceriporiopsis subvermispora is a selective white rot basidiomycete which degrades lignin in wood at a distance far from enzymes. Low molecular mass metabolites play a central role in the oxidative degradation of lignin. To understand the unique wood-decaying mechanism, we surveyed the oxidized derivatives of ceriporic acids (alk(en)ylitaconic acids) produced by C. subvermispora using high-resolution liquid chromatography multiple-stage mass spectrometry (HR-LC/MSn). The analysis of the precursor and product ions from the extract suggested that an epoxidized derivative of ceriporic acid is produced by the fungus. To identify the new metabolite, an authentic compound of ceriporic acid epoxide was synthesized in vitro by reacting (R)-3-[(Z)-hexadec-7-enyl]-itaconic acid (ceriporic acid C) with m-chloroperbenzoic acid. The precursor and product ions from the natural metabolite and authentic epoxide were identical and distinguishable from those of hydroxy and hydroperoxy derivatives after reduction with NaBD4. Feeding experiments with [U-13C]-glucose, 99% and the subsequent analyses of the first and second generation product ions demonstrated that the oxidized ceriporic acid was (R)-3-(7,8-epoxy-hexadecyl)-itaconic acid. To our knowledge, this study is the first to report that natural alkylitaconic acid bears an epoxy group on its side chain.  相似文献   

9.
The goal of this study is to produce oleanolic acid derivatives by biotransformation process using Mucor rouxii and evaluate their antimicrobial activity against oral pathogens. The microbial transformation was carried out in shake flasks at 30°C for 216 h with shaking at 120 rpm. Three new derivatives, 7β-hydroxy-3-oxo-olean-12-en-28-oic acid, 7β,21β-dihydroxy-3-oxo-olean-12-en-28-oic acid, and 3β,7β,21β-trihydroxyolean-12-en-28-oic acid, and one know compound, 21β-hydroxy-3-oxo-olean-12-en-28-oic acid, were isolated, and the structures were elucidated on the basis of spectroscopic analyses. The antimicrobial activity of the substrate and its transformed products was evaluated against five oral pathogens. Among these compounds, the derivative 21β-hydroxy-3-oxo-olean-12-en-28-oic acid displayed the strongest activity against Porphyromonas gingivalis, which is a primary etiological agent of periodontal disease. In an attempt to improve the antimicrobial activity of the derivative 21β-hydroxy-3-oxo-olean-12-en-28-oic acid, its sodium salt was prepared, and the minimum inhibitory concentration against P. gingivalis was reduced by one-half. The biotransformation process using M. rouxii has potential to be applied to the production of oleanolic acid derivatives. Research and antimicrobial activity evaluation of new oleanolic acid derivatives may provide an important contribution to the discovery of new adjunct agents for treatment of dental diseases such as dental caries, gingivitis, and periodontitis.  相似文献   

10.
11.
Complexes of aluminium (Al) with organic ligands are believed to represent an important detoxification mechanism in acid soils. However, relatively little is known about the particular ligands produced by decomposing vegetation or about their effects on plant growth in the presence or absence of toxic Al. This paper reports an experiment on the effects of decomposition products of Eucalyptus camaldulensis leaves on the root elongation of maize (Zea mays) cv. DK687 in the presence or absence of Al. The static solution culture experiment used fulvic acid (FA) and humic acid (HA), extracted from E. camaldulensis leaves, at three nominal concentrations, viz. 40, 120 and 360 mg C L-1, replicated 4 times in the presence and absence of 30 µM Al. In the absence of Al, root elongation was increased by 30% by HA at 40 mg C L-1 and by 36% by FA at 120 mg C L-1. In the presence of 30 µM Al, the effects of toxic Al on root elongation were negated by FA and HA at all concentrations. Aluminium was totally complexed in all treatments except FA at 40 mg C L-1 in which treatment only 2.7 µM Al was present in the monomeric form. The E. camaldulensis FA and HA at concentrations of 40 and 120 mg C L-1, either in the presence or absence of Al, stimulated maize root elongation. Aluminium was strongly complexed by the E. camaldulensis FA and HA. The present results, in which FA and HA alleviated Al toxicity limitations on root elongation of maize, are relevant to the protection afforded to plant growth in acid soils amended with organic materials. They highlight the need to focus more on the role of FA and HA.  相似文献   

12.
Fumaric acid (FA), a metabolic intermediate, has been identified as an important carbohydrate derived platform chemical. Currently, it is commercially sourced from petrochemicals by chemical conversion. The shift to biochemical synthesis has become essential for sustainable development and for the transition to a biobased economy from a petroleum-based economy. The main limitation is that the concentrations of FA achieved during bioproduction are lower than that from a chemical process. Moreover, the high cost associated with bioproduction necessitates a higher yield to improve the feasibility of the process. To this effect, genetic modification of microorganism can be considered as an important tool to improve FA yield. This review discusses various genetic modifications strategies that have been studied in order to improve FA production. These strategies include the development of recombinant strains of Rhizopus oryzae, Escherichia coli, Saccharomyces cerevisiae, and Torulopsis glabrata as well as their mutants. The transformed strains were able to accumulate fumaric acid at a higher concentration than the corresponding wild strains but the fumaric acid titers obtained were lower than that reported with native fumaric acid producing R. oryzae strains. Moreover, one plausible adoption of gene editing tools, such as Agrobacterium-mediated transformation (AMT), CRISPR CAS-9 and RNA interference (RNAi) mediated knockout and silencing, have been proposed in order to improve fumaric acid yield. Additionally, the introduction of the glyoxylate pathway in R. oryzae to improve fumaric acid yield as well as the biosynthesis of fumarate esters have been proposed to improve the economic feasibility of the bioprocess. The adoption of some of these genetic engineering strategies may be essential to enable the development of a feasible bioproduction process.  相似文献   

13.
The conversion of exogenous p-hydroxybenzaldehyde into p-hydroxy-methyl-phenol-β-D-glucoside (gastrodin) was studied using cell suspension cultures of Datura tatula L. The chemical structure of the synthesized gastrodin was identified on the basis of spectral analysis and chemical evidence. The procedure of conversion of p-hydroxybenzaldehyde into gastrodin by D. tatula L. cell suspension cultures was established. The synthesized gastrodin (II) was isolated from the ferment liquor and identified by spectral analysis. Simultaneously, the p-hydroxybenzyl alcohol (I) that was converted through biotransformation of p-hydroxybenzaldehyde by cell suspension cultures of D. tatula L. was also isolated and identified. The efficiency of glucosylation of p-hydroxybenzaldehyde was remarkably enhanced by the addition of salicylic acid (0.1 mg/L) and the maintenance of low pressure (0.001 MPa) in a 25-L airlift loop bioreactor. The biotransformation of exogenous p-hydroxybenzaldehyde to gastrodin using cell suspension cultures of D. tatula L. is a promising approach.  相似文献   

14.
We examined whether fatty acid (FA) composition changed when Karlodinium veneficum (D. Ballantine) J. Larsen (Dinophyceae) was grown phototrophically or mixotrophically on Storeatula major Butcher ex D. R. A. Hill (Cryptophyceae). We hypothesized that the FA composition of mixotrophic K. veneficum would not change relative to the FA composition of phototrophic K. veneficum. As in other phototrophic dinoflagellates, octadecapentaenoic acid (18:5n3) represented 9% to 20% of total FA in K. veneficum and was enriched within chloroplast‐associated galactolipid classes. The 18:5n3 content showed a highly significant positive correlation (r2 = 0.95) with chl a content and a highly significant negative correlation with growth rate (r2 = 0.88). A previously undescribed chloroplast galactolipid molecular species, digalactosyldiacylglycerol (DGDG; 18:5n3/18:5n3), was a dominant structural lipid in K. veneficum. Docosahexaenoic acid (22:6n3) represented 14% to 19% of total K. veneficum FA and was enriched within phospholipids. In the prey S. major, 18:5n3 was not present, but octadecatetraenoic acid (18:4n3) and α‐linolenic acid (18:3n3) represented approximately 50% of total FA and were enriched within chloroplast‐associated galactolipid classes. Eicosapentaenoic acid (20:5n3) and 22:6n3 represented approximately 18% of total FA in S. major and were enriched within phospholipids. The FA profile of mixotrophic K. veneficum, compared to phototrophic K. veneficum, showed elevated levels of 18:3n3, 18:4n3, and 20:5n3, and lower but persistent levels of 18:5n3. Production to ingestion (P:I) ratios >1 for major polyunsaturated fatty acids (PUFAs) indicated that direct assimilation from prey under balanced growth could not support rates of PUFA production in mixotrophic K. veneficum. These data suggest that the plastid plays a continuing and essential role in lipid metabolism during mixotrophic growth.  相似文献   

15.
Golden-mantled ground squirrels (Spermophilus lateralis) are herbivores that hibernate during winter. Although little is known about the nutritional/physiological constraints on hibernation, numerous studies have demonstrated that increasing the amount of linoleic acid (a polyunsaturated fatty acid) in the diet enhances hibernation. This is probably because high linoleic acid diets reduce the melting points of the depot fats produced for hibernation which makes them more metabolizable at low body temperatures. This suggests that a major limitation on hibernation may be obtaining enough linoleic acid in the diet for proper hibernation. In all previous studies, however, the amount of linoleic acid in the diets of free-ranging animals was either not considered, or the range of dietary linoleic acid contents in the experiments was less than that of natural diets. It is thus not known whether the amount of linoleic acid available to hibernators under natural conditions actually limits their torpor patterns. A series of laboratory feeding and hibernation experiments were conducted with S. lateralis and artificial diets with different linoleic acid contents that were either below or above the linoleic acid content of the natural diet. The results demonstrated that when dietary linoleic acid contents are either below or above natural levels, hibernation ability is greatly reduced. Hibernation ability was reduced when the squirrels were maintained on a high linoleic acid diet probably by the production of toxic lipid peroxides in brown adipose tissues. The results indicate that there is an optimal level of dietary linoleic acid for proper hibernation, and this is equal to that of the natural diet. The amount of linoleic acid available in the diet thus does not limit hibernation under normal natural conditions.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid - PUFA polyunsaturated fatty acid - T a ambient temperature - T b body temperature - WAT white adipose tissue  相似文献   

16.
In this report, we show that the non-conjugated octadecatetraenoic acid found in the oil of the seeds from Ribes nigrum is identical to the C18-polyunsaturated fatty acid previously isolated in a number of fish oils and seed oils. Evidence obtained from mass spectral data of its triazolopyridine derivative clearly indicates the presence of methylene-interrupted double bonds. Comparison with authentic material prepared by chemical synthesis provides further confirmation of the (all-cis)-6,9,12,15-octadecatetraenoic acid structure. The (all-cis)-4,8,12,15-structural arrangement erroneously attributed to this acid in several literature reports is thus definitely ruled out.  相似文献   

17.
Zooplankton transfer ecologically important fatty acids (FA) from their diets to upper trophic levels. We used diet‐switching experiments with 13C‐labeled food sources to determine the time scale at which dietary uptake is manifested in the FA profiles of Daphnia magna. Daphnia dramatically shifted their FA composition in response to diet change within only four days, however Daphnia switched from a high quality (i.e. Cryptomonas) to a moderate quality (Scenedesmus) diet retained the most physiologically important FA from their original diet source even after 14 days. In particular, Daphnia exhibited long‐term retention of eicosapentaenoic (EPA; 20:5ω3) and arachidonic acid (ARA; 20:4ω6) when switched from Cryptomonas to Scenedesmus. Similarly, when switched from Scenedesmus to Cryptomonas, Daphnia took up a high proportion of EPA and ARA after only two days. The phospholipid fatty acid (PLFA) fraction in Daphnia was preferentially enriched with stearic (18:0), oleic (18:1ω9), and linoleic acid (LIN; 18:2ω6). In contrast with studies of marine copepods, dietary FA also strongly affected the PLFA composition (structural lipids) of Daphnia. Results of δ13C signatures of individual FA provided evidence of elongation and desaturation of α‐linolenic (ALA; 18:3ω3) or stearidonic acid (SDA; 18:4ω3) to EPA 10 days after a diet switch to EPA‐deficient Scenedesmus. Differences in the ARA content of Daphnia fed Cryptomonas and Scenedesmus suggest Daphnia consuming Cryptomonas synthesized ARA via retroconversion of ω6‐docosapentaenoic acid (ω6‐DPA; 22:5ω6). Daphnia preferentially accumulate and retain, as well as bioconvert, those FA that are also most physiologically important for fish production. Our results also indicate Daphnia FA composition responds to their diet on a short temporal scale and analyses of lipid biomarkers in zooplankton provide strong insights into the food sources that support their production.  相似文献   

18.
《Epigenetics》2013,8(10):1207-1216
The epigenetic mechanism of folic acid (FA) action on dorsal root ganglion (DRG) cell proliferation and sensory neuron differentiation is not well understood. In this study, the ND7 cell line, derived from DRG cells, was used to elucidate this mechanism. In ND7 cells differentiated with dbcAMP and NGF, Hes1 and Pax3 levels decreased, whereas Neurog2 levels showed a modest increase. Chromatin immunoprecipitation (ChIP) assays examining epigenetic marks at the Hes1 promoter showed that FA favored increased H3K9 and H3K19 acetylation and decreased H3K27 methylation. Hence, FA plays a positive role in cell proliferation. In differentiated ND7 cells, H3K27 methylation decreased, whereas H3K9 and H3K18 acetylation increased at the Neurog2 promoter. FA did not favor this phenotypic outcome. Additionally, in differentiated ND7 Neurog2 associated with the NeuroD1 promoter, FA decreased this association. The results suggest that the switch from proliferation to sensory neuron differentiation in DRG cells is regulated by alterations in epigenetic marks, H3K9/18 acetylation and H3K27 methylation, at Hes1 and Neurog2 promoters, as well as by Neurog2 association with NeuroD1 promoter. FA although positive for proliferation, does not appear to play a role in differentiation.  相似文献   

19.
A survey was conducted over the summer of 2013 on two alpine pastures (P1 and P5), and three mountain pastures (P2, P3, and P4). The aim was to determine the botanical composition, pastoral value (PV), variation in chemical composition, gross energy, in vitro true digestibility (IVTD), in vitro indigestible neutral detergent fiber, fatty acid (FA), and terpene contents of pastures located at different altitudes. PV is highest in alpine pastures (25.7 and 26.9, for P1 and P5, respectively). Exploitation of pastures is intensive only for P1 and P2. Pastures differ in dry matter (DM), ash, crude protein, lipid, and gross energy content. Lignin content was significantly higher in P3 (125 g/kg DM), while in other pastures the variation in its average content (from 73 to 94 g/kg DM) was limited. All pastures had IVTD higher than 725 g/kg with the exception of P3 (659 g/kg). As far as FA content is concerned, in all pastures the most abundant were α-linolenic acid (from 495 to 583 g/kg of total FA) and linoleic acid (from 150 to 222 g/kg of total FA), while palmitic acid and oleic acid significantly differ among pastures. α-Pinene, β-pinene, and p-cymene were the most abundant terpenoids.  相似文献   

20.
We examined trophic positions and fatty acid concentrations of riverine, lacustrine, and aquaculture diet and fish in Austrian pre-alpine aquatic ecosystems. It was hypothesized that dietary fatty acid (FA) profiles largely influence the FA composition of the salmonids Salvelinus alpinus, Salmo trutta, and Oncorhynchus mykiss. We analyzed trophic positions using stable isotopes (δ15N) and tested for correlations with polyunsaturated fatty acid (PUFA) concentrations. Gut content analysis revealed benthos (rivers), pellets (aquaculture), and zooplankton (lakes) as the predominant diet source. Results of dorsal muscle tissues analysis showed that the omega-3 PUFA, docosahexaenoic acid (DHA; 22:6n − 3), was the mostly retained PUFA in all fish of all ecosystems, yet with the highest concentrations in S. alpinus from aquaculture (mean: 20 mg DHA/g dry weight). Moreover, we found that eicosapentaenoic acid (EPA; 20:5n − 3) in fish of natural habitats (rivers, lakes) was the second most abundant PUFA (3–5 mg/g DW), whereas aquaculture-raised fish had higher concentrations of the omega-6 linoleic acid (18:2n – 6; 9–11 mg/g DW) than EPA. In addition, PUFA patterns showed that higher omega-3/-6 ratios in aquacultures than in both riverine and lacustrine fish. Data of this pilot field study suggest that salmonids did not seem to directly adjust their PUFA to dietary PUFA profiles in either natural habitats or aquaculture and that some alterations of PUFA are plausible. Finally, we suggest that trophic positions of these freshwater salmonids do not predict PUFA concentrations in their dorsal muscle tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号