共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF) and prostaglandins (PGs) have been implicated in the regulation of a number of developmental processes in the mammalian embryonic palate. Normal palatal ontogenesis is dependent on the presence and quite possibly on the interaction of various hormones and growth factors. The interaction between EGF and PGs in regulation of murine embryonic palate mesenchymal (MEPM) cell growth and differentiation was therefore investigated by monitoring the activity of ornithine decarboxylase (ODC), the principle and rate limiting enzyme of polyamine biosynthesis. ODC activity is tightly coupled to the proliferative and differentiative state of eukaryotic cells and therefore serves as a reliable indicator of such cellular functions. Treatment of confluent cultures of MEPM cells with EGF (1-50 ng/ml) resulted in a dose-related increase in ODC activity, while similar treatment with either PGE2 or PGF2 alpha (at concentrations up to 1 microM) did not elicit a dose-dependent increase in enzyme activity. Concurrent treatment of MEPM cells with EGF (20 ng/ml) and either PGE2 or PGF2 alpha (0.1-10000 nM) resulted in a marked prostaglandin dose-dependent induction of ODC activity, suggesting a strong cooperative interaction between these factors. ODC activity was maximal by 4 to 8 hr and could be completely inhibited by preincubation of the cells with actinomycin D or cycloheximide, indicating that de novo synthesis of RNA and protein is necessary for enzyme induction. Stimulation of ODC activity by EGF and PGE2 in these cells was not positively correlated with the level of cellular DNA synthesis but did result in a ninefold increase in the synthesis of extracellular glycosaminoglycans (GAGs), a key macromolecular family implicated in palatal morphogenesis. Stimulation of GAG synthesis was significantly inhibited by the administration of 5 mM DFMO (an irreversible inhibitor of ODC), indicating that the marked increase in GAG production was dependent, in part, on the induction of ODC activity by EGF and PGE2. Qualitative analysis of the palatal GAGs indicated that synthesis of several major classes of GAGs was stimulated. Collectively these data demonstrate a cooperative interaction between EGF and PGs in the induction of ODC activity. Such activity may serve to regulate the synthesis of GAGs, which are instrumental in mammalian palatal ontogenesis. 相似文献
2.
R M Greene M R Lloyd J Jones 《Journal of craniofacial genetics and developmental biology》1985,5(4):373-384
During embryonic development, facial and palate mesenchymal cells exhibit differential growth rates. Normal palatal growth is regulated in part by hormones and growth factors. Because hormonal responsiveness of some cells correlates with their cell density, we have investigated the relationship between embryonic palate mesenchymal cell population density and their ability to synthesize prostaglandins (PGs) and cyclic AMP. Primary cultures of palate mesenchymal cells exhibited typical lag, log, and stationary phases of growth with a doubling time of 32-34 hrs. The ability of cells to produce PGE2 in response to a calcium ionophore (A23187), an activator of phospholipase A2 (melittin), arachidonic acid, or serum was maximal during the period of early exponential growth. Prostaglandin F2 alpha synthesis in response to A23187 or arachidonic acid showed a similar transient increase also corresponding temporally to the period of early exponential growth. The ability to synthesize PGF2 alpha in response to melittin, however, failed to diminish after early exponential growth. The pattern of cAMP synthesis in response to isoproterenol and PGE1 was different from that seen for induced prostaglandin synthesis. A transient increase in sensitivity to isoproterenol and PGE1 was seen that corresponded temporally to the period of late exponential growth just prior to attainment of confluency. Decreased sensitivity to stimulation of either prostaglandin or cAMP production as the cells became confluent was shown to be a density-dependent phenomenon; confluent cultures that were subcultured to reestablish logarithmic growth exhibited density-dependent hormonal responses identical to those seen in primary cultures. The ability of palate mesenchymal cells to synthesize both prostaglandins and cAMP, thought to be critical for proper palatal development, might thus be related to local differential craniofacial growth rates. 相似文献
3.
We have been investigating the hypothesis that prostaglandins including prostaglandin E2 (PGE2) produced during the critical condensation phase of limb chondrogenesis are involved in the regulation of cartilage differentiation by acting as local modulators of cyclic AMP (cAMP) accumulation. The purpose of the present study was to determine directly whether PGE2 and other prostanoids which had previously been shown to stimulate in vitro chondrogenic differentiation do indeed elevate the cAMP content of limb mesenchymal cells, and to determine whether the ability of various prostanoids to increase cAMP production by these cells directly reflects the potencies of these same molecules in stimulating chondrogenesis. We have found that PGE2 does indeed elicit a striking elevation in the cAMP content of subridge mesenchymal cells, indicating that the cells possess adenylate cyclase-coupled receptors for this molecule. The effect of PGE2 on cAMP accumulation is potentiated by a phosphodiesterase inhibitor, thus paralleling the potentiating effect phosphodiesterase inhibitors have on PGE2-stimulated in vitro chondrogenesis. The effect of PGE2 on cAMP content is dose-dependent with a 3-fold increase seen at 10(-8)M, which is the lowest concentration at which PGE2 effectively stimulates chondrogenesis. PGE1, which is just as effective as PGE2 in stimulating chondrogenesis, is just as effective as PGE2 in stimulating cAMP accumulation. PGA1, which is a much less effective stimulator of chondrogenesis than PGE2 or PGE1, is less than half as potent as these molecules in elevating cAMP levels. PGF1 alpha, 6-keto PGF1 alpha, and thromboxane B2, which have little or no effect on chondrogenesis, have little or no effect on cAMP content.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
5.
Influence of epidermal growth factor and cyclic AMP on growth and differentiation of palatal epithelial cells in culture 总被引:3,自引:0,他引:3
A serum-free, hormonally defined medium was developed which supports growth and differentiation in primary culture of epithelial cells from prefusion embryonic mouse palatal shelves. Using this culture system, medial epithelial programmed cell death was investigated. In the absence of EGF, medial epithelial cells undergo cell death and detach from the substratum by 24 hr of culture. The addition of EGF alone or in combination with various agents which increase intracellular cyclic AMP levels prevented medial epithelial cell death in both cell and organ culture. EGF appeared to exert its most dramatic effect in cell culture on growth and differentiation of the squamous oral epithelial cells. In addition, EGF and agents such as 8-bromo-cyclic AMP, dibutyryl cyclic AMP, or cholera toxin synergistically stimulated the appearance of a long-lived, rapidly proliferating cell type by Day 4 of culture. Our results suggest that both EGF and cyclic AMP together may be important in regulating proliferation of embryonic palatal epithelial cells. 相似文献
6.
Zhou B Li F Chen H Song J 《The international journal of biochemistry & cell biology》2005,37(7):1483-1495
Adenosine 3',5'-cyclic monophosphate (cAMP) and transforming growth factor-beta are important regulators of many biological processes. In this study we investigated the effect and its potential mechanism of cAMP on transforming growth factor-beta1- and serum deprivation-induced apoptosis in Mv1Lu cells. Transforming growth factor-beta1 treatment or serum deprivation induces apoptotic response in Mv1Lu cells. Forskolin, a cAMP-elevating agent, or 8-Bromo-cAMP (8-B-cAMP), a cell permeable cAMP analogue, inhibited the cell proliferation and markedly enhanced apoptosis induced by transforming growth factor-beta1, but completely suppressed serum deprivation-induced apoptosis. Furthermore, forskolin decreased the Akt phosphorylation, and the inhibition of phosphatidylinositol-3 kinase by LY294002 sensitized Mv1Lu cells to transforming growth factor-beta1-induced apoptosis. In addition, forskolin treatment induced tyrosine phosphorylation of epidermal growth factor receptor. Inhibition of epidermal growth factor receptor by specific inhibitor PD153035 blocked the cAMP-mediated suppression of serum deprivation-induced apoptosis. The results indicate that cAMP exerts its opposite effects in transforming growth factor-beta1- and serum deprivation-induced apoptosis via a mechanism involving the modulation of signaling components of phosphatidylinositol-3-kinase/Akt and epidermal growth factor receptor in Mv1Lu cells. 相似文献
7.
8.
S Arakawa S Isobe H Mori A Kambegawa R Kan S Okinaga K Arai 《Endocrinologia japonica》1990,37(4):479-487
It is reported that steroid synthesis in ovarian cells is affected by epidermal growth factor (EGF). We cultured luteal cells from pregnant rats for 2 days with or without EGF, followed by incubation of the cells with or without stimulants (hCG, forskolin and dibutyryl cyclic AMP) for 5 hours. The levels of progesterone, 20 alpha-hydroxy-pregn-4-en-3-one (20 alpha-dihydroprogesterone) and cyclic AMP (cAMP) in the media were assayed. EGF had no effect on the basal levels of progesterone, 20 alpha-dihydroprogesterone and cAMP, but it suppressed these levels which were increased by the stimulants. We investigated binding capacity of [125I]-EGF to ovarian tissue of pregnant rats. Ovarian tissue had specific binding sites for EGF. The maximum number of binding sites was 2.38 fmol/mg tissue and the Kd value was 0.547 nM. It was indicated that EGF modified the reactivity of luteal cells to stimulants; counteracting the tropic effect of gonadotropins. It was shown that this effect of EGF might be exerted through its receptor in luteal cells. 相似文献
9.
10.
Development of the mammalian embryonic palate depends on the precise temporal and spatial regulation of growth. The factors and mechanisms underlying differential growth patterns in the palate remain elusive. Utilizing quiescent populations of murine embryonic palate mesenchymal (MEPM) cells in vitro, we have begun to investigate hormonal regulation of palatal cell proliferation. MEPM cells in culture were rendered quiescent by 48 hr serum deprivation and were subsequently released from growth arrest by readdition of medium containing 10% (v/v) serum. The progression of cells into S-phase of the cell cycle was monitored by autoradiographic analysis of tritiated thymidine incorporation. Palate mesenchymal cell entry into S-phase was preceded by a 6- to 8-hr prereplicative lag period, after which time DNA synthesis increased and cells reached a maximum labeling index by 22 hr. Addition of 10 microM isoproterenol to cell cultures at the time of release from growth arrest lengthened the prereplicative lag period and delayed cellular entry into S-phase by an additional 2 to 4 hr. The rate of cellular progression through S-phase remained unaltered. The inhibitory effect of isoproterenol on the initiation of MEPM cell DNA synthesis was abolished by pretreatment of cells with propranolol at a concentration (100 microM) that prevented isoproterenol-induced elevations of cAMP. Addition of PGE2 to cell cultures, at a concentration that markedly stimulates cAMP formation, mimicked the inhibitory effect of isoproterenol on cellular progression into S-phase. These findings demonstrate the ability of the beta-adrenergic catecholamine isoproterenol to modulate MEPM cell proliferation in vitro via a receptor-mediated mechanism and raise the possibility that the delayed initiation of DNA synthesis in these cells is a cAMP-dependent phenomenon. 相似文献
11.
Epidermal growth factor (EGF) induces fibronectin (FN) and FN mRNA in rat liver epithelial cells, under conditions where the factor also induces the cells to migrate. Newly synthesized protein is secreted into the medium and deposited as substratum-bound extracellular matrix. The levels of mRNA and the amount of protein synthesized are not influenced by cyclic AMP or dexamethasone, factors that have been found to modulate FN expression in other cells. However, the cells are sensitive to the factors, suggesting a cell-specific regulation. The EGF-induced RNA contains the sequences EIIIA and EIIIB characteristic of cellular fibronectin. 相似文献
12.
Cell signalling in the developing mammalian palate appears to involve various growth factors and hormones. An important developmental role for the transforming growth factor-beta (TGF-beta) class of growth factors is suggested by the immunolocalization of TGF-beta 1 in the palate during its ontogeny. This study examined the effects of TGF-beta stimulation of, as well as TGF-beta receptor profiles in, murine embryonic palate mesenchymal (MEPM) and human embryonic palate mesenchymal (HEPM) cells. Results showed that TGF-beta 1 (1 ng/ml) stimulated proliferation of HEPM cells and inhibited proliferation of MEPM cells in a dose-dependent manner. The time course of 125I-TGF-beta 1 binding to specific receptors was determined by incubating cells in the presence of 170 pM 125I-TGF-beta 1 for up to 4 h. In both cell types, at 37 degrees C, the binding of 125I-TGF-beta decreased linearly over 4 h, while at 4 degrees C, binding increased with time of incubation. Incubation of both cell types at 4 degrees C for 4 h, with increasing concentrations of 125I-TGF-beta 1, resulted in binding which demonstrated saturation kinetics. Scatchard analyses revealed one class of receptors for HEPM (K 32.3 pM) and MEPM (K 26.3 pM). However, SDS-PAGE analyses of 125I-TGF-beta chemically crosslinked to specific receptor sites revealed that both cell types contained the types I (65,000 Mr) and III (230,000 Mr) TGF-beta receptors while MEPM also contained the type II (86,000 Mr) receptor. Binding studies further demonstrated the ability of platelet-derived growth factor to transmodulate TGF-beta binding. These results indicate that the HEPM cell line and primary cultures of MEPM cells, although obtained from palates at similar developmental stages, are dramatically different in their responsiveness to TGF-beta and have disparate TGF-beta receptor profiles. 相似文献
13.
Differential sensitivity of fibroblasts to epidermal growth factor is related to cyclic AMP concentration 总被引:5,自引:0,他引:5
The differential sensitivity of various cell lines to the mitogenic effects of epidermal growth factor (EGF) was investigated. Two lines of evidence suggest that cellular capacity to respond proliferatively to EGF is related to intracellular cyclic AMP concentration. First, the ability of three density-arrested cell lines to synthesize DNA in response to EGF was directly proportional to the basal cyclic AMP level of the cells at quiescence. Second, treatment of cultures with various agents known to promote intracellular cyclic AMP accumulation increased the sensitivity of all three cell lines to EGF. The mechanism whereby cyclic AMP modulates EGF responsiveness is not known; cholera toxin did not affect the cellular capacity to bind or internalize and process EGF. Although platelet-derived growth factor (PDGF) had no effect on cyclic AMP levels, transient treatment of quiescent cultures with this polypeptide also enhanced EGF sensitivity. In agreement with previous data and in contrast to cholera toxin, PDGF induced the down-regulation of EGF receptors in the three cell lines. These data suggest that the capacity of various cell types to respond to EGF is subject to both intracellular regulation by cyclic AMP and extracellular modulation by factors such as PDGF which can affect EGF receptor activity. 相似文献
14.
Effect of epidermal growth factor/urogastrone on glycosaminoglycan synthesis and accumulation in vitro in the developing mouse palate 总被引:1,自引:0,他引:1
Eva Ann Turley Morley Donald Hollenberg Robert Miles Pratt 《Differentiation; research in biological diversity》1985,28(3):279-285
Epidermal growth factor/urogastrone (EGF-URO) has previously been implicated in murine secondary-palate formation. We report here that, in correlation with its effects on palate fusion, EGF-URO in physiological amounts (1.7 nmol/l) markedly affects glycosaminoglycan (GAG) production in organ cultures of mouse palate tissue; the effects of EGF-URO are dependent on the developmental stage of the palate. GAG production, particularly that of hyaluronic acid (HA), is stimulated two- to eight-fold by EGF-URO in cultures of palate tissue obtained between days 11-12 and 13-15 of development; by the time of birth, EGF-URO no longer stimulates GAG production in such cultures. EGF-URO increases the amount and alters the distribution of HA within the palate. The results suggest a role for EGF-URO and for HA in the process of normal palatal development. 相似文献
15.
Cyclic AMP potentiates down regulation of epidermal growth factor receptors by platelet-derived growth factor 总被引:5,自引:0,他引:5
E B Leof N E Olashaw W J Pledger E J O'Keefe 《Biochemical and biophysical research communications》1982,109(1):83-91
Pretreatment of cells with platelet-derived growth factor (PDGF) has been shown to decrease binding sites for 125I-labelled epidermal growth factor (EGF) (1,2,3). Agents which elevate cellular cyclic AMP concentrations enhance this ability, and the change in EGF binding is inversely proportional to the elevation of cyclic AMP. In quiescent density arrested cells, the sensitivity of cells to down regulation of EGF receptors by PDGF is proportional to the cyclic AMP content of the cultures in three different cell lines. Agents which elevate cyclic AMP and which potentiate PDGF mediated heterologous down regulation of EGF receptors are able, like cholera toxin (3), to stimulate cells to synthesize DNA in defined medium in the absence of EGF. Down regulation of EGF receptors by PDGF in combination with agents elevating cyclic AMP effectively mimics the action of EGF. 相似文献
16.
Glucose synthesis by isolated guinea-pig hepatocytes. Effect of cyclic AMP and dibutyryl cyclic AMP.
I J Arinze 《Biochemical and biophysical research communications》1977,74(4):1656-1659
In isolated guinea-pig hepatocytes, dibutyryl cyclic AMP stimulated gluconeogenesis from 2 mM galactose by 25 and 40% respectively. In the presence of 0.5 mM theophylline, cyclic AMP (0.1 mM) increased glucose synthesis from lactate and galactose by 26 and 34% respectively. 相似文献
17.
Caffeine is a teratogen that causes limb and palate malformations in rodents. Since the ability to raise cyclic nucleotide levels is a known biological action of caffeine, cyclic AMP levels were measured in CD-1 mouse embryonic forelimb from whole embryo culture and embryonic limb and palate cells grown in primary culture following treatment with various concentrations of caffeine (0, 1, 3, or 10 mM). In forelimb buds from whole embryo culture, a dose-dependent response was observed. Caffeine at 1 mM concentration stimulated cyclic AMP levels to 151% of control value at 60 min. Even greater stimulation of cyclic AMP occurred at higher caffeine concentrations. A dose-dependent response was seen in both limb and palate cell culture. In limb cell culture, all caffeine concentrations significantly stimulated cyclic AMP after 10 min compared to control. In palate cell culture, there was a twofold increase in cyclic AMP at the 1-mM caffeine concentration. At higher caffeine concentrations, cyclic AMP was significantly increased after 60 min. In addition, stimulation of cyclic AMP in cultured limb and palate cells by isoproterenol, a beta-adrenergic agonist, was used as a positive control. Isoproterenol stimulated a 2.5-fold greater response in the palate cells than in the limb bud cells at isoproterenol levels of 10(-5) or 10(-4) M. The increase of cyclic AMP may be influential in the process of abnormal limb or palate development. 相似文献
18.
Regulation of cyclic AMP metabolism in rabbit cortical collecting tubule cells by prostaglandins 总被引:6,自引:0,他引:6
Prostaglandin E1 (PGE1) at 1 nM inhibits arginine-vasopressin (AVP)-induced water reabsorption in the rabbit cortical collecting tubule (RCCT), while 100 nM PGE1, by itself, stimulates water reabsorption (Grantham, J. J., and Orloff, J. (1968) J. Clin. Invest. 47, 1154-1161). To investigate the basis for these two responses, we measured the effects of prostaglandins on cAMP metabolism in purified RCCT cells. In freshly isolated cells, PGE2, PGE1, and 16,16-dimethyl-PGE2 acting at high concentrations (0.1-10 microM) stimulated cAMP accumulation; however, one PGE2 analog, sulprostone (16-phenoxy-17,18,19,20-tetranor-PGE2 methylsulfonilamide), failed to stimulate cAMP accumulation or to antagonize PGE2-induced cAMP formation; PGD2, PGF2 alpha, and a PGI2 analog, carbacyclin (6-carbaprostaglandin I2), also failed to stimulate cAMP synthesis. These results suggest that there is a PGE-specific stimulatory receptor in RCCT cells which mediates activation of adenylate cyclase. Occupancy of this receptor would be anticipated to cause water reabsorption by the collecting tubule. At lower concentrations (0.1-100 nM) PGE2, PGE1, 16,16-dimethyl-PGE2, and, in addition, sulprostone inhibited AVP-induced cAMP accumulation by fresh RCCT cells in the presence of cAMP phosphodiesterase inhibitors. Pertussis toxin pretreatment of RCCT cells blocked the ability of both PGE2 and sulprostone to inhibit AVP-induced cAMP accumulation. In membranes prepared from RCCT cells, sulprostone prevented stimulation of adenylate cyclase by AVP. These results suggest that E-series prostaglandins (including sulprostone) can act through an inhibitory PGE receptor(s) coupled to the inhibitory guanine nucleotide regulatory protein, Gi, to block AVP-induced cAMP synthesis by RCCT cells. Occupancy of this receptor would be expected to cause inhibition of AVP-induced water reabsorption in the intact tubule. Curiously, after RCCT cells were cultured for 5-7 days, PGE2 no longer inhibited AVP-induced cAMP accumulation, but PGE2 by itself could still stimulate cAMP accumulation. In contrast to PGE2, epinephrine acting via an alpha 2-adrenergic, Gi-linked mechanism did block AVP-induced cAMP formation by cultured RCCT cells. This implies that some component of the inhibitory PGE response other than Gi is lost when RCCT cells are cultured. 相似文献
19.
A F Knowles 《Archives of biochemistry and biophysics》1990,283(1):114-119
A mercurial-insensitive ectoATPase, which was more active with CaATP than with MgATP, was induced when human hepatoma (Li-7A) cells were cultured in the presence of epidermal growth factor (EGF) and cholera toxin. Cholera toxin could be replaced by forskolin, 8-Br-cAMP, butyryl-cAMP, and dibutyryl-cAMP. Requirement for EGF was specific, but EGF was ineffective if added more than 24 h after the addition of forskolin or cholera toxin. It was concluded that induction of the ectoCa2(+)-ATPase was a consequence of the synergistic actions of EGF and cyclic AMP. The tyrosine kinase activity of the EGF receptor was essential for the induction of ectoCa2(+)-ATPase, since enzyme induction was abolished by a tyrosine kinase inhibitor, genistein. Cycloheximide and actinomycin D were also inhibitory to enzyme induction, indicating that enhancement of enzyme activity by EGF and cAMP was not due to post-translational modification. The results of this and previous investigations established that the two ectoATPases of Li-7A cells are under different regulation. 相似文献