首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The emergence of multidrug resistance (MDR) is a significant challenge in breast carcinoma chemotherapy. Kokusaginine isolated from Dictamnus dasycarpus Turcz. has been reported to show cytotoxicity in several human cancer cell lines including breast cancer cells MCF-7. In this study, kokusaginine showed the potent inhibitory effect on MCF-7 multidrug resistant subline MCF-7/ADR and MDA-MB-231 multidrug resistant subline MDA-MB-231/ADR. Kokusaginine markedly induced apoptosis in a concentration-dependent manner in MCF-7/ADR cells. Furthermore, kokusaginine reduced P-gp mRNA and protein levels, and suppressed P-gp function especially in MCF-7/ADR cells. In addition, kokusaginine showed to inhibit tubulin assembly and the binding of colchicine to tubulin by binding directly to tubulin and affects tubulin formation in vitro. Taken together, these results support the potential therapeutic value of kokusaginine as an anti-MDR agent in chemotherapy for breast carcinoma.  相似文献   

3.
Chen YJ  Kuo CD  Chen SH  Chen WJ  Huang WC  Chao KS  Liao HF 《PloS one》2012,7(5):e37006
Multi-drug resistance (MDR), an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC) transporters and activated Sonic hedgehog (Shh) signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX), we examined the effect and mechanism of norcantharidin (NCTD), a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S) and DOX-resistant (MCF-7R) cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.  相似文献   

4.
The occurrence of multidrug resistance (MDR) is the major obstacle to successful anthracycline-based cancer chemotherapy. In the present study, we assessed the effects of Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TPL), a piperidine nitroxide with growth-inhibitory properties in tumor cell lines, on a number of molecular mechanisms involved in the resistance of human breast adenocarcinoma cell lines to doxorubicin (DOX). Cytotoxicity studies in MCF-7 wildtype and their MDR variant MCF-7 Adr(R) cells showed a synergistic effect between TPL and DOX when exposure to TPL preceded or was simultaneous with DOX treatment in MCF-7 Adr(R) cells. This effect of TPL seems to be due in part to its ability to increase peroxide levels and to deplete cellular glutathione pools. In addition, TPL increased DOX accumulation in MCF-7 Adr(R) cells by interfering with P-glycoprotein-mediated DOX efflux, as evidenced using a specific antibody that recognizes the active form of the protein. TPL was also found to affect the expression levels of proteins involved in response to drug treatment (e.g., p53, bcl2, bax, p21). Taken together, our results indicate that TPL is a potential new agent that may improve the clinical effect of DOX in tumors exhibiting a MDR phenotype.  相似文献   

5.
Because multidrug resistance (MDR) is a serious impediment to the use of chemotherapy in treating cancer patients, great efforts have been made to search for effective MDR-reversing agents. We have developed a brand new synthetic ardeemin derivative, 5-N-formylardeemin, and investigated the activity of which in reversing MDR in MDR cancer cell lines derived from human breast cancer (MCF-7-R) or lung cancer (A549-R). 5-N-formylardeemin strongly enhanced the anti-cancer efficacy of doxorubicin, vincristine through potentiation of apoptosis in both MCF-7-R and A549-R at relatively noncytotoxic concentrations in vitro. Mechanistic studies showed that 5-N-formylardeemin inhibited the expression of MDR-1 (P-gp) and increased the intracellular accumulation of cytotoxic drugs in the MDR cells, suggesting that 5-N-formylardeemin reverses MDR activities through inhibiting MDR-1 expression. Interestingly, 5-N-formylardeemin also sensitized the parent wild-type cancer cells toward these chemotherapeutic agents to various extents. Importantly, in vivo studies demonstrated that 5-N-formylardeemin significantly improved the therapeutic effects of doxorubicin in nude mice bearing A549-R xenografts, which was associated with reduced expression of MDR-1 protein level and increased apoptosis in tumor tissues. These results underscore 5-N-formylardeemin as a potential sensitizer for chemotherapy against multidrug resistant cancers.  相似文献   

6.
The possibility of overcoming the multidrug resistance of human malignant cells by using doxorubicin conjugated to alpha-fetoprotein (AFP) was studied. It was shown that this type of antitumour drugs, penetrating the cell by receptor-mediated endocytosis with AFP as a vehicle, raises the sensitivity of the tumour cells that are resistant due to the expression of the multidrug resistance genemdr1. The sensitivity of antibiotic-resistant cell lines SKVLB (a human ovarian carcinoma) and MCF-7 AdrR (a human breast carcinoma) increased by 10- and 4-fold, respectively, when AFP-conjugated doxorubicin was used. The rationale of using human AFP-antitumour drug conjugates for the development of new chemotherapeutic approaches to cancer treatment is discussed.  相似文献   

7.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

8.
Development of multidrug resistance due to overexpression of P-glycoprotein (Pgp), a cell membrane drug efflux pump, occurs commonly during in vitro selections with adriamycin (Adr). Pgp-mediated drug resistance can be overcome by the calcium channel blocker verapamil (Vp), which acts as a competitive inhibitor of drug binding and efflux. In order to identify other mechanisms of Adr resistance, we isolated an Adr-resistant subline by selecting the human breast cancer cell line MCF-7 with incremental increases of Adr in the presence of 10 microgram/ml verapamil. The resultant MCF-7/AdrVp subline is 900-fold resistant to Adr, does not overexpress Pgp, and does not exhibit a decrease in Adr accumulation. It exhibits a unique cross-resistance pattern: high cross-resistance to the potent Adr analogue 3'-deamino-3'-(3-cyano-4-morpholinyl)doxorubicin, lower cross-resistance to the alkylating agent melphalan, and a sensitivity similar to the parental cell line to vinblastine. The levels of glutathione and glutathione S-transferase are similar in the parental line and the Adr-resistant subline. Topoisomerase II-DNA complexes measured by the potassium-sodium dodecyl sulfate precipitation method shows a 2-3 fold decrease in the resistant subline. The MCF-7/AdrVp cells overexpress a novel membrane protein with an apparent molecular mass of 95 kDa. Polyclonal antibodies raised against the P-95 protein demonstrate a correaltion between the level of expression and Adr resistance. Removal of Adr but not verapamil from the selection media results in a decline in P-95 protein levels that parallels a restoration of sensitivity to Adr. Immunohistochemistry demonstrates localization of the P-95 protein on the cell surface. The demonstration of high levels of the protein in clinical samples obtained from patients refractory to Adr suggests that this protein may play a role in clinical drug resistance.  相似文献   

9.
Adriamycin (Adr) and docetaxel (Doc) are two chemotherapeutic agents commonly used in the treatment of breast cancer. However, patients with breast cancer who are treated by the drugs often develop resistance to them and some other drugs. Recently studies have shown that microRNAs (miRNAs, miRs) play an important role in drug-resistance. In present study, miRNA expression profiles of MCF-7/S and its two resistant variant MCF-7/Adr and MCF-7/Doc cells were analyzed using microarray and the results were confirmed by real-time quantitative polymerase chain reaction. Here, 183 differentially expressed miRNAs were identified in the two resistant sublines compared to MCF-7/S. Then, five up-regulated miRNAs (miR-100, miR-29a, miR-196a, miR-222 and miR-30a) in both MCF-7/Adr and MCF-7/Doc were selected to explore their roles in acquisition of drug-resistance using transfection experiment. The results showed that miR-222 and miR-29a mimics and inhibitors had partially changed the drug-resistance of breast cancer cells, which was also confirmed by apoptosis assay. Western blot results suggested that miR-222 and -29a could regulate the expression of PTEN, maybe through which the two miRNAs conferred Adr and Doc resistance in MCF-7 cells. Finally, pathway mapping tools were employed to further analyze signaling pathways affected by the two miRNAs. In summary, this study demonstrates that altered miRNA expression pattern is involved in acquiring resistance to Adr and Doc in breast cancer MCF-7 cells, and that there are some miRNAs who displayed consistent up- or down-regulated expression changes in the two resistant sublines. The most importance is that we identify two miRNAs (miR-222 and miR-29a) involved in drug-resistance, at least in part via targeting PTEN.  相似文献   

10.
Novel furoxan-based nitric oxide (NO)-releasing DDB derivatives (7a-j) were synthesized. Compounds 7i and 7j significantly reversed the resistance of MCF-7/Adr cells to doxorubicin in the combination treatment, and markedly increased the intracellular accumulation of doxorubicin probably via inhibiting Pgp-mediated intracellular drug efflux as well as down-regulating doxorubicin-induced Pgp expression. It was demonstrated that NO released by 7i and 7j played an important role in increasing intracellular doxorubicin accumulation and chemo-sensitizing MCF-7/Adr cells to doxorubicin, and the synergic effects of DDB and NO-donor moieties in 7i and 7j may contribute to reversing Pgp-mediated MDR in MCF-7/Adr cells to doxorubicin.  相似文献   

11.
《Phytomedicine》2014,21(7):984-991
Paclitaxel (PTX) is a first-line antineoplastic drug that is commonly used in clinical chemotherapy for breast cancer treatment. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. There is thus an urgent need to find ways of reversing paclitaxel chemotherapy resistance in breast cancer. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of mainstream antitumor drugs. Paeonol, a main compound derived from the root bark of Paeonia suffruticosa, has various biological activities, and is reported to have reversal drug resistance effects. This study established a paclitaxel-resistant human breast cancer cell line (MCF-7/PTX) and applied the dual-luciferase reporter gene assay, MTT assay, flow cytometry, transfection assay, Western blotting and the quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the reversing effects of paeonol and its underlying mechanisms. It was found that transgelin 2 may mediate the resistance of MCF-7/PTX cells to paclitaxel by up-regulating the expressions of the adenosine-triphosphate binding cassette transporter proteins, including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). Furthermore, the ability of paeonol to reverse paclitaxel resistance in breast cancer was confirmed, with a superior 8.2-fold reversal index. In addition, this study found that paeonol down-regulated the transgelin 2-mediated paclitaxel resistance by reducing the expressions of P-gp, MRP1, and BCRP in MCF-7/PTX cells. These results not only provide insight into the potential application of paeonol to the reversal of paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.  相似文献   

12.

Background

Multidrug resistance is a major problem in the treatment of breast cancer, and a number of studies have attempted to find an efficient strategy with which to overcome it. In this study, we investigate the synergistic anticancer effects of resveratrol (RSV) and doxorubicin (Dox) against human breast cancer cell lines.

Methods

The synergistic effects of RSV on chemosensitivity were examined in Dox-resistant breast cancer (MCF-7/adr) and MDA-MB-231 cells. In vivo experiments were performed using a nude mouse xenograft model to investigate the combined sensitization effect of RSV and Dox.

Results and conclusion

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

General significance

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells.  相似文献   

13.
BackgroundTherapeutic regimens of breast cancer treatment are increasingly inclined to adopt combination strategy based on the broad spectrum antitumor effect of doxorubicin (Dox). Currently, combination therapy comprises of conventional anti-cancer drugs and angiogenesis inhibitors have been corroborated as an effective approach in cancer treatment.PurposeWe explored the ability of a natural anti-angiogenic compound glycyrrhetinic acid (GA), derived from an edible-medicinal herb licorice, to enhance the breast cancer suppression effect of Dox.Study designThe drug ratio of GA and Dox with synergistic anticancer effect against MCF-7 cells was optimized by combination index (CI) value in vitro, followed by evaluation of the improved anticancer effects and reduced side-effects of this combination in vitro and in vivo.MethodsCell viability was measured by MTT assay. Analyses of mitochondrial membrane potential and cell apoptosis on MCF-7 cells were performed by JC-1 dye and Annexin V-FITC/PI assays. The cellular accumulation of Dox when combined with GA was evaluated. Levels of apoptosis-related proteins in MCF-7 cells were measured by Western blot analysis. Synergistic anti-angiogenic effects on HUVECs were evaluated. A breast cancer mouse model was established to investigate the anti-tumor effects in vivo.ResultsBased on the optimization by CI value, Dox and GA at 1:20 molar ratio was chosen as the optimal combination drug ratio that exhibited synergistic effect against MCF-7 breast cancer cells. In addition, the combination of GA and Dox exhibited significantly enhanced cytotoxicity, apoptosis, and loss of mitochondrial membrane potential via the upregulation of a mitochondrial-dependent apoptosis pathway against MCF-7 cells. Interestingly, the addition of GA increased the intracellular accumulation of Dox in MCF-7 cells. Moreover, VEGF-induced HUVECs proliferation, migration, and tube formation were strongly inhibited by Dox when used with GA via the significant down-regulation of VEGFR2-mediated pathway, indicating that the combination of Dox and GA could exhibit ideal synergistic anti-angiogenesis effect. Expectedly, the enhanced anti-tumor efficacy of Dox and reduced Dox-induced cardiotoxicity when used in combination with GA were evident in a mouse breast tumor model.ConclusionsThese findings support that the combination of Dox with GA is a novel and promising therapeutic strategy for the treatment of breast cancer.  相似文献   

14.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.  相似文献   

15.
《Phytomedicine》2014,21(8-9):1110-1119
The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy.  相似文献   

16.
A selected ion flow tube-chemical ionization mass spectrometric method is presented for the first determination of acrolein metabolically produced in biological tissues. Acrolein in aqueous samples (2.5 ml) is preconcentrated by distillation and directly analyzed using gas-phase proton transfer from H3O+. This method provides sensitive detection of acrolein with the method detection limit of 15 nM at the 99% confidence level. Detection is linear up to the highest concentration studied (13.5 microM, R2 = 0.998). Acrolein levels are determined in doxorubicin-sensitive (MCF-7) and doxorubicin-resistant (MCF-7/Adr) human breast cancer cells in vitro. The intracellular acrolein concentrations differ insignificantly: 0.61 microM for sensitive cells and 0.54 microM for resistant cells. Treatment with a physiological concentration of doxorubicin (0.5 microM) for 24 h at 37 degrees C increased acrolein levels by factors of 2.6 and 1.9 for MCF-7 and MCF-7/Adr cells, respectively. The differential enhancement observed is consistent with the lower levels of enzymes that neutralize oxidative stress in sensitive MCF-7 cells and overexpression of an active drug efflux pump P-170 glycoprotein in resistant MCF-7/Adr cells.  相似文献   

17.
Cancer multidrug resistance (MDR) is a major impediment to effective chemotherapy in human cancer, in which P-glycoprotein and Multidrug Resistance-Associated protein figure prominently. Design and exploitation of novel clinical MDR inhibitors is greatly hindered by a lack of understanding of drug efflux dynamics in drug-sensitive and resistant cells. The aim of our study was to provide a microelectrode method for measuring the multidrug transporter mediated efflux of doxorubicin as well as a corresponding data analysis method for quantifying the efflux kinetic parameters. We performed experiments using carbon fiber microelectrode to detect doxorubicin efflux from a monolayer of human breast cancer MCF-7 cells and derived MDR cells (MCF-7/ADR), established a material transport model and proposed a novel inverse method to quantitatively characterize the diffusion dynamics. The kinetic parameters of doxorubicin efflux from MCF-7 and MCF-7/ADR cells in the presence or absence of MDR inhibitors were estimated. Our investigations showed the average initial doxorubicin efflux rate of MCF-7/ADR that was 5.2 times faster than of MCF-7. After treatment by tetramethylpyrazine or verapamil, the drug efflux rate of the MCF-7/ADR cells was reduced by about half that of those without inhibitors. The novel methodology presented suggests new and expanded applications for computer-aided reconstruction of the drug efflux process, microelectrode design, and high-throughput drug screening.  相似文献   

18.
The development of novel targeted therapies holds promise for conquering chemotherapy resistance, which is one of the major hurdles in current breast cancer treatment. Previous studies indicate that mitochondria uncoupling protein 2 (UCP-2) is involved in the development of chemotherapy resistance in colon cancer and lung cancer cells. In the present study we found that lower level of miR133a is accompanied by increased expression of UCP-2 in Doxorubicin-resistant breast cancer cell cline MCF-7/Dox as compared with its parental cell line MCF-7. We postulated that miR133a might play a functional role in the development of Doxorubicin-resistant in breast cancer cells. In this study we showed that: 1) exogenous expression of miR133a in MCF-7/Dox cells can sensitize their reaction to the treatment of Doxorubicin, which is coincided with reduced expression of UCP-2; 2) knockdown of UCP-2 in MCF-7/Dox cells can also sensitize their reaction to the treatment of Doxorubicin; 3) intratumoral delivering of miR133a can restore Doxorubicin treatment response in Doxorubicin-resistant xenografts in vivo, which is concomitant with the decreased expression of UCP-2. These findings provided direct evidences that the miR133a/UCP-2 axis might play an essential role in the development of Doxorubicin-resistance in breast cancer cells, suggesting that the miR133a/UCP-2 signaling cohort could be served as a novel therapeutic target for the treatment of chemotherapy resistant in breast cancer.  相似文献   

19.
Docetaxel (Doc) and adriamycin (Adr) are two of the most effective chemotherapeutic agents in the treatment of breast cancer. However, their efficacy is often limited by the emergence of multidrug resistance (MDR). The purpose of this study was to investigate MDR mechanisms through analyzing systematically the expression changes of genes related to MDR in the induction process of isogenic drug resistant MCF-7 cell lines. Isogenic resistant sublines selected at 100 and 200 nM Doc (MCF-7/100 nM Doc and MCF-7/200 nM Doc) or at 500 and 1,500 nM Adr (MCF-7/500 nM Adr and MCF-7/1,500 nM) were developed from human breast cancer parental cell line MCF-7, by exposing MCF-7 to gradually increasing concentrations of Doc or Adr in vitro. Cell growth curve, flow cytometry and MTT cytotoxicity assay were preformed to evaluate the MDR characteristics developed in the sublines. Some key genes on the pathways related to drug resistance (including drug-transporters: MDR1, MRP1 and BCRP; drug metabolizing-enzymes: CYP3A4 and glutathione S-transferases (GST) pi; target genes: topoisomerase II (TopoIIα) and Tubb3; apoptosis genes: Bcl-2 and Bax) were analyzed at RNA and protein expression levels by real time RT-qPCR and western blot, respectively. Compared to MCF-7/S (30.6 h), cell doubling time of MCF-7/Doc (41.6 h) and MCF-7/Adr (33.8 h) were both prolonged, and the cell proportion of resistant sublines in G1/G2 phase increased while that in S-phase decreased. MCF-7/100 nM Doc and MCF-7/200 nM Doc was 22- and 37-fold resistant to Doc, 18- and 32-fold to Adr, respectively. MCF-7/500 nM Adr and MCF-7/1,500 nM Adr was 61- and 274-fold resistant to Adr, three and 12-fold to Doc, respectively. Meantime, they also showed cross-resistance to the other anticancer drugs in different degrees. Compared to MCF-7/S, RT-qPCR and Western blot results revealed that the expression of MDR1, MRP1, BCRP, Tubb3 and Bcl-2 were elevated in both MCF-7/Doc and MCF-7/Adr, and TopoIIα, Bax were down-regulated in both the sublines, while CYP3A4, GST pi were increased only in MCF-7/Doc and MCF-7/Adr respectively. Furthermore, the changes above were dose-dependent. The established MCF-7/Doc or MCF-7/Adr has the typical MDR characteristics, which can be used as the models for resistance mechanism study. The acquired process of MCF-7/S resistance to Doc or Adr is gradual, and is complicated with the various pathways involved in. There are some common resistant mechanisms as well as own drug-specific changes between both the sublines.  相似文献   

20.
Numerous evidence link aberrant nuclear β‐catenin accumulation to the development of breast cancer resistance, therefore, targeted inhibition of β‐catenin nuclear translocation may effectively improve the chemosensitivity of breast cancer. Doxorubicin (Dox) is the most commonly used chemotherapeutic drug for breast cancer. Here, we determined that tanshinone II A (Tan II A) could improve the sensitivity of Dox‐resistant breast cancer MCF‐7/dox cells to Dox, and evaluated whether the sensitization effect of Tan II A on Dox was targeted to inhibit β‐catenin nuclear translocation. The results showed that Tan II A not only significantly inhibited the nuclear translocation of β‐catenin in MCF‐7/dox cells treated by Dox but also inhibited the nuclear translocation of β‐catenin in MCF‐7 cells treated by Dox to a certain degree. Furthermore, when the above two cells treated by Dox combined with Tan II A were intervened with β‐catenin agonist WAY‐262611, with the re‐nuclear translocation of β‐catenin in the cells, the sensitization effect of Tan II A on Dox was greatly reduced. These results indicated that Tan II A could improve the chemosensitivity of breast cancer cells to Dox by inhibiting β‐catenin nuclear translocation. Therefore, Tan II A could be used as a potential chemosensitizer in combination with Dox for breast cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号