首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fabião  A.  Madeira  M.  Steen  E.  Kätterer  T.  Ribeiro  C.  Araújo  C. 《Plant and Soil》1995,168(1):215-223
The distribution along the soil profile of Eucalyptus globulus root biomass was followed in a plantation in central Portugal at 1, 2 and 6 years after planting, using an excavation technique. The experimental design consisted of a control (C) and 3 treatments: application of solid fertilizers twice a year (F), irrigation without the application of fertilizers (I) and irrigation combined with liquid fertilizers (IL). Below- and above-ground biomass decreased as follows: IL>I>F>C. So, water stress limited growth more severely than nutrient stress. The roots rapidly colonized the top soil volume (0–20 cm depth) during the first year after planting. Fine root biomass 6 years after planting was 2.2, 1.8 and 1.6 times higher in IL treatment than it was respectively in control, and in F and I treatments. The distribution of fine roots along the soil profile 6 years after planting was more even in IL compared to the other treatments. However, fine roots in the top soil were more concentrated along the tree rows in the irrigated treatments than in the others. The proportion of below-ground biomass relative to the total tree biomass and the root/shoot ratio were higher in C than in the treatments at early growth stages. This pattern was not so clear 6 years after planting, due to the increased proportion of the tap root relative to total biomass, especially in the IL treatment.  相似文献   

2.

The aim of this study is to investigate the effect of stress modulators on vegetative growth, antioxidants, and nutrient content of Thymus vulgaris L. under water deficit stress conditions. A factorial experiment was performed in the form of a randomized complete block design with 10 treatments and 3 replications in the 2019–2020 growing season. The factors were stress modulators at 5 levels (ZN: zinc nano-fertilizer, AA: amino acid, SW: seaweed, HA: humic acid and C: control) and irrigation regime at 2 levels [FIrr: full irrigation (100% field capacity) and DIrr: deficit irrigation (50% field capacity)]. The highest plant height, number of branches, and total dry weight of the garden thyme plant were observed in the foliar application of HA and SW under full irrigation conditions. Relative water content, chlorophyll a and b, and uptake of nutrients (N, P, and K) were reduced under water deficit stress, but the foliar application of stress modulators increased relative water content, chlorophyll content, and nutrient uptake of the garden thyme plant significantly compared with control. The water deficit increased proline content, total flavonoid, and phenol content in the garden thyme plant. So, the highest total flavonoid and phenol content was obtained from plants treated with HA, whereas proline content was higher in the control plants. Soluble sugars and essential oil increased significantly under water deficit stress conditions. The foliar application of HA compared to the control plant increased soluble sugars and essential oil in garden thymes. The activities of catalase, superoxide dismutase, and ascorbate peroxidase enzymes were improved in stress modulator treatments such as HA and SW compared to control plants under water deficit stress conditions. The plants of garden thymes showed a good response to stress modulator treatments under water stress conditions, and HA and SW treatments were found to be more effective.

  相似文献   

3.
Root growth and water uptake in winter wheat under deficit irrigation   总被引:20,自引:0,他引:20  
Root growth is critical for crops to use soil water under water-limited conditions. A field study was conducted to investigate the effect of available soil water on root and shoot growth, and root water uptake in winter wheat (Triticum aestivum L.) under deficit irrigation in a semi-arid environment. Treatments consisted of rainfed, deficit irrigation at different developmental stages, and adequate irrigation. The rainfed plots had the lowest shoot dry weight because available soil water decreased rapidly from booting to late grain filling. For the deficit-irrigation treatments, crops that received irrigation at jointing and booting had higher shoot dry weight than those that received irrigation at anthesis and middle grain filling. Rapid root growth occurred in both rainfed and irrigated crops from floral initiation to anthesis, and maximum rooting depth occurred by booting. Root length density and dry weight decreased after anthesis. From floral initiation to booting, root length density and growth rate were higher in rainfed than in irrigated crops. However, root length density and growth rate were lower in rainfed than in irrigated crops from booting to anthesis. As a result, the difference in root length density between rainfed and irrigated treatments was small during grain filling. The root growth and water use below 1.4 m were limited by a caliche (45% CaCO3) layer at about 1.4 m profile. The mean water uptake rate decreased as available soil water decreased. During grain filling, root water uptake was higher from the irrigated crops than from the rainfed. Irrigation from jointing to anthesis increased seasonal evapotranspiration, grain yield, harvest index and water-use efficiency based on yield (WUE), but did not affect water-use efficiency based on aboveground biomass. There was no significant difference in WUE among irrigation treatments except one-irrigation at middle grain filling. Due to a relatively deep root system in rainfed crops, the higher grain yield and WUE in irrigated crops compared to rainfed crops was not a result of rooting depth or root length density, but increased harvest index, and higher water uptake rate during grain filling.  相似文献   

4.
In managed settings, seedlings are often fertilized with the objective of enhancing establishment, growth, and survival. However, responses of seedlings to fertilization can increase their susceptibility to abiotic stresses such as drought. Seedlings acclimate to variation in soil resources by reallocating carbon among different physiological processes and compartments, such as above versus belowground growth, secondary metabolism, and support of ectomycorrhizal fungi (EMF). We examined the effects of nutrient and water availability on carbon allocation to above and belowground growth of river birch (Betula nigra), as well as partitioning among root sugars, starch, phenolics, lignin, and EMF abundance. As nutrient availability increased, total plant biomass and total leaf area increased, while percent root biomass decreased. Root sugars, total root phenolics and EMF abundance responded quadratically to nutrient availability, being lowest at intermediate fertility levels. Decreased water availability reduced total leaf area and root phenolics relative to well-watered controls. No interactions between nutrient and water availability treatments were detected, which may have been due to the moderate degree of drought stress imposed in the low water treatment. Our results indicate that nutrient and water availability significantly alter patterns of carbon allocation and partitioning in roots of Betula nigra seedlings. The potential effects of these responses on stress tolerance are discussed.  相似文献   

5.
It is widely believed that partial root drying (PRD) reduces water losses by transpiration without affecting yield. However, experimental work carried out to date does not always support this hypothesis. In many cases a PRD treatment has been compared to a full irrigated treatment, so doubt remains on whether the observed benefits correspond to the switching of irrigation or just to PRD being a deficit irrigation treatment. In addition, not always a PRD treatment has been found advantageous as compared to a companion regulated deficit irrigation (RDI) treatment. In this work we have compared the response of mature ‘Manzanilla‘ olive trees to a PRD and an RDI treatment in which about 50% of the crop evapotranspiration (ETc) was supplied daily by localised irrigation. We alternated irrigation in the PRD treatment every 2 weeks in 2003 and every 3 weeks in 2004. Measurements of stem water potential (Ψstem), stomatal conductance (g s) and net CO2 assimilation rate (A) were made in trees of both treatments, as well as in trees irrigated to 100% of ETc (Control trees) and in Rain-fed trees. Sap flow was also measured in different conductive organs of trees under both PRD and RDI treatments, to evaluate the influence of alternating irrigation on root water uptake and tree water consumption. We found small and random differences in Ψstem, g s and A, which gave no evidence of PRD causing a positive effect on the olive tree performance, as compared to RDI. Stomatal conductance decreased in PRD trees as compared to Control trees, but a similar decrease in g s was also recorded in the RDI trees. Sap flow measurements, which reflected water use throughout the irrigation period, also showed no evidence of g s being more reduced in PRD than in RDI trees. Daily water consumption was also similar in the trees of the deficit irrigation treatments, for most days, throughout the irrigation period. Alternating irrigation in PRD trees did not cause a change in either water taken up by main roots at each side of the trees, or in the sap flow of both trunk locations and main branches of each side. Results from this work, and from previous work conducted in this orchard, suggest that transpiration is restricted in trees under deficit irrigation, in which roots are left in drying soil when water is applied by localised irrigation, and that there is no need to alternate irrigation for achieving this effect. Section Editor: R. E. Munns  相似文献   

6.
An investigation was carried out to find out the extent of changes occurred in two safflower (Carthamus tinctorius L.) cultivars in response to water deficit stress. Two safflower cultivars namely IL.111 and Isfahan were used for the study. Thirty days after sowing, plants were grown under soil moisture corresponding to 100, 85, 70 and 55% field capacity for next 30 days. Water deficit treatments significantly decreased the shoot length, shoot dry matter, root dry matter, relative growth rate, leaf relative water content (LRWC) and leaf water potential (ΨW), whereas root length, root-to-shoot ratio, lipid peroxidation and antioxidant compounds such as ascorbic acid (AA), α-tocopherol (α-Toc) and reduced glutathione (GSH) and superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), and peroxidase (POX, EC 1.11.1.7) activities were increased. Water deficit stressed plants maintained higher levels of compounds and scavenging enzymes. Significant differences were observed between cultivars and irrigation levels treatments. The cv. IL.111 could be considered more tolerant to water stress than cv. Isfahan, registering greater biomass, LRWC and leaf water potential (ΨW), associated with high antioxidant activity.  相似文献   

7.
有限灌溉对半干旱区春小麦根系发育的影响   总被引:17,自引:0,他引:17       下载免费PDF全文
 对半干旱区旱地春小麦(Triticum aestivum)的有限灌溉试验表明,苗期灌溉显著减少春小麦三叶期—抽穗期总根量和根密度,并促使开花期根系的良好更新和下扎,明显提高春小麦水分利用效率和籽粒产量。苗期水分胁迫则导致春小麦生长前期根系过大,影响地上部分的生长并加重土壤水分的亏缺,籽粒产量严重下降。  相似文献   

8.
Water is a main factor limiting plant growth. Integrative responses of leaf traits and whole plant growth to drought will provide implications to vegetation restoration. This study investigated the drought responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. with a focus on leaf morphology and physiology, seedling growth and biomass partitioning. Potted 1-year-old seedlings were subjected to four water supply regimes [75, 55, 35 and 15% field capacity (FC)], served as control, mild water stress, moderate water stress and severe water stress. Leaf morphological traits varied to reduce the distance of water transfer under water stress and leaflets were dispersed with drought. Net photosynthetic rate decreased significantly under water stress: stomatal closure was the dominant limitation at mild and moderate drought, while metabolic impairment was dominant at severe drought. The physiological impairment at severe drought could also be detected from the relative lower water use efficiency and non-photochemical quenching to moderate water stress. Total biomass of well-watered plants was more than twice that at moderate water deficit and nearly ten times that at severe water deficit. In summary, V. negundo var. heterophylla had adaptation mechanism to water deficit even in the most serious condition, but different strategies were adopted. Seedlings invested more photosynthate to roots at mild and moderate drought while more photosynthate to leaves at severe drought. A nearly stagnant seedling growth and a sharp decline of total biomass were the survival strategy at severe water stress, which was not favorable to vegetation restoration. Water supply above 15% FC is recommended for the seedlings to vegetation restoration.  相似文献   

9.
  • The extent to which a vertical trunk is differentiated from its branches is a key trait for the architecture of trees and may affect interspecific relationships.
  • In this study, we analysed the effect of soil water availability on biomass partitioning for Nothofagus pumilio by means of a nursery experiment. Juvenile trees were subject to three irrigation conditions: no irrigation, intermediate irrigation and high irrigation. Irrigation conditions emulated the mean precipitation of the most representative environments inhabited by N. pumilio.
  • Changes in soil water availability modified the biomass partitioning patterns of trees. In comparison to the other two conditions, high irrigation caused: (i) a higher ratio of biomass partitioning to stems than roots; (ii) more trunk growth in relation to its branches; and (iii) more photosynthetic organs relative to the aboveground biomass. Trunk size relative to that of its most recent branches was not increased by water availability.
  • Water availability may play a significant role in the capacity of N. pumilio for space occupation due to the effects on axis differentiation.
  相似文献   

10.
NaCl胁迫对滨梅扦插苗生物量和水分积累的影响   总被引:1,自引:0,他引:1  
以1年生滨梅(Prunus maritima Marshall)扦插苗为实验材料,在盆栽条件下用质量浓度为0.15%、0.29%、0.58%、0.88%、1.17%、1.46%的NaCl溶液进行盐胁迫处理,测定胁迫后根、茎、叶Na+、K+含量以及全叶、一年生茎、二年生茎和根系生物量、含水率、根系活力变化,探讨滨梅的抗盐胁迫机制。结果显示:(1)盐胁迫80d后,随着盐胁迫强度提高,滨梅植株根、茎、叶Na+含量显著提高,而其根、茎K+含量显著降低,根、茎、叶K+/Na+值显著降低;根Na+含量在低于0.58%NaCl胁迫下显著高于茎、叶,而在高于0.58%NaCl胁迫下却表现为叶Na+含量显著高于根、茎。(2)滨梅根、茎、叶生物量均随盐胁迫强度的提高呈先增加后减少的趋势;随着盐胁迫时间的延长,茎、叶生物量在低于0.58%NaCl胁迫下均呈积累趋势,且茎生物量在0.58%NaCl胁迫下显著提高,而根、一年生茎、叶生物量在高于0.58%NaCl胁迫下均显著下降。(3)滨梅茎、叶含水率均随盐胁迫强度的增加呈先增加后减少的趋势,而随着胁迫时间的延长呈逐渐减少趋势;根系活力及根含水率均随盐胁迫强度的提高而增加,但根含水率随着胁迫时间的延长变化不明显。由此可见,滨梅能通过根系稀释并蓄积Na+,保护地上部分正常生长,当进入根系的Na+量超过吸收阈值时,Na+迅速在叶中积累储存,且叶中较高含量的K+对Na+形成了有效的缓冲。  相似文献   

11.
不同水分处理对狗牙根种内相互作用的影响   总被引:1,自引:0,他引:1  
以狗牙根当年生扦插苗为试验材料,根据库区河岸带水分特征设置4种水分处理方式:水分对照组(CK)、水淹与干旱交替组(FD)、土壤水分饱和组(LF)和全淹组(FL),4种密度方式:对照(1株/盆)、低密度(2株/盆)、中密度(4株/盆)及高密度(12株/盆),探究狗牙根生长及形态响应,并验证胁迫梯度假说。结果表明:(1)狗牙根各生物量随水分胁迫强度的增加显著下降(P0.001);密度处理和二者交互作用显著影响狗牙根叶干重、茎干重、根干重、地上生物量和总生物量(P0.001)。(2)水分处理显著影响狗牙根各形态指标(P0.001);密度和二者交互作用显著影响狗牙根分枝数、总茎长和节间长(P0.001)。(3)CK组和LF组狗牙根生物量相对邻体效应(RNE)均为负值,表明其种内关系为竞争关系。FL组各密度组生物量RNE值均为正值,其种内关系转化为促进关系。(4)中高密度组总茎长RNE值随水分胁迫增加而增大。研究表明:(1)狗牙根对不同的水分胁迫均表现出积极响应,可考虑将狗牙根用于库区河岸带植被重建。(2)随种植密度的增大,狗牙根生长及形态均表现出一定的负面效应。(3)本试验在一定程度上支持胁迫梯度假说,但尚需更多概念模型将其改进完善。  相似文献   

12.
Water-table depth variations alter root growth response and may affect whole-plant growth in arid and semi-arid regions. We examined how root biomass allocation and root morphological traits affect the leaf physiological and morphological traits and whole-plant growth of Populus alba growing under different water tables. We exposed 1-year-old P. alba cuttings to contrasting soil–water conditions via water table changes in a greenhouse for 90 days. We examined relationships among net assimilation rate (NAR) and other growth components obtained from our published data for trees harvested every 30 days. Strongly negative correlations were found between RMR and root morphological traits. Root mass ratio had a strong negative relationship with LMR, and proportion of fine-root biomass per total root biomass was positively correlated with SLA and NAR. Both NAR and leaf area ratio were important determinants of variation in relative growth rate (RGR). Leaf mass ratio (LMR) and specific leaf area (SLA) were positively correlated with RGR; the correlation was stronger in the case of LMR. Along a water-table gradient, negative relationships between root growth responses are likely to indirectly influence RGR through changes in NAR, LMR, and SLA.  相似文献   

13.
不同土壤水分胁迫下沙漠葳的生长及生物量的分配特征   总被引:16,自引:5,他引:11  
将从美国西部引进的2年生的沙生灌木沙漠葳(Chilopsis linearis)分别盆栽于含水量不同的土壤中,研究其生长及生物量的分配特征.结果表明,土壤水分胁迫严重限制了沙漠葳的营养生长和生殖生长,使单株叶片数、分枝数和侧根数显著下降,生物量大大降低,其中中度和重度胁迫下沙漠葳的干重分别比轻度胁迫降低40.9%和76.4%.重度土壤水分胁迫下沙漠葳的单叶干重、单叶面积和单位叶面积干重分别比轻度土壤水分胁迫降低63.45%、47.39%和27.23%,比叶面积和根茎比分别上升22.28%和86%.随土壤水分胁迫的加重,光合物质的积累从中下部叶片向中上部叶片转移.各构件生物量随土壤水分胁迫的加重而降低,其幅度大小为叶生物量>茎生物量>主根生物量>侧根生物量,反应了沙漠葳对土壤水分胁迫响应的整体行动.  相似文献   

14.
以牛轭草(Murdannia loriformis)、细竹篙草(M. simplex)、假紫万年青(Belosynapsis ciliata)及假紫万年青毛叶变种(B. ciliata var. vilosa)等4种植物为试材,探讨不同屋顶绿化植物在不同水分管理条件下的生长情况以及对干旱胁迫的响应。结果表明,4种植物在浇水周期较短(2 DIW和6 DIW,即每隔2 d和6 d浇一次水)的处理下,其地上部分和根系生物量积累较快,植株根系体量较大,侧根生长较多;而浇水周期较长(10 DIW和15 DIW)的处理减缓植株地上部分及根系生物量的积累;根系形态明显受到控制性浇水管理的影响。非充分浇水管理下(6DIW和10DIW)的植株在持续干旱胁迫下表现出较稳定的叶片相对含水量、根系活力和较好的抗旱性,而在频繁浇水管理(2 DIW)和浇水周期较长处理(15DIW)后,4种植物在持续干旱胁迫下的生理响应都较为剧烈,表现出较差的抗旱能力。因此,在4种鸭跖草科植物建植期间可通过适度浇水(6~10 DIW),以维持植株较稳定的根系活力和较强的抗旱性。  相似文献   

15.
植物抗旱性中的补偿效应及其在农业节水中的应用   总被引:26,自引:3,他引:23  
胡田田  康绍忠 《生态学报》2005,25(4):885-891
在论述植物补偿效应存在类型和研究范畴的基础上,详细评述了植物抗旱性中根系形态结构功能及地上部干物质积累、产量和水分利用效率方面的补偿效应及其影响因素,并对植物抗旱作用中补偿生长的可能生理学机制作了探讨。同时,对补偿效应在提高农业水分利用效率中的应用进行了讨论  相似文献   

16.
Cultivated crisphead lettuce (Lactuca sativa L.) has a shallower root system than its wild relative, Lactuca serriola L. The effects of localized soil water, at depth, on plant water relations, gas exchange and root distribution were examined in the two species using soil columns with the soil hydraulic-ally separated into two layers, at (0–20 cm and 20–81) cm, but permitting root growth between the layers. Three treatments were imposed on 7-week-old plants, and maintained for 4 weeks: (i) watering, both layers to field capacity; (ii) drying the upper layer while watering the lower layer to field capacity, and (iii) drying both layers. Drying only 0–20 cm of soil had no effect on leaf water status, net photosynthesis, stomatal conductance or biomass production in L. serriola compared to a well-watered control, but caused a short-term reduction (10 d) in leaf water status and photosynthesis in L. sativa that reduced final shoot production. The different responses may be explained by differences in root distribution. Just before the treatments commenced, L. serriola had 50% of total root length at 20–80 cm compared to 35% in L. sativa. Allocation of total biomass to roots in L. serriola was approximately double that in L. sativa. The wild species could provide germplasm for cultivated lettuces to extract more soil water from depth, which may improve irrigation efficiency.  相似文献   

17.
  • Seasonal soil freezing (F) and freeze–thaw cycles (FTCs) are common natural phenomena in high latitude or altitude areas of the world, and seriously affect plant physiological processes. However, studies on the effect of soil F and FTCs on fine roots are less common, especially in subalpine coniferous forests of western Sichuan, China.
  • We set up a controlled experiment in growth chambers to explore the effects of F and FTCs on low-order fine roots of Picea asperata and differential responses of first-order roots and the first three root orders (1st, 2nd and 3rd order roots combined as a unit).
  • Soil F and FTCs resulted in serious damage to cell membranes and root vitality of low-order fine roots, accompanied by increased MDA content and O2· production. FTCs had a stronger effect than F treatment. In turn, low-order fine roots are the unit that responds to cold stress. These roots had increased unsaturated fatty acid contents, antioxidant enzyme activities, osmolytes and plant hormones contents when acclimation to cold stress. The first-order roots were more sensitive to cold stress than the combined first three root orders for several processes (e.g. antioxidant enzymes, osmolytes and hormones) because of their specific structure and physiological activity.
  • This study explains physiological differences in responses of fine roots of different root orders to seasonal soil freezing, which will improve the understanding of fine root heterogeneity and support agriculture and forest management.
  相似文献   

18.
Li  W. D.  Hou  J. L.  Wang  W. Q.  Tang  X. M.  Liu  C. L.  Xing  D. 《Russian Journal of Plant Physiology》2011,58(3):538-542
Two-year-old seedlings of licorice plant (Glycyrrhiza uralensis Fisch) were exposed to three degrees of water deficit, namely weak (60–70%), moderate (40–50%), and strong (20–30%) relative water content in soil, whereas control plants were grown in soil with 80–90% water content. Moderate and strong water deficit decreased the net photosynthetic rate, stomatal conductance, and biomass production. Water use efficiency and the root-to-shoot ratio increased significantly in response to water deficit, indicating a high tolerance to drought. Weak water deficit did not decrease root biomass production, but significantly increased the production of glycyrrhizic acid (by 89%) and liquiritin (by 125%) in the roots. Therefore, a weak water deficit can increase the yield of root medical compounds without negative effect on root growth.  相似文献   

19.
李娟  樊军  朱志梅 《应用生态学报》2020,31(11):3711-3718
为了解在不同干旱条件下活化水灌溉对大豆生长特征的影响,探究活化水灌溉对大豆生长的影响机制。采用室内基质栽培大豆试验,在基质最大持水量(80%含水量)的95%~100%、75%~85%、55%~65%和35%~45% 4个水分条件下,分别用自来水、磁化水、增氧水和先磁化再增氧4种水灌溉,研究活化水对大豆苗期生长特征的影响。结果表明: 经过30 d的生长后,35%~45%重度干旱条件下磁化水灌溉的总生物量、叶面积、根冠比和根长与自来水灌溉相比分别增加了67.6%、23.5%、84.6%和122.8%,磁化增氧水灌溉分别增加了70.8%、24.0%、61.9%和162.3%,对叶绿素含量无显著影响;其余处理上述指标与自来水相比略有下降。表明重度干旱条件下,磁化水灌溉可以有效促进大豆根系生长、提高根冠比,提高大豆的水分利用效率,缓解干旱胁迫带来的负面效应。  相似文献   

20.
The effects of the availability of light (high, medium and low) and soil water (wet and dry) on morphological and physiological traits responsible for whole plant carbon gain and ramet biomass accumulation were examined in a splitter-type clonal herbaceous species Primula sieboldii, a spring plant inhabiting broad range of light environments including open grassland and oak forest understory. Growth experiments were conducted for three genets originated from natural microhabitats differing in light and soil water availability. Ramets of a genet from high light and wet microhabitat, which were grown in low light (relative photon flux density: R-PPFD of 5%) showed 41% less light-saturated photosynthetic rate, 50% less dark respiration rate and earlier defoliation than the ramets in high light (R-PPFD of 61%). The estimation of daily photosynthesis revealed that the light acclimation response in leaf gas exchange contributes to efficient carbon gain of whole plants, irrespective of experimental light conditions. Water stress increased root weight ratio, decreased ramet leaf area, petiole length and photosynthetic capacity. These morphological effects of water stress were larger in high and medium light regimes than in low light regime. The consequence of the above responses was recognized in the relative growth rate of the ramets. The relative growth rate of the ramets in high light with wet regime was four-fold of that in low light plus wet regime, and was 1.5-fold of that in high light plus dry regime. However, even in low light and/or dry regimes, ramets kept positive relative growth rates and produced gemma successfully. We could not detect significant variation in growth responses among genets. The high photosynthetic plasticity revealed in the present study should enable Primula sieboldii to inhabit in a broad range of light and soil water availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号