首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The present study was carried out to evaluate the nitrate contamination in groundwater and ascertain the associated health risks to rural populations in the agricultural area of the Kadava River basin. A total of (80) eighty representative samples from rural habitat located in agricultural fields were collected during pre- and postmonsoon seasons of 2011, which are mainly used for drinking and irrigation. The chemical results confirm that, 52.5 and 65% groundwater samples from pre- and postmonsoon season are unfit for drinking because of high nitrate contents exceeding the limit of nitrate (>45?mg L?1) recommended by the BIS. The oral and dermal exposure pathways were calculated for different age group based on US EPA and ICMR standards. HQ1 is much higher than the critical limit of 1 which increases the risk from 92.5 to 95% groundwater samples, while value of HQ2 is far below to the critical value of 1; hence, all age groups free from risk. THQ values depicts that, children were at greater risk followed by infants and adults. Therefore, it is immensely important to regulate the use of nitrogen complex fertilizer and groundwater management practices should be implemented to prevent the associated risks to human health.  相似文献   

2.
Groundwater is a vital source of drinking water in Siddipet rural and urban regions of Central Telangana, South India and it is a major cause of fluoride toxicity in humans. The intake of elevated fluoride has a significant impact on human health, especially immediate problems that are seen in children's teeth. The primary aim of the study was to identify the seasonal variation in fluoride concentration and associated health risks in the residents of the study region. To assess the fluoride contamination in groundwater, a total of 158 samples were analyzed in two seasons. The mean concentrations of fluoride 1.26 mg/L and 2.21 mg/L were 1.46 and 2.8 times higher than the acceptable limit of 1.5 mg/L, before and after monsoon respectively. To estimate the human health risks due to the ingestion of elevated fluoride through drinking water, hazard quotient fluoride (HQFluoride) was calculated using the United States Environmental Protection Agency method. HQFluoride values were 0.44–2.44 and 0.89–4.67 for children, 0.36–2.00 and 0.73–3.82 for females, and 0.41–2.26 and 0.82–4.31 for males in pre- and post-monsoon seasons respectively, suggesting emphatically greater risk than the acceptable limits (HQFluoride > 1), which generates health risks.  相似文献   

3.
Access to safe and clean drinking water is an essential element of healthy life also known as the primary human needs. The present study was conducted to investigate heavy metal (HM) concentrations of drinking water. Excess health risk of HM (Cr, Pb, and Cd) intake is related to the drinking water consumption in local population. HMs concentrations were analyzed by using graphite furnace atomic absorption spectrometer and were compared with permissible limits regulated by country and World Health Organization (WHO). The hazard quotient (HQ) and Excess Lifetime Cancer Risk (ELCR) were determined to show the carcinogenic and non-carcinogenic effects of HMs, respectively. HQs were found in the order of Pb > Cd > Cr and subsequently HI index was also estimated for all HM in two age groups (children and adults). The comparisons indicate no possibility of non-carcinogenic effects to the local population. The values for ELCR were found in the order of Cr > Cd > Pb. The ELCR index was found above acceptable risk levels for chromium and cadmium in both children and adults groups. Furthermore, intermetal correlation results revealed that heavy metals have common sources resulting from geogenic and anthropogenic activities and these are major sources of water contamination in Sistan and Baluchestan province.  相似文献   

4.
The present study aimed at identifying the fluoride-endemic areas in five different blocks in Agra district, Uttar Pradesh, India. A total of 365 groundwater samples from 73 villages were analyzed for establishing the concentration range of fluoride in drinking water. The fluoride level in the study area varied from 0.14 to 4.88 mg/L. Out of 73, the fluoride levels in 45 villages did not meet the permissible Word Health Organization standards. The Baroli Ahir block was found the highly fluoride-endemic area followed by Saiyan, Bichpuri, Achnera and Etmadpur. Chronic daily intake of fluoride in adults was 1.25 and 1.5 times higher than those in children and infants, respectively. The probability of dental fluorosis in infants was higher (42%) while adults were more prone to bone and skeletal fluorosis (60%). The hazard quotient analysis revealed that children were found to be at maximum risk followed by infants and adults. Sensitivity analysis revealed that the fluoride concentration is the major influencing parameter responsible for different types of fluorosis in various age groups.  相似文献   

5.
This study aimed to determine bioavailability of heavy metal concentrations (Al, Fe, Zn, Cu, Co, Cd, Pb and Cr) in 76 urban surface soil samples of Klang district (Malaysia). This study also aimed to determine health risks posed by bioavailability of heavy metals in urban soil on adults and children. For bioavailability of heavy metal concentrations, a physiologically bioavailability extraction test in vitro digestion model was used. Mean values of bioavailability heavy metal concentrations for this study were found to be the highest in Al (25.44 mg/kg) and lowest in Cr (0.10 mg/kg). Results of Spearman correlation coefficient (r) values showed significant correlations were observed for Al-Fe (r = 0.681), Cd-Co (r = 0.495), Cu-Zn (r = 0.232), Fe-Pb (r = 0.260), Fe-Zn (r = 0.239). For cluster analysis, output showed that these heavy metals could be classified into four clusters: Cluster 1 consisted of Cd, Cr, Co, and Pb; Cluster 2 consisted of Zn and Cu; Cluster 3 consisted of Fe; and Cluster 4 consisted of Al. For Clusters 1 and 2, anthropogenic sources were believed to be the sources, while for Clusters 3 and 4 the heavy metals originated from natural sources. Health risks were determined in adults and children through health risk assessment. For adults, Hazard Quotient (HQ) value was <1, indicating no non-carcinogenic risk, while for children, the HQ value was >1, indicating a non-carcinogenic risk. Meanwhile, for carcinogenic risk, heavy metal contamination in the Klang district might not pose a carcinogenic risk to adults while it may pose a carcinogenic risk to children because TR values in this study were >1.0E-04 for children. Output has identified the general health risk in the Klang district. Moreover, this study's findings will contribute to fill in the gap of knowledge on heavy metals' impacts on human health and urban development in the Klang District.  相似文献   

6.
The purpose of this study was to determine the contamination level, distribution, health risk and potential sources of Cr, Cd, Pb, Zn, Cu, Ni and As in 66 topsoil samples from industrial areas in Bandar Abbas County. The geoaccumulation index, pollution index and pollution load index were calculated to assess the pollution level in the industrial soils. The hazard index and carcinogenic risk were used to assess human health risk of heavy metals. Results showed that the contamination levels of heavy metals were in the descending order of Cu> Cd> Pb> Zn> As> Ni> Cr. Moreover, based on principal component analysis, Cd, Zn, Cu, and Pb originated mainly from anthropogenic sources, including power plants, oil and gas refinery, steel and zinc production factories and municipal waste landfills. For non-carcinogenic effects, hazard index of studied metals decreased in the order of Cr> As> Cd> Pb> Ni > Cu> Zn. Arsenic, chromium and cadmium were regarded as the priority pollutants. Carcinogenic risks due to Cd and As in suburban soils were within tolerable risk to human health; however, children faced more health risk in their daily life than adults via their unconscious ingestion and dermal contact pathway.  相似文献   

7.
The main aim of this study was to assess the groundwater quality and human health risks of fluoride and nitrate contamination in Nirmal Province, South India, where groundwater is the primary source for drinking water. Hazard quotient (HQ) and total hazard index (THI) were calculated to estimate the non-carcinogenic risk to men, women, and children using the most substantial method recommended by United States Environmental Protection Agency (USEPA). The results of the study reveal that 26% and 20.59% of groundwater samples have significantly high nitrate and fluoride concentrations, exceeding the maximum permissible limits set by Bureau of Indian Standards (45 mg/L and 1.5 mg/L, respectively). Therefore, ingestion of high fluoride and nitrate water could be the chief reason for health risk in the study region. The total non-carcinogenic health risks for men, women, and children ranged from 2.95E?01 to 4.07E+00, 3.49E?01 to 4.80E+00, and 3.99E?01 to 5.50E+00, respectively. Moreover, 67.65%, 79.41%, and 82.35% of the total collected groundwater samples exceeded the permissible limit for acceptable total health index (THI = 1) for men, women, and children, respectively. Therefore, the health risk assessment suggests that children face higher health risk than men and women in the study region.  相似文献   

8.
Abstract

Shallow groundwater contaminated with nitrates may result in human health risks. Groundwater quality in the Beni Amir irrigation perimeter in Tadla plain, Morocco, is influenced by agriculture and farming-related activities. This study was carried out to assess the nitrate contamination of groundwater for drinking purposes by comparing it to Moroccan and WHO guidelines, and by estimating the potential human health effect of nitrates using the model recommended by the USEPA. The results showed that the nitrate content of groundwater fall between 0 and 82.08?mg L?1 (mean 24.73?mg L?1), with 38.10% of groundwater samples exceed the Moroccan and WHO limits for drinking. Groundwater nitrates mainly originated from intensive agricultural practices. The health effects of oral exposure to nitrate are higher than those of dermal exposure. For non-carcinogenic risks, 57.14% of samples showed hazard index (HI) values >1, indicating potential risks. The non-carcinogenic risk for infant and female are higher than that for females and males. The results of this study will offer a health risk reference for local residents and can help to propose suitable management ensuring safe drinking water.  相似文献   

9.
This study was aimed to examine the risk of chronic arsenic (As) exposure for the residents living in Nui Phao, Thai Nguyen in the northern Vietnam. Groundwater, vegetables, human hair, and nail samples were collected from volunteers living in Nui Phao. The results revealed that 75% of the groundwater samples had As exceeding the World Health Organization (WHO) drinking water guideline of 10 µg L?1. The result of As concentration for most of the vegetable samples was greater than the WHO/FAO safe (0.1?mg kg?1). The result of hair and nail samples in this study showed that 3.5 and 20% of the samples had As concentration exceeding the level of As toxicity in hair and nails, respectively. The result of health risks indicated that the potential health risk of As contamination is greater for groundwater than vegetables. The total hazard quotient (HQ) value through vegetables ingestion and drinking water exceeded 1.0 suggesting potential health risk for local residents. The calculation of potential carcinogenic risk through both consumption of vegetables and drinking water was low cancer risk in adults. Other food sources and the exposure pathways are needed to exactly assess health risks in this area.  相似文献   

10.
To understand the mercury (Hg) pollution characteristics and health risks in indoor and outdoor dust of Huainan residential areas, 122 dust samples were collected indoors and outdoors. Average Hg contents in indoor and outdoor dusts of Huainan city were 0.321 ± 0.724 (n = 61) and 0.072 ± 0.163 (n = 61) mg/kg respectively. The average Hg content in indoor dust was characterized by PJ (Panji district) > XJJ (Xiejiaji district) > DT (Datong district) > TJA (Tianjiaan district), and in the order of PJ > DT > XJJ >TJA in outdoor dust. According to enrichment factor and geo-accumulation index, the enrichment degree and pollution intensity for Hg are ranked as “very high enrichment” and “heavily polluted” in indoor dust, and “significant enrichment” and “moderately polluted” in outdoor dust Hg concentrations in indoor dust were highly significantly associated with the coal combustion and frequency of open windows, and Hg concentrations in outdoor dust were significantly associated with the coal combustion and traffic density. The inhalation of Hg vapor is the main route of Hg exposure to adult and children. The hazard risks of Hg for different exposure ways in indoor and outdoor dust were more risk for children than for adults, but have no obvious health risk for them.  相似文献   

11.
To evaluate the potential health hazards caused by extensive vanadium–titanium magnetite mining, bioavailability and bioaccessibility of metals were assessed in the pluralistic mining–agriculture–residential city of Panzhihua, China. Intensive mining and related heavy traffic may have contributed to Ni, Cr, and Zn contamination and Mn and V accumulation in soils and road dusts. The metal bioavailability estimated by water extraction was significantly lower than metal bioaccessibility on the basis of the simple bioaccessibility extraction test. The bioaccessible metal concentrations were significantly and positively correlated with soil/dust total metal concentrations (p < .05). However, bioavailable metal concentrations exhibited no relationship with total metal concentrations except for V. The bioaccessibility of metals significantly varied and exhibited the following order: Pb > Zn > Mn > Ni > V > Cr. Health risk assessment indicated that the carcinogenic and non-carcinogenic risks posed by these metals were at an acceptable level, but Cr in soils of the mining area and V in surface soils along the Jinsha River were close to the safe level for children. Therefore, the potential health risk attributed to the exposure of children to metals in surface soils and road dusts in such areas should not be overlooked.  相似文献   

12.
High and low levels of fluoride in drinking waters have been considered as a major public health issue in recent years. This cross-sectional study was conducted over five consecutive years (from 2012 to 2016) in the water distribution network of Mashhad city, Iran with the objectives of determining levels of fluoride and to perform health risk assessment among residents in the study area. Water samples were taken from 30 stations and were analyzed using UV-visible spectrophotometer. The mean annual concentrations of fluoride in all stations during five years of consecutive study were lower than the respective maximum permissible limits (1.5 mg/L) in water as regulated by the WHO. The human health risk assessment was performed by calculating the chronic daily intake and hazard quotient (HQ) of fluoride through human oral intake for adults (men and women) and children for each year during a five-year study. Health risk analysis in this study presented that the non-carcinogenic risk associated with fluoride exposure through drinking water in Mashhad was mostly acceptable because the mean HQ values of fluoride were lower than 1.  相似文献   

13.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

14.
黑龙江省农村饮用水水质健康风险评价   总被引:2,自引:0,他引:2       下载免费PDF全文
本文以黑龙江省农村饮用水为研究对象,调研分析了该地区农村饮用水水质状况和水质问题,筛查出三种可能造成人体健康风险的典型污染物:砷,氟化物,硝酸盐。在此基础上,选用了USEPA推荐的水质风险健康评价模型对三种污染进行了健康风险评价,评价结果表明砷的健康风险值大于最大可接受限值10-(6a-1),存在较大人体健康风险,氟化物和亚硝酸盐人体健康风险较小。此外,根据水质健康风险评价结果,对保障黑龙江省农村饮用水实质安全提出了初步解决措施。  相似文献   

15.
The spatial and vertical distributions of heavy metals were quantitatively determined for organic-rich agricultural soils in the Southwestern Nile Delta. This study aims to undertake an assessment of heavy metals contamination in the soils of Quessna district using the inductively coupled plasma-optical emission spectroscopy, remote sensing, and geographic information system techniques. In this study, 24 soil samples were collected at 12 sites representing the main suburbs in the Quessna district. The concentrations of the studied metals decreased in the order of Zn > Cr > Pb > Cu > Ni > Co. The contamination degree and ecological risk assessment for metals in soil samples were evaluated using the enrichment factor, geoaccumulation index, improved Nemerow's pollution index, Pollution load index, and potential ecological risk index. The spatial and vertical distribution of heavy metals concentrations were affected by soil properties such as clay and organic matter content and scavenger metals (Fe and Mn). The intensive urbanization, industrial activity, and agricultural practices are thought to be the main anthropogenic sources of heavy metals contamination. Further studies especially human health risk assessment are recommended to investigate possible risks for humans from heavy metals in this area.  相似文献   

16.
Abstract

Heavy metals are toxic in nature, and their contamination in foodstuff is a matter of concern for human health. The present study was conducted to assess the concentrations of chromium, nickel, copper, arsenic, cadmium, and lead in rice and vegetables and their possible human health risks in Tangail district, Bangladesh. Metals were measured by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion system. The average values of Cr, Ni, Cu, As, Cd, and Pb in rice and vegetables were 16.26, 16.11, 13.99, 2.28, 1.86, and 7.93?mg/kg, respectively. The average metal concentration in rice and vegetable species was in the decreasing order of okra?>?chili?>?bitter gourd?>?papaya?>?brinjal?>?bean?>?bottle gourd?>?rice?>?cucumber?>?sponge gourd?>?Indian spinach. The estimated daily intake (EDI) values of all the metals except Cu were higher than the maximum tolerable daily intake (MTDI). The target hazard quotients (THQs) values of Ni, Cu, As, Cd, and Pb exceeded the threshold value of 1 through consumption of rice and vegetables, indicating significant health risks to both adult and children. The target carcinogenic risk (TR) of As and Pb through consumption of rice and vegetables was higher than the USEPA threshold level (10?4). From the health point of view, this study clearly revealed that consumption of these contaminated rice and vegetables definitely poses carcinogenic and non-carcinogenic risks.  相似文献   

17.
The concentration of fluoride and nitrate in groundwater is usually higher than that of surface water. The main objective of this study was to estimate the health-risk assessment associated with fluoride, nitrate, and nitrite in drinking water in Sanandaj and its villages. The number of samples in the Sanandaj and its rural was 106. The average concentration of fluoride in urban and rural drinking water was 0.22 mg/l and 0.27 mg/l, respectively. Fluoride concentration was also close to urban and rural drinking water. The concentration of nitrate in urban and rural drinking water was in the range between 0.28–27.77 mg/l and 1.28–80 mg/l, respectively. The concentration of nitrate reported in rural samples was higher than that of urban samples. The maximum concentration of nitrate reported in this study was 80 mg/l. The mean CDI for nitrate in the men, women, and children was 0.4258, 0.5110, and 1.1454, respectively. The findings of this study indicated that all three groups studied were exposed to nitrate contact hazards (HQ > 1). Therefore, the HQ in each of the three groups was higher than 1, which should be carefully monitored and necessary measures should be performed.  相似文献   

18.
Heavy metal speciation and the associated ecological risks were investigated, using a European Community Bureau of Reference sequential extraction procedure, in sediments from the residential, mixed (residential and industrial), and agricultural areas of rural rivers in southern Jiangsu Province, China. Compared with the background values in Jiangsu Province soils, Cd was the metal with the highest contamination level, especially in the mixed area, followed by Cu and Zn. In the sediment samples from the agricultural area, the heavy metal concentrations were no more than two times greater than the background values. There were higher proportions of Cd in the acid-soluble fraction, Cr in the residual fraction, and Pb in the reducible fraction in the three areas. The heavy metal mobility was mainly controlled by the acid-soluble and reducible fractions. Cd could pose extremely high risks to the environment. In addition, the risks of heavy metal to the environment in the three areas followed the order: mixed area > residential area > agricultural area. Furthermore, a risk assessment code analysis showed that most of the sediment samples were classified as being of high to very high risk in the residential and mixed areas because of their Cd, Ni, and Zn concentrations. Heavy metal pollution in the residential and mixed areas is generally serious, and immediate remediation measures need to be taken.  相似文献   

19.
Due to rapid industrialization and urbanization, human activities like industrial and agricultural production, transportation, aggravate heavy metal pollution in soil and continue to endanger vegetables and human health. In this study, three contaminated areas affected by heavy metal pollution in Guangdong Province were investigated in terms of Cu, Zn, Pb, and Cd concentrations in soil and vegetables. Further analyses of the contamination status and potential risks to the health of residents consuming these vegetables were conducted. Results showed the following average heavy metal concentrations in vegetables and soil: Shaoguan > Guangzhou > Dongguan, indicating that mining has caused massive soil-heavy metal pollution. The heavy metal concentrations and Bioconcentration factors (BCFs) showed the following trend: leaf-vegetables > fruit-vegetables > root-vegetables, and those of vegetable type were as follows: Cd > Zn > Cu > Pb. The Nemero pollution index (PI) of all research region soils and hazard index (HI) exceeded 1. Hence, more attention should be paid to the potential for adverse health effects caused by the consumption of vegetables produced in these sites . Thus, effective measures are encouraged, with a focus on children due to their vulnerability to these heavy metals.  相似文献   

20.
Abstract

The principal objectives of this study were to evaluate groundwater quality and human health risks of fluoride contamination in Shasler Vagu (SV) watershed of Nalgonda district, India. For this purpose, 107 groundwater samples were collected and analyzed various physcio-chemical parameters including fluoride, and Gibbs diagrams, Hill–Piper trilinear diagram, and groundwater quality index (GWQI) were applied to understand the groundwater chemistry and its suitability for drinking purpose. In addition to this, non-carcinogenic health risks of high fluoride intake were also evaluated using the US Environmental Protection Agency model for adults and children in the study region. Groundwater chemistry is mainly controlled by HCO3?-Ca2+-Mg2+ and Na+-HCO3? type, and rock weathering. Assessment of GWQI indicates that 76% of groundwater sources in the study region have poor quality for drinking uses. Results reveal that fluoride concentration ranged from 1.4 to 5.9?mg/L in the groundwater samples, which was significantly higher than the recommended limit of 1.5?mg/L for drinking uses. Results of hazard quotient (HQ) estimates are in the ranges of 0.90–3.78 and 1.21–5.11 in adults and children populations of the study region, respectively. About 98% of adults and 100% of children population of SV watershed are at very high risks of chronic toxicity by excess fluoride intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号