首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Around 150 million people are at risk from arsenic-contaminated groundwater in India and Bangladesh. Multiple metal analysis in Bangladesh has found other toxic elements above the World Health Organization (WHO) health-based drinking water guidelines which significantly increases the number of people at risk due to drinking groundwater. In this study, drinking water samples from the Bongaon area (North 24 Parganas district, West Bengal, India) were analyzed for multiple metal contamination in order to evaluate groundwater quality on the neighbourhood scale. Each sample was analyzed for arsenic (As), boron (B), barium (Ba), chromium (Cr), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), and uranium (U). Arsenic was found above the WHO health-based drinking water guideline in 50% of these tubewells. Mn and B were found at significant concentrations in 19% and 6% of these tubewells, respectively. The maps of As, Mn, and B concentrations suggest that approximately 75% of this area has no safe tubewells. The concentrations of As, Mn, B, and many other toxic elements are independent of each other. The concentrations of Pb and U were not found above WHO health-based drinking water guidelines but they were statistically related to each other (p-value = 0.001). An analysis of selected isotopes in the Uranium, Actinium, and Thorium Radioactive Decay Series revealed the presence of thorium (Th) in 31% of these tubewells. This discovery of Th, which does not have a WHO health-based drinking water guideline, is a potential public health challenge. In sum, the widespread presence and independent distribution of other metals besides As must be taken into consideration for drinking water remediation strategies involving well switching or home-scale water treatment.  相似文献   

2.
The concentrations of 10 metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Se, Zn) were determined in drinking water in Khingan, China, a forest zone after long-term excessive deforestation. These metals’ concentrations in water exceeded background values of metals in some other regions of the world, indicating that there were other metal sources contributing to such high levels of metals in Khingan. Arsenic was the only metal whose concentration exceeded the maximum levels allowed in drinking water. Principal component analysis showed that As, Cd, Cu, and Se originated from anthropogenic sources and exhibited significantly high concentrations in north Khingan, while Fe and Mn derived from natural formation and showed significantly high concentrations in central Khingan. Health risks from metals were evaluated by a model recommended by the U.S. Environmental Protection Agency. Ingestion was the predominant pathway of exposure to metals in water for local residents. Arsenic was also the only metal causing both noncarcinogenic hazard and carcinogenic risk in Khingan. The high risks occurred mainly in north Khingan and are associated with coal combustion. This study indicates that long-term excessive deforestation may increase As concentration considerably in drinking water and then pose health risks to local residents.  相似文献   

3.
The quality of water sources and its potential health implications to adults and children populations of respective major communities in Northern Cross-River was assessed. Water samples (n = 10/water source/site) were collected from three (Okpoma, Okuku and Ugaga) communities and heavy metal concentrations (Lead (Pb), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni), Copper (Cu), Cobalt (Co), and Zinc (Zn)) were evaluated using Atomic Absorption Spectrometer (AAS). Overall, Pb, Cd, Ni, and Co were higher than drinking water guidelines, while only Cr, Mn, Cu, and Zn were within the permissible limits. The estimated average daily intake (EADI) and target hazard quotient (THQ) were used to determine risk implications for adult and children consumer populations. The EADI for Pb in adults for borehole water, Pb and Cr by child consumer population for borehole and shallow well water exceeded the reference dose (RfD) by USEPA. The THQ for adult population were >1 for Pb in borehole water and >1 for Pb and Cr across all sites for the child consumer population. Overall, our findings indicate toxicity and higher hazard risk for both adult (Pb) and children (Pb and Cr) populations that source drinking water from borehole and shallow well water in these communities.  相似文献   

4.
This study evaluated cancer risk and non-cancer human health hazard from exposure to the toxicants such as As, Cu, Pb, Zn, Mn, and CN in water from a southwestern river system in Ghana that drains through gold mining areas, using 108 water samples collected with random sampling techniques and analyzed in accordance with standard methods of chemical analysis outlined by the U.S. Environmental Protection Agency (USEPA). The concentrations of Cu and Zn were within World Health Organization and USEPA guideline values; Mn, free cyanide, As, and Pb values in most cases either exceeded USEPA and WHO values or both. The concentrations of the toxicants were used as input parameters in the cancer and non-cancer study that was conducted in line with USEPA risk assessment guidelines. The results of As cancer health risk revealed higher risk cases in two locations (Potroase and Dominase); non-cancer health risk for As was higher in 10 of the 14 locations, with other metals being of health concern at few locations in the study area. In conclusion, the findings of this study hold several policy implications as residents of mining communities still depend on these water bodies as their source of drinking water.  相似文献   

5.
The concentration of 13 metals (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb, and Hg) and their associated health risk assessment was performed for two Himalayan lakes, urban Phewa and remote Gosainkunda, from Nepal. Water Quality Index (WQI), Metal Index (MI), Hazard Quotient (HQ), Hazard Index, and Cancer Risk were calculated in order to evaluate the water quality of these lakes. Correlation analysis revealed that Mn and Fe were derived from natural geological weathering processes and Pb, V, Cr, Co, Ni, Cu, Zn, and Cd might have originated from anthropogenic sources. The results revealed that WQI of the remote lake fell into excellent water quality and urban lake fell into poor water quality, which is also supported by the MI calculation. Moreover, the HQ of Mn in urban lake showed values greater than unity suggesting its health risk to the local inhabitants. The cancer index values indicated “high” risk due to Cr, whereas Cd possesses “very low” cancer risk on local population residing nearby areas. This study provides the useful database and suggests for the regular assessment and policy formulation for safeguarding the natural water bodies in the region.  相似文献   

6.
This study aimed to assess the drinking water quality and human potential health risk in Peshawar, which is the most populous district of Khyber Pakhtunkhwa Province, Pakistan. Water was randomly collected throughout Peshawar District (urban = 45 samples and rural = 29 samples). These samples were analyzed for heavy metal (As, Cd, Co, Cu, Cr, Hg, Ni, Pb, and Zn) concentrations using the atomic absorption spectrometer (Perkin Elmer, AAS-PEA-700). Heavy metal concentrations in drinking water revealed the highest pollution index (PI) values—17.80, 11.92, 7.50, and 5.70 for the Pb, Cr, Cd, and Ni, respectively. The contaminations of Cd and Pb were significantly higher (p < .05) than their maximum allowable limits set by the World Health Organization. Heavy metal contaminations in drinking water were evaluated for health risk assessment: the chronic risk or hazard quotient (HQ) and cancer risk. Results revealed that HQ values were >1 for the Cd and Pb, suggesting that the exposed human beings could be at chronic risk. Therefore, serious measures such as drinking water treatments and contamination controlling policies are needed to avoid the hazardous effects of toxic heavy metals.  相似文献   

7.
Studies were carried out to assess the influence of nutrients, dissolved oxygen (DO) concentration, and nickel (Ni) on river biofilm development, structure, function, and community composition. Biofilms were cultivated in rotating annular reactors with river water at a DO concentration of 0.5 or 7.5 mg liter(-1), with or without a combination of carbon, nitrogen, and phosphorus (CNP) and with or without Ni at 0.5 mg liter(-1). The effects of Ni were apparent in the elimination of cyanobacterial populations and reduced photosynthetic biomass in the biofilm. Application of lectin-binding analyses indicated changes in exopolymer abundance and a shift in the glycoconjugate makeup of the biofilms, as well as in the response to all treatments. Application of the fluorescent live-dead staining (BacLight Live-Dead staining kit; Molecular Probes, Eugene, Oreg.) indicated an increase in the ratio of live to dead cells under low-oxygen conditions. Nickel treatments had 50 to 75% fewer 'live' cells than their corresponding controls. Nickel at 0.5 mg liter(-1) corresponding to the industrial release rate concentration for nickel resulted in reductions in carbon utilization spectra relative to control and CNP treatments without nickel. In these cases, the presence of nickel eliminated the positive influence of nutrients on the biofilm. Other culture-dependent analyses (plate counts and most probable number) revealed no significant treatment effect on the biofilm communities. In the presence of CNP and at both DO levels, Ni negatively affected denitrification but had no effect on hexadecane mineralization or sulfate reduction. Analysis of total community DNA indicated abundant eubacterial 16S ribosomal DNA (rDNA), whereas Archaea were not detected. Amplification of the alkB gene indicated a positive effect of CNP and a negative effect of Ni. The nirS gene was not detected in samples treated with Ni at 0.5 mg liter(-1), indicating a negative effect on specific populations of bacteria, such as denitrifiers, resulting in a reduction in diversity. Denaturing gradient gel electrophoresis revealed that CNP had a beneficial impact on biofilm bacterial diversity at high DO concentrations, but none at low DO concentrations, and that the negative effect of Ni on diversity was similar at both DO concentrations. Notably, Ni resulted in the appearance of unique bands in 16S rDNA from Ni, DO, and CNP treatments. Sequencing results confirmed that the bands belonged to bacteria originating from freshwater and marine environments or from agricultural soils and industrial effluents. The observations indicate that significant interactions occur between Ni, oxygen, and nutrients and that Ni at 0.5 mg liter(-1) may have significant impacts on river microbial community diversity and function.  相似文献   

8.
This study probes heavy metals (HMs) concentration in groundwater, soil, vegetables, chicken eggs, and buffalo milk samples collected from different land-use types (LUT) with special emphasis on human health risk via their consumption. Our results depicted that HMs (Ni, Cr, Pb, and Cd) concentration in groundwater of all LUT; Cd concentration in agricultural soil; Ni, Cr, Mn, Cd, and Pb concentration in buffalo milk; and Ni, Cd concentration in chicken eggs of all LUT surpassed the recommended permissible limits. While, on the other hand, Cr concentration in industrial and Pb concentration in agricultural LUT also exceeded permissible limits in the case of chicken egg samples. The concentration of Cr, Pb, and Cd in most of the vegetable samples of different LUT also crossed permissible limits. The accumulation factor for selected HMs followed trends for different LUT as Industrial > Agricultural > Residential, showing the transfer of risk from soil to vegetables. Our results for principle component analysis unravel that, unlike residential, industrial, and agricultural, LUT were highly affected from metals contaminations when different environmental matrices were studied. Health risk index (HRI) was chronicled >1 for Cd in groundwater of industrial and residential sites, in the eggs found in the industrial site, and for Pb in groundwater of industrial and agricultural sites due to higher daily intake of metal, while all other HMs revealed HRI < 1 in all LUT.  相似文献   

9.
The object of this study is to analyze the levels of seven toxic elements residues in raw bovine milk in China and assess the potential health risk of those residues. The 178 raw bovine milk samples were collected from eight main milk-producing provinces and from three types of milk stations in China, and were analyzed for arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), mercury (Hg), aluminum (Al), and nickel (Ni) using inductively coupled plasma-mass spectrometry (ICP-MS). Al, Pb, Hg, Ni, Cr, and As were detected in 47.8, 29.2, 28.1, 23.6, 12.4, and 9.0% of total milk samples, respectively, and Cd were not detected in all samples. The raw bovine milk samples with high levels of toxic elements were found in industrial areas, such as Heilongjiang and Shanxi. Nemerow pollution index analysis showed that the levels were lower in the samples from the processing plants than that from the large-scale farms and small farm cooperatives. The margin of exposure (MOE) values suggest that the levels of As, Pb, Hg, Cr, Al, and Ni in the raw milk samples are not causing a health risk for Chinese consumers, including adults and children. Nevertheless, the risk of Pb for infant and young children was more serious than adult.  相似文献   

10.
The present study was performed to assess drinking water quality and potential health risk in the Nowshera District, Khyber Pakhtunkhwa, Pakistan. For this purpose drinking water samples were collected from local available sources and analyzed for physico-chemical characteristics, arsenic (As) and heavy metals. Results revealed high levels of toxic heavy metals such as chromium (Cr), nickel (Ni), lead (Pb), cadmium (Cd), and As contaminations in the drinking water. Results were evaluated for chronic risk including average daily intake (ADI) and hazard quotient (HQ). Among heavy metals the HQ values were highest for Cd (5.80) and As (2.00). Therefore, populations in the study area may be at a low level of chronic toxicity and carcinogenic risk. Statistical analyses showed that contribution of different drinking water sources to the mean contaminant levels in the study area was insignificant (p =.53). Correlation analysis further revealed that anthropogenic activities were the main sources of contamination, rather than geogenic. This study strongly recommends the treatment of urban and industrial wastewater in the vicinity of the study area and provision of safe drinking water.  相似文献   

11.
Abstract

Multielement (48) analysis was carried out of various fish species collected from river Buriganga, the most polluted river in Bangladesh to assess human health risk by toxic elements. Sixteen elements that is, Be, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Pb, Bi, and U, were taken into account due to their toxicities on human health. Results show that concentrations of elements in various fish species were higher in winter than those in monsoon. Among 16 elements, Mn, Cu, Zn, Cd, Ba, Pb were above Food Safety Guideline in some fishes in winter. THQ and TTHQ/HI values were less than 1 for all fishes in monsoon while THQ and TTHW/HI values were more than 1 for most of fishes in winter. These results suggesting non-carcinogenic health hazard through consumption of contaminated fishes. Only As showed low cancer risk while no cancer risk was observed for other toxic elements in monsoon. In winter, Pb showed only moderate cancer risk for Mystus vittatus (site-7) while for other fishes low cancer risk was found by Pb. It can therefore be concluded that there is human health risk in consuming of fishes collected from river Buriganga especially in winter.  相似文献   

12.
Carcinogenic and health hazard causing heavy metals have been increasing in our dietary stuffs due to large amount of industrial effluents being dumped in water bodies that are ultimately used for irrigation purposes. The study was aimed to assess and compare the mean concentrations of heavy metals (Cd, As and Pb) in soil and vegetables irrigated with four different sources (Ground water, river water, domestic sewage water and industrial untreated effluents and domestic waste water receiving drains) for the estimation of carcinogenic and non-carcinogenic health risk associated with them. Prepared samples were analyzed by through ICP-OES. Statistical analysis revealed that domestic sewage water and drains water usage for irrigation purposes leads to high values of Estimated Daily Intake (EDI) of metals through vegetation. To assess the carcinogenic effects values daily intakes, Total hazard quotients (THQs) and Health indexes (HI), while for carcinogenic effects, Total cancer risks (TCR) were determined. The results of present study revealed that the daily intakes of these metals are far less than that of permissible levels but their bio-accumulating behavior produce high risks to human health. The HI values revealed that waste water usage is producing the vegetables of high health risks. In adults, the HI of Phaseolus vulgaris, Spinacia oleracea, Brassica compestris, Raphnus sativus, Daucus carota and Solanum tuberosum assessed as 0.81, 1.52, 1.26, 0.12, 0.22, and 0.15 (ground water irrigation), 0.046, 0.75, 0.51, 0.68, 0.90 0.064 (River Ravi water irrigation), 1.23, 3.34, 4.81, 4.23, 1.41 and 3.43 (domestic sewage irrigation) and 3.04, 5.50, 6.08, 2.50, 5.34 and 5.13 (Drain waste water irrigation), respectively. It was observed that cancer risks of As exceeded the threshold (1 × 10?4) in all i.e. ground river, domestic sewage and drain water grown vegetables, while, Cd and Pb were in permissible range.  相似文献   

13.
This study analysed heavy metals from little egret (Egretta garzetta). Egret’s Eggs, egg shells, food (fish and insects), blood, meat samples (thigh, liver, and chest), water, soil and sediments samples were collected from the two selected sites of the study area. Samples were analysed on flame atomic absorption spectrometer after acid digestion. Detected metals were found almost inline of concentrations when compared with the both sites. Among detected metals Mn was found higher in concentration (µg/g) i.e. 18.509 followed by Zn i.e. 9.383, Ni, Cu, Pb and Cd. Sediment exhibited higher levels (µg/g) of metals (25.061) followed by the meat (19.044) egrets food (18.825), excreta (16.26), blood serums (4.577), eggs (3.626) and water samples (2.432).The level of metals in sediments of the study are showed environmental concerns. Health risks were also investigated that were compared to guidelines of WHO and FAO threshold limits. It was found a marginal health risk to life through detected metals. This study revealed that little egret are good bio-indicator for the screening and investigation of contaminates presence in the environment.  相似文献   

14.
ABSTRACT

High levels of heavy metals in Panax notoginseng (Sanchi), a valued traditional Chinese medicine, have drawn increasing concern regarding the safe usage of Sanchi preparations. Here, we measured the concentrations of six heavy metals in Sanchi samples from 20 major plantations, investigated the pharmaceutical processes and usages of Sanchi preparations, and assessed the associated potential health risks to consumers. The average concentrations of chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), lead (Pb), and arsenic (As) in the Sanchi samples were 2.7, 3.7, 6.2, 22.1, 2.0, and 1.4 mg/kg, respectively. The hazard quotients (HQs) for these six single metals and the hazard index (HI) of these metals’ combination were all far less than 1, indicating the absence of a non-carcinogenic health hazard to consumers. The carcinogenic risk of As was 2.1 × 10?6, which is higher than the allowable level suggested by the U.S. Environmental Protection Agency but less than the level suggested by the World Health Organization (WHO). The probabilities of consumers’ exposure due to daily medicine consumption exceeding the allowable daily intakes from medicine (ADIsdrug, 1% of the ADI) suggested by the WHO were 0.0%, 0.1%, 0.1%, 0.0%, 1.6%, and 27.3% for Cr, Ni, Cu, Zn, Pb, and As, respectively.  相似文献   

15.
The present investigation was carried out to evaluate the levels of metals and metalloids in okra (Abelmoschus esculentus) irrigated with city wastewater. Soil and vegetable samples from two different sites irrigated with wastewater were wet-digested and analyzed. Arsenic (As) was found higher at both sites and Cr was many-fold lower at both sampling sites. Among all heavy metals, Mn and Zn were abundant. Highest value of coefficient factor was found for Cr and the lowest for Cd. The high transfer value was recorded for Cu at site-I and for Ni at site-II. Copper and Se showed negative and significant correlations between soil and vegetable, whereas Mn, Zn, As, Cd, Cr, and Ni showed positive but non-significant correlations. Pollution load index in this vegetable was found to be higher for Cd and lower for Cu. Health risk index at site-I was in the order of As > Mn > Mo > Pb > Cd > Ni > Zn > Se > Fe > Co > Cr > Cu, whereas the same order was observed at site-II of the sampling locations. Thus, the health risks of metals through ingestion of vegetables were of great concern in the study area.  相似文献   

16.
The present study was conducted to estimate As concentration in groundwater and resulting human health risk in terms of chronic daily intake, hazard quotient (HQ), hazard index (HI), and carcinogenic risk (CR) both for oral and dermal exposure to As. Groundwater samples (n = 100) were collected from ten different towns of Lahore District (Pakistan). Arsenic concentration ranged from 2 to 111 µg L?1 in groundwater samples of the study area, which was significantly greater than the safe limit of As (10 µg L?1) in drinking water set by the World Health Organization. Health risk assessment of As showed that HQ (0.1–11) for oral exposure and HI (0.1–11) values also exceeded the typical toxic risk index value of 1. 9.75 × E-05–4.59 × E-03 and 5.89 × E-07–2.77 × E-05 for oral and dermal As exposure, respectively. Both CR and cancer index (CIs) values were higher than United States Environmental Protection Agency limit (10?6), suggesting that people are at high risk of As-induced carcinogenicity from oral and dermal exposure to As in drinking water. It was concluded that As contamination of groundwater causes carcinogenic and noncarcinogenic health effects to the people; therefore, urgent management and remedial actions are required to protect people from As poisoning.  相似文献   

17.
The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), and lead (Pb) were determined in samples of various edible vegetables (artichoke, cauliflower, lettuce, tomato), fruits (apple, mandarin, orange, pear) and rice grown in soils irrigated with water from the Ebro River in Tarragona Province (Catalonia, Spain). Although all food items were randomly acquired in various localities of the area, the local origin was always verified. Arsenic was only detected in rice (all samples) and apple (one sample), while Cd and Hg could not be detected in any of the samples. In general terms, metal concentrations were quite similar or lower than the levels recently reported in the literature. The health risks caused by metal exposure from consuming these agricultural products were assessed for the Catalan population living in the zone under evaluation. For all elements, when the lower bound values were considered, the Hazard Quotient (HQ) was <1, while using the Upper bound values, only for As (children and male seniors) HQ was >1. The intake of the analyzed elements through consumption of the nine selected food items does not mean additional health risks for the consumers of the area.  相似文献   

18.
The Opa Reservoir, established for water supply to the Obafemi Awolowo University community, over the years has received direct linkage to township drains as a result of the widening and dredging of its river channels. The current study aimed at documenting monthly heavy metal loads at its riverine, transition and lacustrine zones in 2012–2013. Most of the heavy metals, analysed using an atomic absorption spectrophotometer, occurred within wide ranges, with coefficients of variation ranging from 60% to 300%, although the differences in heavy metal loads between the different zones were statistically insignificant at both the surface and bottom levels. The overall order of dominance of the metals was Ni > Cu > Fe > Zn > Cd = Cr > Pb, with nickel concentration being very high throughout. Heavy metal total mean concentration was higher during the rainy season (1.889 mg l?1) than the dry season (1.503 mg l?1) irrespective of sampling sites, having highly significant seasonal differences (p < 0.001) in Ni, Cd, Fe and Cu concentrations. The mean concentrations of Zn (0.074 mg l?1), Fe (0.176 mg l?1), Cu (0.507 mg l?1) and Pb (0.004 mg l?1) were within the WHO acceptable limit. However, the recorded levels of toxic elements Cd (0.031 mg l?1) and Ni (0.905 mg l?1) pose potential health risk to water consumers.  相似文献   

19.
Ganga is the largest riverine system of India with a fragile ecosystem. Its prone to anthropogenic disturbances because of its cultural, economic and environmental values. The contamination of river Ganga by heavy metals (HM) is due to biotic (anthropogenic sources) and abiotic (pesticides, fertilizers) sources that poses a devastating health hazard to human, plant and edible fish life. The chemical analysis with the help of atomic absorption spectrometer performed on its water samples demonstrated the accumulation of heavy metals such as Arsenic (As), Lead (Pb), Cadmium (Cd), Iron (Fe), Zinc (Zn). Moreover, the spectrophotometric analysis indicated clearly the accumulation of heavy metals in order of occurrence (Fe > As > Cd > Zn > Pb) in liver and (Zn > Fe > As > Cd > Pb) in kidney of edible fish Channa punctatus. The present study has be used to sensitively monitor the extent of heavy metals pollution in the biotic aqua life of river Ramganga system and its suggested that the bioaccumulation of heavy metal in Channa punctatus has reached above permissible limits for human consumption, indicating potential health risks. Necessary biological steps should be taken to handle such food pollution and prevent the environmental risk and food chain disruption.  相似文献   

20.
Studies were carried out to assess the influence of nutrients, dissolved oxygen (DO) concentration, and nickel (Ni) on river biofilm development, structure, function, and community composition. Biofilms were cultivated in rotating annular reactors with river water at a DO concentration of 0.5 or 7.5 mg liter−1, with or without a combination of carbon, nitrogen, and phosphorus (CNP) and with or without Ni at 0.5 mg liter−1. The effects of Ni were apparent in the elimination of cyanobacterial populations and reduced photosynthetic biomass in the biofilm. Application of lectin-binding analyses indicated changes in exopolymer abundance and a shift in the glycoconjugate makeup of the biofilms, as well as in the response to all treatments. Application of the fluorescent live-dead staining (BacLight Live-Dead staining kit; Molecular Probes, Eugene, Oreg.) indicated an increase in the ratio of live to dead cells under low-oxygen conditions. Nickel treatments had 50 to 75% fewer ‘live’ cells than their corresponding controls. Nickel at 0.5 mg liter−1 corresponding to the industrial release rate concentration for nickel resulted in reductions in carbon utilization spectra relative to control and CNP treatments without nickel. In these cases, the presence of nickel eliminated the positive influence of nutrients on the biofilm. Other culture-dependent analyses (plate counts and most probable number) revealed no significant treatment effect on the biofilm communities. In the presence of CNP and at both DO levels, Ni negatively affected denitrification but had no effect on hexadecane mineralization or sulfate reduction. Analysis of total community DNA indicated abundant eubacterial 16S ribosomal DNA (rDNA), whereas Archaea were not detected. Amplification of the alkB gene indicated a positive effect of CNP and a negative effect of Ni. The nirS gene was not detected in samples treated with Ni at 0.5 mg liter−1, indicating a negative effect on specific populations of bacteria, such as denitrifiers, resulting in a reduction in diversity. Denaturing gradient gel electrophoresis revealed that CNP had a beneficial impact on biofilm bacterial diversity at high DO concentrations, but none at low DO concentrations, and that the negative effect of Ni on diversity was similar at both DO concentrations. Notably, Ni resulted in the appearance of unique bands in 16S rDNA from Ni, DO, and CNP treatments. Sequencing results confirmed that the bands belonged to bacteria originating from freshwater and marine environments or from agricultural soils and industrial effluents. The observations indicate that significant interactions occur between Ni, oxygen, and nutrients and that Ni at 0.5 mg liter−1 may have significant impacts on river microbial community diversity and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号