首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
生物炭影响作物生长及其与化肥混施的增效机制研究进展   总被引:3,自引:0,他引:3  
利用秸秆型生物炭进行还田改土不仅具有提升作物产量的潜力,而且能够产生明显的环境效益,现已成为当今国内外农业领域的研究热点.本文综述了近年来国内外有关生物炭添加影响作物生长的分子调控机制研究,尤其关注了生物炭与作物根系的互作效应;介绍了生物炭与化肥混施的生物学效应及可能的增效机制;展望了今后的研究方向,以期促进我国相关领域的研究.国内外的最新研究表明:生物炭土壤添加改善植物生长的关键是生长素相关信号转导分子,通过促进植物细胞扩增、细胞壁松弛、水及营养的转运等相关基因的表达,有利于植物的新陈代谢及生长.生物炭及其与根系的相互作用能够直接或间接地影响土壤物理、化学、生物因子,从而在炭、肥互作增效过程中起主导调控作用.  相似文献   

2.
Soil degradation threatens the forest sustainable productivity, particularly in afforestation system. Biochar derived from agroforestry waste or biomass can potentially improve the degraded forest soil and promote the tree growth. To expand the application of biochar for forestry productivity improvement, we here reviewed the effects and the underlying mechanisms of biochar on the degraded forest soil and tree growth. Totally 96 studies that conducted from pot to field investigations in China were summarized. The result suggested that biochar generally exerted positive effects on restoration of degraded forest soil such as that with compaction, acidification or soil erosion, which are mainly manifested by improving soil porosity, increasing pH, enhancing erosion resistance and mitigating greenhouse gas emissions. Furthermore, biochar incorporation promoted the growth of tested trees in most cases, which effect was mainly attributing to directly supplying nutrients, improving soil physio-chemical properties, enhancing the root’s nutrient absorption capacity, and enlarging the living space. In summary, current studies demonstrate that biochar has a unique potential for improving degraded forest soils and promoting tree growth. However, investigations on the underlying mechanisms and the long-term effects should be strengthened.  相似文献   

3.
The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2‐year lysimeter trial was set up to compare changes in C stocks of soils under either deep‐ or shallow‐rooting pastures and investigate whether biochar addition below the top 10 cm could promote root growth at depth. For this i) soil ploughing at cultivation was simulated in a silt loam soil and in a sandy soil by inverting the 0 to 10 and 10‐ to 20‐cm‐depth soil layers, and a distinctive biochar (selected for each soil to overcome soil‐specific plant growth limitations) was mixed at 10 Mg ha?1 in the buried layer, where appropriate and ii) three pasture types with contrasting root systems were grown. In the silt loam, soil inversion resulted in a general loss of C (2.0–8.1 Mg ha?1), particularly in the buried horizon, under shallow‐rooting pastures only. The addition of a C‐rich biochar (equivalent to 7.6 Mg C ha?1) to this soil resulted in a net C gain (21–40% over the non‐biochar treatment, < 0.10) in the buried layer under all pastures; this overcame the loss of C in this horizon under shallow‐rooting pastures. In the sandy soil, all pastures were able to maintain soil C stocks at 10–20 cm depth over time, with minor gains of C (1.6–5.1 Mg ha?1) for the profile. In this soil, the exposure of a skeletal‐ and nutrient‐depleted soil layer at the surface may have fostered root growth at depth. The addition of a nutrient‐rich biochar (equivalent to 3.6 Mg C ha?1) to this soil had no apparent effect on C stocks. More research is needed to understand the mechanisms through which soil C stocks at depth are preserved.  相似文献   

4.
高碱环境和土壤养分的匮乏严重限制了我国热带珊瑚岛土壤环境下植物的生长适应能力,因此,珊瑚砂改良对促进珊瑚岛植被恢复,维持珊瑚岛生态环境可持续健康发展具有重要意义。该研究通过室内土柱模拟试验,对比了同一梯度下4种常用土壤改良材料(蛭石、珍珠岩、生物炭和钙基膨润土)对珊瑚砂理化性质、氮素淋溶以及总氮含量的影响。结果表明,与对照(CK)相比,施用生物炭使珊瑚砂pH显著降低1.4%,钙基膨润土、生物炭和蛭石能够显著提高珊瑚砂的阳离子交换量至CK的24.21、10.43和9.43倍。同时,施用生物炭、钙基膨润土和蛭石并不能降低以硝态氮形式为主的氮素淋失,但是能显著减少其他途径的氮素损失,从而达到促进珊瑚砂氮素固持的效果,3种改良剂施用下的珊瑚砂总氮损失相较于CK分别降低了40.92%、27.32%和25.09%。因此,施用生物炭、钙基膨润土和蛭石均能有效提高珊瑚砂土壤质量,对改良珊瑚砂和热带珊瑚岛植被恢复具有重要意义,其中生物炭的改良效果最为显著,是改良珊瑚砂的理想材料。  相似文献   

5.
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality.Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress-and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.  相似文献   

6.
生物炭能改良土壤从而促进植物生长和氮素吸收,但其作用效果是否受水氮条件的影响尚不清楚。以湿地植物芦苇为研究对象,在3种氮添加水平(无添加,30 kg hm-2 a-1和60 kg hm-2 a-1)和两种水分(淹水和非淹水)条件下分别进行生物炭添加和不添加处理,结果表明:(1)生物炭添加能促进芦苇根系生长,在非淹水条件下根系生物量增加了40.5%,在淹水条件下根系生物量增加了20.1%。(2)生物炭添加能促进非淹水条件下芦苇的氮素吸收,能提高淹水条件下芦苇的氮素生产力。(3)生物炭添加加剧了土壤氮素损失,且在非淹水高氮条件下作用最强,可能是由于生物炭促进了芦苇的氮素吸收。芦苇氮素吸收速率与土壤氮损失之间存在显著的正相关关系。因此,在添加生物炭时,需要考虑土壤水分状况和氮素富集程度以及植物的氮素吸收偏好。该研究结果可为生物炭在湿地生态系统中的应用提供参考。  相似文献   

7.
唐静  袁访  宋理洪 《应用生态学报》2020,31(7):2473-2480
土壤动物是土壤生物群落不可或缺的组成部分,是调控土壤生态过程重要的生物驱动因子。探明向土壤中施加生物炭对土壤动物群落的影响及二者之间的相互关系,对深刻认识土壤生态系统的运行机制、评价土壤生态服务功能具有重要意义。本文综述了施用生物炭对土壤动物群落的影响及机制,包括生物炭原料、制备温度、施用量的差异对土壤动物群落造成的直接影响,及以生物介导(改变植物生理特性、提高微生物数量)和非生物介导(土壤理化性质的改变)环境条件的改变对土壤动物群落造成的间接影响。低量生物炭添加下(生物炭与土壤质量比<5%),对土壤动物的生长繁殖和行为活动起促进作用,若施炭量过高(>10%),则会产生毒害;土壤动物的行为活动也会影响生物炭的稳定性。未来应该加强长期田间定位、时空变异性、多学科交融和分析预测等方面的研究。  相似文献   

8.
Cadmium contamination in croplands is recognized one of the major threat, seriously affecting soil health and sustainable agriculture around the globe. Cd mobility in wastewater irrigated soils can be curtailed through eco-friendly and cost effective organic soil amendments (biochars) that eventually minimizes its translocation from soil to plant. This study explored the possible effects of various types of plants straw biochar as soil amendments on cadmium (Cd) phytoavailability in wastewater degraded soil and its subsequent accumulation in sunflower tissues. The studied biochars including rice straw (RS), wheat straw (WS), acacia (AC) and sugarcane bagasse (SB) to wastewater irrigated soil containing Cd. Sunflower plant was grown as a test plant and Cd accumulation was recorded in its tissues, antioxidant enzymatic activity chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM and Soluble Cd) were also examined. Results revealed that addition of biochar significantly minimized Cd mobility in soil by 53.4%, 44%, 41% and 36% when RS, WS, AC and SB were added at 2% over control. Comparing the control soil, biochar amended soil effectively reduced Cd uptake via plants shoots by 71.7%, 60.6%, 59% and 36.6%, when RS, WS, AC and SB. Among all the biochar, rice husk induced biochar significantly reduced oxidative stress and reduced SOD, POD and CAT activity by 49%, 40.5% and 46.5% respectively over control. In addition, NPK were significantly increased among all the added biochars in soil–plant system as well as improved chlorophyll contents relative to non-bioachar amended soil. Thus, among all the amendments, rice husk and wheat straw biochar performed well and might be considered the suitable approach for sunflower growth in polluted soil.  相似文献   

9.
Roots are the interfaces between biochar particles and growing plants. Biochar application may alter root growth and traits and thereby affect plant performance. However, a comprehensive understanding of the effects of biochar on root traits is lacking. We conducted a meta‐analysis with 2108 paired observations from 136 articles to evaluate the responses of root traits associated with 13 variables under biochar application. Overall, biochar application increased root biomass (+32%), root volume (+29%) and surface area (39%). The biochar‐induced increases in root length (+52%) and number of root tips (+17%) were much larger than the increase in root diameter (+9.9%); this result suggests that biochar application benefits root morphological development to alleviate plant nutrient and water deficiency rather than to maximize biomass accumulation. Biochar application did not change root N concentration but significantly increased root P concentration (+22%), particularly when combined with N fertilization. Biochar application also affected root‐associated microbes and significantly increased the number of root nodules (+25%). The responses of root traits to biochar application were generally greater in annual plants than in perennial plants and were affected by soil texture and pH values. Moreover, it appears that biochar production process (pyrolysis temperature and time) plays a more important role in regulating root growth than does biochar source. Together, findings obtained from this meta‐analysis may have significant implications for the future sustainable development of biochar management to improve plant growth and functioning.  相似文献   

10.
11.
Soil health is essential and irreplaceable for plant growth and global food production, which has been threatened by climate change and soil degradation. Degraded coastal soils are urgently required to reclaim using new sustainable technologies. Interest in applying biochar to improve soil health and promote crop yield has rapidly increased because of its multiple benefits. However, effects of biochar addition on the saline–sodic coastal soil health and halophyte growth were poorly understood. Response of two halophytes, Sesbania (Sesbania cannabina) and Seashore mallow (Kosteletzkya virginica), to the individual or co‐application of biochar and inorganic fertilizer into a coastal soil was investigated using a 52 d pot experiment. The biochar alone or co‐application stimulated the plant growth (germination, root development, and biomass), primarily attributed to the enhanced nutrient availability from the biochar‐improved soil health. Additionally, the promoted microbial activities and bacterial community shift towards the beneficial taxa (e.g. Pseudomonas and Bacillus) in the rhizosphere also contributed to the enhanced plant growth and biomass. Our findings showed the promising significance because biochar added at an optimal level (≤5%) could be a feasible option to reclaim the degraded coastal soil, enhance plant growth and production, and increase soil health and food security.  相似文献   

12.

Background and aims

Soil pH is among the major environmental factors affecting plant growth. Although the optimum range of soil pH for growth and the tolerance of pH extremes widely vary among plant species, the pH tolerance mechanisms in plants are still poorly understood. In this study, possible mechanisms were examined to explain the differences in tolerance of boreal plants to root zone pH.

Methods

In the controlled-environment solution culture experiments, we compared growth, physiological parameters and tissue nutrient concentrations in aspen, white spruce and tamarack seedlings that were subjected to 8 weeks of root zone pH treatments ranging from 5.0 to 9.0.

Results

The pH treatments had little effect on dry weights and net photosynthesis in white spruce seedlings despite reductions in transpiration rates at higher pH levels. In aspen and tamarack, both the growth and physiological parameters significantly decreased at pH higher than 6.0. The chlorosis of young tissues in aspen and tamarack was associated with the reductions in foliar concentrations of several of the examined essential nutrients including Fe and Mn. Although the plants varied in their ability to deliver essential nutrients to growing leaves, there was no direct correlation between tissue nutrient concentrations, chlorophyll concentrations and plant growth. The results also demonstrated strong inhibition of transpiration rates by high pH.

Conclusions

The results suggest that high root zone pH can upset water balance in pH sensitive species including aspen. Although the uptake and assimilation of essential elements such as Fe and Mn contribute to plant tolerance of high soil pH, we did not observe a direct relationship between growth and foliar nutrient concentrations to account for the observed differences in growth.  相似文献   

13.
为提高重金属污染土壤可持续修复效能,研究生物炭与细菌对重金属污染土壤的协同修复作用。基于文献计量学分析及重金属污染土壤修复背景,总结了细菌与生物炭对土壤重金属的稳定化特征及菌炭间的相互作用,分析了单一生物炭或细菌对重金属污染土壤修复的局限性,强调了细菌-生物炭协同修复技术的优势,阐述了细菌与生物炭主要通过离子交换、固定作用、氧化还原作用和迁移作用等重要机制有效修复重金属污染土壤,揭示了细菌-生物炭协同作用在重金属污染土壤修复中的巨大应用价值。文献计量学研究表明,生物炭与细菌对重金属污染土壤的协同修复已得到广泛关注。目前认为:生物炭与细菌的协同作用可有效改良土壤理化性质及提高土壤修复效率,也可促进植物生长及植物修复进程;生物炭对细菌影响具有双重性质,可促进细菌生长,也可能对细菌产生毒害;细菌可改变生物炭的理化性质,进而强化生物炭的重金属固定性能;细菌协同生物炭联合修复重金属污染土壤过程中,生物炭主导吸附和固定,细菌则发挥活化和解毒等功能;优化细菌-生物炭组合形式,发展混合细菌与多种类生物炭协同技术,是复合重金属污染土壤可持续修复亟待解决的重要问题;进一步揭示细菌与生物炭对重金属污染土壤的耦合作用及长效作用机制,规避生物炭生产和应用中的潜在生态健康风险,研发新型高效能细菌与生物炭复合体是细菌协同生物炭可持续修复重金属污染土壤应用领域面临的挑战。  相似文献   

14.
An experiment was conducted to determine if spatial nutrient heterogeneity affects mean plant size or size hierarchies in experimental populations of the weedy annual Abutilon theophrasti Medic. (Malvaceae). Heterogeneity was imposed by alternating 8 × 8 × 10 cm blocks of low and high nutrient soil in a checkerboard design, while a homogeneous soil treatment consisted of a spatially uniform mixture of the two soil types (mixed soil). Populations were planted at three densities. The effect of soil type on the growth of individuals was determined through a bioassay experiment using potted plants. The high nutrient, low nutrient, and mixed soil differed in their ability to support plant growth as indicated by differences in growth rates and final aboveground biomass. Concentrations of N, K, P, and Mg, measured at the end of the growing season in the experimental plots, also differed among all three soil types. Nevertheless, nutrient heterogeneity had little effect at the population level. Mean maximum leaf width measured at midseason was greater for populations on heterogeneous soil, but soil treatment did not affect midseason measurements of plant height, total number of leaves per plant, or canopy width. Population density affected all these parameters except plant height. When aboveground biomass was harvested at the end of the growing season, soil treatment was found to have no main effect on mean plant biomass, total population biomass, the coefficient of variation in plant biomass, or the combined biomass of the five largest plants in the population, but mean plant biomass was greater for populations on heterogeneous soils at the intermediate planting density. Mean plant biomass, total population biomass, and the coefficient of variation in plant biomass all varied with planting density. Mortality was low overall but significantly higher on homogeneous soil across all three densities. Soil heterogeneity had its strongest effect on individuals. In heterogeneous treatments plant size depended on the location of the plant stem with respect to high and low nutrient patches. Thus, soil nutrient heterogeneity influenced whether particular individuals were destined to be dominant or subordinate within the population but had little effect on overall population structure.  相似文献   

15.
Biochar is a carbon (C)‐rich solid produced from the thermochemical pyrolysis of biomass. Its amendment to soils has been proposed as a promising mean to mitigate greenhouse gas emissions and simultaneously benefit agricultural crops. However, how biochar amendment affects plant photosynthesis and growth remains unclear, especially on a global scale. In this study, we conducted a global synthesis of 74 publications with 347 paired comparisons to acquire an overall tendency of plant photosynthesis and growth following biochar amendment. Overall, we found that biochar amendment significantly increased photosynthetic rate by 27.1%, and improved stomatal conductance, transpiration rate, water use efficiency, and chlorophyll concentration by 19.6%, 26.9%, 26.8%, and 16.1%, respectively. Meanwhile, plant total biomass, shoot biomass, and root biomass increased by 25.4%, 22.1%, and 34.4%, respectively. Interestingly, plant types (C3 and C4 plants) showed greater control over plant photosynthesis and biomass than a broad suite of soil and biochar factors. Biochar amendment largely boosted photosynthesis and biomass on C3 plants, but had a limited effect on C4 plants. Our results highlight the importance of the differential response of plant types to biochar amendment with respect to plant growth and photosynthesis, providing a scientific foundation for making reasonable strategies towards an extensive application of biochar for agricultural production management.  相似文献   

16.
土壤呼吸对秸秆与秸秆生物炭还田的响应及其微生物机制   总被引:3,自引:0,他引:3  
土壤呼吸释放CO_2是温室气体排放的重要途径之一,减少土地利用中温室气体排放、增强土壤碳汇聚能力对于减缓全球温室效应具有重要意义。生物炭具有改善土壤理化性质、增加作物产量、调节土壤微生物性质等特性。本研究采用室外盆栽的方式,以地肤草为目标植物,研究了芦苇、水稻、互花米草三种农林秸秆及其秸秆生物炭还田对土壤的改良效应,以及对土壤呼吸的影响及其微生物机制。结果表明:秸秆及其秸秆生物炭均可改善土壤肥力,促进植物生长,且生物炭改良效果略好于秸秆直接还田。但秸秆生物炭还田的土壤呼吸显著低于秸秆直接还田,其中芦苇生物炭最低。秸秆直接还田可促进土壤β-糖苷酶、脱氢酶和活性微生物量等微生物活性指标,从而促进土壤呼吸,增加土壤CO_2的释放,而生物炭还田对土壤微生物活性无显著的促进作用,反而有一定的抑制作用,这可能是由于生物炭中易降解有机物含量很低,可降解性较低的缘故。  相似文献   

17.
Soil salinity is a severe worldwide environmental problem that adversely affects soil properties and the crop growth such as okra. We hypothesized that biochar soil amendments could increase the okra salt threshold, alleviate salt stress and improve soil productivity. In this study, a pot experiment was conducted to investigate whether biochar could ameliorate the effects of salinity on okra plants. Three biochar amendment (BA) soil applications (0%, 5% and 10% by mass of soil) were considered for seven irrigation water salinity levels (0.75, 1.0, 2.0, 4.0, 5.0, 6.0 and 7.0?dS?m?1) in a randomized block design with three replications. The Maas and Hoffman salt tolerance model was used to evaluate the effects of BA on okra plant growth parameters (e.g. yield, biomass) and water use efficiency for each salinity treatment. The results showed that increasing the soil salinity levels caused significant decreases in plant yields and yield components. However, biochar application rates of 5% and 10% increased the okra threshold by 19.7% and 81.2%, respectively, compared to the control (0%). The 10% biochar application rate also resulted in the greatest okra plant growth and increased yield, indicating that the effects of salt stress were ameliorated; moreover, the soil bulk density was decreased, and the water content was increased. Hence, biochar soil amendments could be considered as an important agronomic practice that could potentially overcome the adverse effects of salt stress.  相似文献   

18.
Variation in nitrogen and phosphorus concentrations of wetland plants   总被引:11,自引:0,他引:11  
The use of nutrient concentrations in plant biomass as easily measured indicators of nutrient availability and limitation has been the subject of a controversial debate. In particular, it has been questioned whether nutrient concentrations are mainly species' traits or mainly determined by nutrient availability, and whether plant species have similar or different relative nutrient requirements. This review examines how nitrogen and phosphorus concentration and the N:P ratio in wetland plants vary among species and sites, and how they are related to nutrient availability and limitation. We analyse data from field studies in European non-forested wetlands, from fertilisation experiments in these communities and from growth experiments with wetland plants. Overall, the P concentration was more variable than the N concentration, while variation in N:P ratios was intermediate. Field data showed that the N concentration varies more among species than among sites, whereas the N:P ratio varies more among sites than among species, and the P concentration varies similarly among both. Similar patterns of variation were found in fertilisation experiments and in growth experiments under controlled nutrient supply. Nutrient concentrations and N:P ratios in the vegetation were poorly correlated with various measures of nutrient availability in soil, but they clearly responded to fertilisation in the field and to nutrient supply in growth experiments. In these experiments, biomass N:P ratios ranged from 3 to 40 and primarily reflected the relative availabilities of N and P, although N:P ratios of plants grown at the same nutrient supply could vary three-fold among species. The effects of fertilisation with N or P on the biomass production of wetland vegetation were well related to the N:P ratios of the vegetation in unfertilised plots, but not to N or P concentrations, which supports the idea that N:P ratios, rather than N or P concentrations, indicate the type of nutrient limitation. However, other limiting or stressing factors may influence N:P ratios, and the responses of individual plant species to fertilisation cannot be predicted from their N:P ratios. Therefore, N:P ratios should only be used to assess which nutrient limits the biomass production at the vegetation level and only when factors other than N or P are unlikely to be limiting.  相似文献   

19.
Organic amendments, such as compost and biochar, mitigate the environmental burdens associated with wasting organic resources and close nutrient loops by capturing, transforming, and resupplying nutrients to soils. While compost or biochar application to soil can enhance an agroecosystem's capacity to store carbon and produce food, there have been few field studies investigating the agroecological impacts of amending soil with biochar co-compost, produced through the composting of nitrogen-rich organic material, such as manure, with carbon-rich biochar. Here, we examine the impact of biochar co-compost on soil properties and processes by conducting a field study in which we compare the environmental and agronomic impacts associated with the amendment of either dairy manure co-composted with biochar, dairy manure compost, or biochar to soils in a winter wheat cropping system. Organic amendments were applied at equivalent C rates (8 Mg C ha−1). We found that all three treatments significantly increased soil water holding capacity and total plant biomass relative to the no-amendment control. Soils amended with biochar or biochar co-compost resulted in significantly less greenhouse gas emissions than the compost or control soils. Biochar co-compost also resulted in a significant reduction in nutrient leaching relative to the application of biochar alone or compost alone. Our results suggest that biochar co-composting could optimize organic resource recycling for climate change mitigation and agricultural productivity while minimizing nutrient losses from agroecosystems.  相似文献   

20.
Biochar, pyrolyzed biomass, has been shown to be a promising way to improve plant productivity and soil quality. Biochar characteristics and its effect on plant performance depend strongly on the type of feedstock from which it is made. However, whether biochars produced from individual grassland species differ in their characteristics and effects on plant growth when applied to soil is poorly understood. The aim of this study was to examine how soil application of pyrolyzed and non-pyrolyzed biomass originating from different grassland species influences plant performance.We measured the growth of the forb Jacobaea vulgaris in soil amended with pyrolyzed or non-pyrolyzed biomass of seven different plant species, and in control soil without amendments.The characteristics (nutrient content, C:N) and effects on plant growth of both pyrolyzed and non-pyrolyzed biomass differed significantly between species from which the biomass originated (‘feedstock species’). For most feedstock species there was no relationship between the effects that the pyrolyzed and the non-pyrolyzed biomass had on plant performance. Our results show that pyrolyzed grassland species differ in their characteristics and their effect on plant growth when amended to soil. This shows that it is important to test what the effect of pyrolysing a chosen feedstock is on a species before applying it on a larger scale and that potentially biochar with predefined effects could be designed for specific purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号