首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment.  相似文献   

2.
Understanding spinal kinematics is essential for distinguishing between pathological conditions of spine disorders, which ultimately lead to low back pain. It is of high importance to understand how changes in mechanical properties affect the response of the lumbar spine, specifically in an effort to differentiate those associated with disc degeneration from ligamentous changes, allowing for more precise treatment strategies. To do this, the goals of this study were twofold: (1) develop and validate a finite element (FE) model of the lumbar spine and (2) systematically alter the properties of the intervertebral disc and ligaments to define respective roles in functional mechanics. A three-dimensional non-linear FE model of the lumbar spine (L3-sacrum) was developed and validated for pure moment bending. Disc degeneration and sequential ligament failure were modelled. Intersegmental range of motion (ROM) and bending stiffness were measured. The prediction of the FE model to moment loading in all three planes of bending showed very good agreement, where global and intersegmental ROM and bending stiffness of the model fell within one standard deviation of the in vitro results. Degeneration decreased ROM for all directions. Stiffness increased for all directions except axial rotation, where it initially increased then decreased for moderate and severe degeneration, respectively. Incremental ligament failure produced increased ROM and decreased stiffness. This effect was much more pronounced for all directions except lateral bending, which is minimally impacted by ligaments. These results indicate that lateral bending may be more apt to detect the subtle changes associated with degeneration, without being masked by associated changes of surrounding stabilizing structures.  相似文献   

3.
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1–L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.  相似文献   

4.
The human spinal segment is an inherently complex structure, a combination of flexible and semi-rigid articulating elements stabilised by seven principal ligaments. An understanding of how mechanical loading is shared among these passive elements of the segment is required to estimate tissue failure stresses. A 3D rigid body model of the complete lumbar spine has been developed to facilitate the prediction of load sharing across the passive elements. In contrast to previous multibody models, this model includes a non-linear, six degrees of freedom intervertebral disc, facet bony articulations and all spinal ligaments. Predictions of segmental kinematics and facet joint forces, in response to pure moment loading (flexion–extension), were compared to published in vitro data. On inclusion of detailed representation of the disc and facets, the multibody model fully captures the non-linear flexibility response of the spinal segment, i.e. coupled motions and a mobile instantaneous centre of rotation. Predicted facet joint forces corresponded well with reported values. For the loading case considered, the model predicted that the ligaments are the main stabilising elements within the physiological motion range; however, the disc resists a greater proportion of the applied load as the spine is fully flexed. In extension, the facets and capsular ligaments provide the principal resistance. Overall patterns of load distribution to the spinal ligaments are in agreement with previous predictions; however, the current model highlights the important role of the intraspinous ligament in flexion and the potentially high risk of failure. Several important refinements to the multibody modelling of the passive elements of the spine have been described, and such an enhanced passive model can be easily integrated into a full musculoskeletal model for the prediction of spinal loading for a variety of daily activities.  相似文献   

5.
Previous curved muscle models have typically examined their robustness only under simple, single-plane static exertions. In addition, the empirical validation of curved muscle models through an entire lumbar spine has not been fully realized. The objective of this study was to empirically validate a personalized biologically-assisted curved muscle model during complex dynamic exertions. Twelve subjects performed a variety of complex lifting tasks as a function of load weight, load origin, and load height. Both a personalized curved muscle model as well as a straight-line muscle model were used to evaluate the model’s fidelity and prediction of three-dimensional spine tissue loads under different lifting conditions. The curved muscle model showed better model performance and different spinal loading patterns through an entire lumbar spine compared to the straight-line muscle model. The curved muscle model generally showed good fidelity regardless of lifting condition. The majority of the 600 lifting tasks resulted in a coefficient of determination (R2) greater than 0.8 with an average of 0.83, and the average absolute error less than 15% between measured and predicted dynamic spinal moments. As expected, increased load and asymmetry were generally found to significantly increase spinal loads, demonstrating the ability of the model to differentiate between experimental conditions. A curved muscle model would be useful to estimate precise spine tissue loads under realistic circumstances. This precise assessment tool could aid in understanding biomechanical causal pathways for low back pain.  相似文献   

6.
Diurnal changes of intervertebral disc height are caused by high compressive loading during the day, which expulses fluid from the disc, and by osmotic pressure, which imbibes fluid into the disc at low loading. The aim of the present study was to determine the magnitude of diurnal changes in spine flexibility, intradiscal pressures and contact forces in the facet joints. A validated osseoligamentous finite element model of the lumbar spine was used to determine these quantities for morning and evening situations. Disc height varied by 10% for these two situations. Spine flexibility and facet joint forces were markedly higher in the evening than in the morning. Intradiscal pressures were higher in the morning than in the evening. The different spine flexibilities in the morning and evening should be taken into account during kinematical measurements. Predicted facet joint forces may be used for the designing and pre-clinical testing of artificial facet joint replacements.  相似文献   

7.
Musculo-skeletal modeling can greatly help in understanding normal and pathological functioning of the spine. For such models to produce reliable muscle and joint force estimations, an adequate set of musculo-skeletal data is necessary. In this study, we present a complete and coherent dataset for the lumbar spine, based on medical images and dissection measurements from one embalmed human cadaver. We divided muscles into muscle-tendon elements, digitized their attachments at the bones and measured morphological parameters. In total, we measured 11 muscles from one body side, using 96 elements. For every muscle element, we measured three-dimensional coordinates of its attachments, fiber length, tendon length, sarcomere length, optimal fiber length, pennation angle, mass, and physiological cross-sectional area together with the geometry of the lumbar spine. Results were consistent with other anatomical studies and included new data for the serratus posterior inferior muscle. The dataset presented in this paper enables a complete and coherent musculo-skeletal model for the lumbar spine and will improve the current state-of-the art in predicting spinal loading.  相似文献   

8.
Backpack carriage is significantly associated with a higher prevalence of low back pain. Elevated compression and shear forces in the lumbar intervertebral discs are known risk factors. A novel method of calculating the loads in the lumbar spine during backpack carriage is presented by combining physical and numerical modelling. The results revealed that to predict realistic lumbar compression forces, subject-specific lumbar curvature data were not necessary for loads up to 40 kg. In contrast, regarding shear forces, using subject-specific lumbar curvature data from upright MRI measurements as input for the rigid body model significantly altered lumbar joint force estimates.  相似文献   

9.
Proprioception plays an important role in appropriate sensation of spine position, movement, and stability. Previous research has demonstrated that position sense error in the lumbar spine is increased in flexed postures. This study investigated the change in position sense as a function of altered trunk flexion and moment loading independently. Reposition sense of lumbar angle in 17 subjects was assessed. Subjects were trained to assume specified lumbar angles using visual feedback. The ability of the subjects to reproduce this curvature without feedback was then assessed. This procedure was repeated for different torso flexion and moment loading conditions. These measurements demonstrated that position sense error increased significantly with the trunk flexion (40%, p < .05) but did not increase with moment load (p = .13). This increased error with flexion suggests a loss in the ability to appropriately sense and therefore control lumbar posture in flexed tasks. This loss in proprioceptive sense could lead to more variable lifting coordination and a loss in dynamic stability that could increase low back injury risk. This research suggests that it is advisable to avoid work in flexed postures.  相似文献   

10.
There is a clear relationship between lumbar spine loading and back musculoskeletal disorders in manual materials handling. The incidence of back disorders is greater in women than men, and for similar work demands females are functioning closer to their physiological limit. It is crucial to study loading on the spine musculoskeletal system with actual handlers, including females, to better understand the risk of back disorders. Extrapolation from biomechanical studies conducted on unexperienced subjects (mainly males) might not be applicable to actual female workers. For male workers, expertise changes the lumbar spine flexion, passive spine resistance, and active/passive muscle forces. However, experienced females select similar postures to those of novices when spine loading is critical. This study proposes that the techniques adopted by male experts, male novices, and females (with considerable experience but not categorized as experts) impact their lumbar spine musculoskeletal systems differently. Spinal loads, muscle forces, and passive resistance (muscle and ligamentous spine) were predicted by a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine. Expert males flexed their lumbar spine less (avg. 21.9° vs 30.3–31.7°) and showed decreased passive internal moments (muscle avg. 8.9% vs 15.9–16.0%; spine avg. 4.7% vs 7.1–7.8%) and increased active internal moments (avg. 72.9% vs 62.0–63.9%), thus producing a different impact on their lumbar spine musculoskeletal systems. Experienced females sustained the highest relative spine loads (compression avg. 7.3 N/BW vs 6.2–6.4 N/BW; shear avg. 2.3 N/BW vs 1.7–1.8 N/BW) in addition to passive muscle and ligamentous spine resistance similar to novices. Combined with smaller body size, less strength, and the sequential lifting technique used by females, this could potentially mean greater risk of back injury. Workers should be trained early to limit excessive and repetitive stretching of their lumbar spine passive tissues.  相似文献   

11.
An EMG-assisted, low-back, lifting model is presented which simulates spinal loading as a function of dynamic, asymmetric, lifting exertions. The purpose of this study has been to develop a model which overcomes the limitations of previous models including static or isokinetic mechanics, inaccurate predictions of muscle coactivity, static interpretation of myoelectric activity, and physiologically unrealistic or variable muscle force per unit area. The present model predicts individual muscle forces from processed EMG data, normalized as a function of trunk angle and asymmetry, and modified to account for muscle length and velocity artifacts. The normalized EMGs are combined with muscle cross-sectional area and intrinsic strength capacity as determined on a per subject basis, to represent tensile force amplitudes. Dynamic internal and external force vectors are employed to predict trunk moments, spinal compression, lateral and anterior shear forces. Data from 20 subjects performing a total of 2160 exertions showed good agreement between predicted and measured values under all trunk angle, asymmetry, velocity, and acceleration conditions. The design represents a significant step toward accurate, fully dynamic modeling of the low-back in multiple dimensions. The benefits of such a model are the insights provided into the effects of motion induced, muscle co-activity on spinal loading in multiple dimensions.  相似文献   

12.
A combined approach involving optimization and the finite element technique was used to predict biomechanical parameters in the lumbar spine during static lifting in the sagittal plane. Forces in muscle fascicles of the lumbar region were first predicted using an optimization-based force model including the entire lumbar spine. These muscle forces as well as the distributed upper body weight and the lifted load were then applied to a three-dimensional finite element model of the thoracolumbar spine and rib cage to predict deformation, the intradiskal pressure, strains, stresses, and load transfer paths in the spine. The predicted intradiskal pressures in the L3-4 disk at the most deviated from the in vivo measurements by 8.2 percent for the four lifting cases analyzed. The lumbosacral joint flexed, while the other lumbar joints extended for all of the four lifting cases studied (rotation of a joint is the relative rotation between its two vertebral bodies). High stresses were predicted in the posterolateral regions of the endplates and at the junctions of the pedicles and vertebral bodies. High interlaminar shear stresses were found in the posterolateral regions of the lumbar disks. While the facet joints of the upper two lumbar segments did not transmit any load, the facet joints of the lower two lumbar segments experienced significant loads. The ligaments of all lumbar motion segments except the lumbosacral junction provided only marginal moments. The limitations of the current model and possible improvements are discussed.  相似文献   

13.
Understanding the kinematics of the spine provides paramount knowledge for many aspects of the clinical analysis of back pain. More specifically, visualisation of the instantaneous centre of rotation (ICR) enables clinicians to quantify joint laxity in the segments, avoiding a dependence on more inconclusive measurements based on the range of motion and excessive translations, which vary in every individual. Alternatively, it provides motion preserving designers with an insight into where a physiological ICR of a motion preserving prosthesis can be situated in order to restore proper load distribution across the passive and active elements of the lumbar region. Prior to the use of an unconstrained dynamic musculoskeletal model system, based on multi-body models capable of transient analysis, to estimate segmental loads, the model must be kinematically evaluated for all possible sensitivity due to ligament properties and the initial locus of intervertebral disc (IVD). A previously calibrated osseoligamentous model of lumbar spine was used to evaluate the changes in ICR under variation of the ligament stiffness and initial locus of IVD, when subjected to pure moments from 0 to 15 Nm. The ICR was quantified based on the closed solution of unit quaternion that improves accuracy and prevents coordinate singularities, which is often observed in Euler-based methods and least squares principles. The calculation of the ICR during flexion/extension revealed complexity and intrinsic nonlinearity between flexion and extension. This study revealed that, to accommodate a good agreement between in vitro data and the multi-body model predictions, in flexion more laxity is required than in extension. The results showed that the ICR location is concentrated in the posterior region of the disc, in agreement with previous experimental studies. However, the current multi-body model demonstrates a sensitivity to the initial definition of the ICR, which should be recognised as a limitation of the method. Nevertheless, the current simulations suggest that, due to the constantly evolving path of the ICR across the IVD during flexion–extension, a movable ICR is a necessary condition in multi-body modelling of the spine, in the context of whole body simulation, to accurately capture segmental kinematics and kinetics.  相似文献   

14.
Simplified loading modes (pure moment, compressive force) are usually applied in the in vitro studies to simulate flexion-extension, lateral bending and axial rotation of the spine. The load magnitudes for axial rotation vary strongly in the literature. Therefore, the results of current investigations, e.g. intervertebral rotations, are hardly comparable and may involve unrealistic values. Thus, the question 'which in vitro applicable loading mode is the most realistic' remains open. A validated finite element model of the lumbar spine was employed in two sensitivity studies to estimate the ranges of results due to published load assumptions and to determine the input parameters (e.g. torsional moment), which mostly affect the spinal load and kinematics during axial rotation. In a subsequent optimisation study, the in vitro applicable loading mode was determined, which delivers results that fit best with available in vivo measurements. The calculated results varied widely for loads used in the literature with potential high deviations from in vivo measured values. The intradiscal pressure is mainly affected by the magnitude of the compressive force, while the torsional moment influences mainly the intervertebral rotations and facet joint forces. The best agreement with results measured in vivo were found for a compressive follower force of 720N and a pure moment of 5.5Nm applied to the unconstrained vertebra L1. The results reveal that in many studies the assumed loads do not realistically simulate axial rotation. The in vitro applicable simplified loads cannot perfectly mimic the in vivo situation. However, the optimised values lead to the best agreement with in vivo measured values. Their consequent application would lead to a better comparability of different investigations.  相似文献   

15.
The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using dummy rigid beam elements that originated from the spinous process. Up to 10 Nm of flexion and 7.5 Nm of extension moment was applied with and without 20 N of lateral tension in the LF. A follower load of 400 N was additionally applied along the curvature of the spine. To identify how the magnitude of LF tension related to the stability of the spine, the tensioning on the fasciae was increased up to 40 N with an interval of 10 N under 7.5 Nm of flexion/extension moment. A fascial tension of 20 N produced a 59% decrease in angular motion at 2.5 Nm of flexion moment while there was a 12.3% decrease at 10 Nm in the L5-S1 segment. Its decrement was 53 and 9.6% at 2.5 Nm and 10 Nm, respectively, in the L4-L5 segment. Anterior translation was reduced by 12.1 and 39.0% at the L4-L5 and L5-S1 segments under 10 Nm of flexion moment, respectively. The flexion stiffness shows an almost linear increment with the increase in fascial tension. The results of this study showed that the effect of the LF on the stability of the spine is significant.  相似文献   

16.
Understanding the relationship between repetitive lifting and the breakdown of disc tissue over several years of exposure is difficult to study in vivo and in vitro. The aim of this investigation was to develop a three-dimensional poroelastic finite element model of a lumbar motion segment that reflects the biological properties and behaviors of in vivo disc tissues including swelling pressure due to the proteoglycans and strain-dependent permeability and porosity. It was hypothesized that when modeling the annulus, prescribing tissue specific material properties will not be adequate for studying the in vivo loading and unloading behavior of the disc. Rather, regional variations of these properties, which are known to exist within the annulus, must also be included. Finite element predictions were compared to in vivo measurements published by Tyrrell et al. (1985) of percent change in total stature for two loading protocols, short-term creep loading and standing recovery and short-term cyclic loading with standing recovery. The model in which the regional variations of material properties in the annulus had been included provided an overall better prediction of the in vivo behavior as compared to the model in which the annulus properties were assumed to be homogenous. This model will now be used to study the relationship between repetitive lifting and disc degeneration.  相似文献   

17.
Low back disorders (LBDs) are the most common and costly occupationally-related compensable conditions facing employers today. Over the years several biomechanical assessment models have been developed that intended to assess the load profile imposed upon the spine during lifting and, thus, intended to facilitate the control of LBD risk in the workplace. Many of these biomechanical models have evolved based upon assumptions about how the trunk musculature respond to loads imposed upon the body during lifting. However, few of these models have been able to accurately predict the co-contraction of the trunk musculature which has been shown to have a major influence on the development of spinal loads. Thus, our understanding of how the spine is loaded under realistic dynamic lifting conditions has been deficient. A biologically-assisted or EMG-assisted model has been developed in our laboratory over the past 15 years which endeavours to overcome these traditional problems. The model has been assessed in the sagittal, coronal, and torsional planes of the body. The model development and performance will be reviewed as well as the benefits for controlling occupationally-related LBDs.  相似文献   

18.
A novel optimisation algorithm is developed to predict coactivity of abdominal muscles while accounting for both trunk stability via the lowest buckling load (P cr) and tissue loading via the axial compression (F c). A nonlinear multi-joint kinematics-driven model of the spine along with the response surface methodology are used to establish empirical expressions for P cr and F c as functions of abdominal muscle coactivities and external load magnitude during lifting in upright standing posture. A two-component objective function involving F c and P cr is defined. Due to opposite demands, abdominal coactivities that simultaneously maximise P cr and minimise F c cannot exist. Optimal solutions are thus identified while striking a compromise between requirements on trunk stability and risk of injury. The oblique muscles are found most efficient as compared with the rectus abdominus. Results indicate that higher abdominal coactivities should be avoided during heavier lifting tasks as they reduce stability margin while increasing spinal loads.  相似文献   

19.
Data has been published that quantifies the nonlinear, anisotropic material behaviour and pre-strain behaviour of the anterior longitudinal, supraspinous (SSL), and interspinous ligaments of the human lumbar spine. Additionally, data has been published on localized material properties of the SSL. These results have been incrementally incorporated into a previously validated finite element model of the human lumbar spine. Results suggest that the effects of increased ligament model fidelity on bone strain energy were moderate and the effects on disc pressure were slight, and do not justify a change in modelling strategy for most clinical applications. There were significant effects on the ligament stresses of the ligaments that were directly modified, suggesting that these phenomena should be included in FE models where ligament stresses are the desired metric.  相似文献   

20.
Evaluation of the loads on lumbar intervertebral discs (IVD) is critically important since it is closely related to spine biomechanics, pathology and prosthesis design. Non-invasive estimation of the loads in the discs remains a challenge. In this study, we proposed a new technique to estimate in vivo loads in the IVD using a subject-specific finite element (FE) model of the disc and the kinematics of the disc endplates as input boundary conditions. The technique was validated by comparing the forces and moments in the discs calculated from the FE analyses to the in vitro experiment measurements of three corresponding lumbar discs. The results showed that the forces and moments could be estimated within an average error of 20%. Therefore, this technique can be a promising tool for non-invasive estimation of the loads in the discs and may be extended to be used on living subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号