首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The role of the system of deposited calcium in the mediation of contractile reactions to carbachol in an isolated amnion of 11–13 day old chicken embryo was studied. It was found that thapsigargin (2 μM, 20 min), an inhibitor of the endoplasmic reticulum Ca2+-ATPases, decreases the tonic reaction to carbachol by 40 ± 2%. In the presence of U73122 (5–10 μM, 10 min), a phosphoinositide-specific phospholipase C inhibitor, the rhythmic contractile reaction of the amnion to carbachol is blocked, whereas the tonic reaction decreases to 47 ± 9% of the initial one. Ryanodine (10 μM, 5 min) inhibits the spontaneous contractile activity of the amnion and decreases the tonic reaction to carbachol to 36 ± 3% relative to control. In the presense of ryanodine, nifedipine (0.05 μM) completely blocks the tonic reaction to carbachol. Thus, calcium mobilized from intracellular stores via inositol trisphosphate and ryanodine receptors is involved in realization of contractile reactions, mediated by M3 receptors, in the chick amnion.  相似文献   

2.
Peripheral sensory nervous system is comprised of neurones with their axons and neuroglia that includes satellite glial cells in sensory ganglia, myelinating, non-myelinating and perisynaptic Schwann cells. Pathogenesis of peripheral diabetic polyneuropathies is associated with aberrant function of both neurones and glia. Deregulated Ca2+ homoeostasis and aberrant Ca2+ signalling in neuronal and glial elements contributes to many forms of neuropathology and is fundamental to neurodegenerative diseases. In diabetes both neurones and glia experience metabolic stress and mitochondrial dysfunction which lead to deregulation of Ca2+ homeostasis and Ca2+ signalling, which in their turn lead to pathological cellular reactions contributing to development of diabetic neuropathies. Molecular cascades responsible for Ca2+ homeostasis and signalling, therefore, can be regarded as potential therapeutic targets.  相似文献   

3.
Calcium signal transmission between ryanodine receptors and mitochondria   总被引:19,自引:0,他引:19  
Control of energy metabolism by increases of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) may represent a fundamental mechanism to meet the ATP demand imposed by heart contractions, but the machinery underlying propagation of [Ca(2+)] signals from ryanodine receptor Ca(2+) release channels (RyR) to the mitochondria remains elusive. Using permeabilized cardiac (H9c2) cells we investigated the cytosolic [Ca(2+)] ([Ca(2+)](c)) and [Ca(2+)](m) signals elicited by activation of RyR. Caffeine, Ca(2+), and ryanodine evoked [Ca(2+)](c) spikes that often appeared as frequency-modulated [Ca(2+)](c) oscillations in these permeabilized cells. Rapid increases in [Ca(2+)](m) and activation of the Ca(2+)-sensitive mitochondrial dehydrogenases were synchronized to the rising phase of the [Ca(2+)](c) spikes. The RyR-mediated elevations of global [Ca(2+)](c) were in the submicromolar range, but the rate of [Ca(2+)](m) increases was as large as it was in the presence of 30 microm global [Ca(2+)](c). Furthermore, RyR-dependent increases of [Ca(2+)](m) were relatively insensitive to buffering of [Ca(2+)](c) by EGTA. Therefore, RyR-driven rises of [Ca(2+)](m) appear to result from large and rapid increases of perimitochondrial [Ca(2+)]. The falling phase of [Ca(2+)](c) spikes was followed by a rapid decay of [Ca(2+)](m). CGP37157 slowed down relaxation of [Ca(2+)](m) spikes, whereas cyclosporin A had no effect, suggesting that activation of the mitochondrial Ca(2+) exchangers accounts for rapid reversal of the [Ca(2+)](m) response with little contribution from the permeability transition pore. Thus, rapid activation of Ca(2+) uptake sites and Ca(2+) exchangers evoked by RyR-mediated local [Ca(2+)](c) signals allow mitochondria to respond rapidly to single [Ca(2+)](c) spikes in cardiac cells.  相似文献   

4.
The temperature dependence of high voltage activated Ca2+ channels has been investigated in cultured dorsal root ganglion neurones from chick embryos, using the cell-attached patch-clamp technique. The dihydropyridine sensitive L-type Ca2+ channel had a conductance of 23 pS, with 110 mM Ba2+ as charge carrier and in the presence of 3 M Bay K 8644. When the temperature was raised from 15 to 30 °C, the unitary channel current amplitude increased, with Q10 value equal to 1.4. The rising phase of the averaged single-channel current became faster, with Q10 value 2.7, whereas the decay phase showed a lower temperature sensitivity. Channel open probability decreased according to an exponential distribution of open and closed times. A second type of Ca2+ channel was identified, which was DHP-insensitive and had a lower conductance with a mean value equal to 13 pS. For the current amplitude, the Q10 value was 1.3. Both activation and inactivation kinetics were strongly accelerated by an increase in temperature. The corresponding time constants gave Q10 values equal to 5.9 for activation, and 2.0 for inactivation. Peak channel open probability was highly sensitive to a change in temperature, with a Q10 value of 1.6. Finally, in -conotoxin GVIA pre-treated neurones, a non-inactivating DHP-insensitive Ca2+ channel with the lowest unitary conductance (10 pS) and a much lower temperature dependence was recorded. Single-channel current was increased by heating, with Q10 value 1.3, whereas the channel kinetics were almost unaffected by temperature. Our data are consistent with the assumption that the different temperature dependence of the Ca2+ channel behaviours may be explained by separate gating processes of three types of Ca2+ channels.  相似文献   

5.
6.
The central projections of sensory neurones innervating a strand chordotonal organ (CO) in the tailfan of the crayfish, Procambarus clarkii (Girard) have been investigated. The CO monitors movement of the exopodite of the tailfan relative to the endopodite. Intracellular recording and staining were used to characterise the response of the sensory neurones to applied stretches of the chordotonal organ and to reveal their morphology. Two gross morphological types of afferents were found: those that terminated in the terminal (6th) abdominal ganglion on the side ipsilateral to the sensory receptor, and those that had branches in the terminal ganglion and an intersegmental axon that ascended rostrally. Afferents responded to position, velocity and direction of imposed CO displacement. Afferents with particular physiological properties had similar morphologies in different crayfish. Irrespective of their directional responses, afferents had central projection areas dependent upon their velocity thresholds. Many afferents responded only during movement of the CO, and those with the lowest velocity thresholds (2°/s) had branches that projected most anteriorly, while those with progressively higher velocity thresholds (up to 200°/s) projected progressively more posteriorly. Afferents that responded to low velocity ramp movements and spiked tonically projected to more posterior areas of the ganglion than those that responded only to movements.Abbreviations A6SCI sixth abdominal sensory commissure I - CO chordotonal organ - DMT dorsal medial tract - G6 sixth abdominal ganglion - LDT lateral dorsal tract - MDT medial dorsal tract - MVT medial ventral tract - R1–4 nerve roots 1–4 - VLT ventral lateral tract - VMT ventral medial tract  相似文献   

7.
Fast-deactivating calcium channels in chick sensory neurons   总被引:8,自引:3,他引:5       下载免费PDF全文
Whole-cell Ca and Ba currents were studied in chick dorsal root ganglion (DRG) cells kept 6-10 in culture. Voltage steps with a 15-microseconds rise time were imposed on the membrane using an improved patch-clamp circuit. Changes in membrane current could be measured 30 microseconds after the initiation of the test pulse. Currents through Ca channels were recorded under conditions that eliminate Na and K currents. Tail currents, associated with Ca channel closing, decayed in two distinct phases that were very well fitted by the sum of two exponentials. The time constants tau f and tau s were near 160 microseconds and 1.5 ms at -80 mV, 20 degrees C. The tail current components, called FD and SD (fast-deactivating and slowly deactivating), are Ca channel currents. They were greatly reduced when Mg2+ replaced all other divalent cations in the bath. The SD component inactivated almost completely as the test pulse duration was increased to 100 ms. It was suppressed when the cell was held at membrane potentials positive to -50 mV and was blocked by 100-200 microM Ni2+. This behavior indicates that the SD component was due to the closing of the low-voltage-activated (LVA) Ca channels previously described in this preparation. The FD component was fully activated with 10-ms test pulses to +20 mV at 20 degrees C, and inactivated to approximately 30% during 500-ms test pulses. It was reduced in amplitude by holding at -40 mV, but was only slightly reduced by micromolar concentrations of Ni2+. Replacement of Ca2+ with Ba2+ increased the FD tail current amplitudes by a factor of approximately 1.5. The deactivation kinetics did not change (a) as channels inactivated during progressively longer pulses or (b) when the degree of activation was varied. Further, tau f was affected neither by changing the holding potential nor by varying the test pulse amplitude. Lowering the temperature from 20 to 10 degrees C decreased tau f by a factor of 2.5. In all cases, the FD component was very well fitted by a single exponential. There was no indication of an additional tail component of significant size. Our findings indicate that the FD component is due to closing of a single class of Ca channels that coexist with the LVA Ca channel type in chick DRG neurons.  相似文献   

8.
9.
Picrotoxin, 1 × 10?5M to 1.6 × 10?3M, had little or no effect on the amplitude of intracellularly recorded excitatory junctional potentials (EJPs) at extracellular calcium concentrations [Ca2+]0 ranging from 0.5 to 15 mM. The slope of the log EJP vs. log[Ca2+]0 relationship was approximately 1 with or without picrotoxin. The reduction of EJP amplitude resulting from the addition of 5 × 10?5M GABA was largely reversed by 10?5M picrotoxin.  相似文献   

10.
Li Yang  Gary J. Stephens   《Cell calcium》2009,46(4):248-256
Voltage-dependent Ca2+ channels (VDCCs) have emerged as targets to treat neuropathic pain; however, amongst VDCCs, the precise role of the CaV2.3 subtype in nociception remains unproven. Here, we investigate the effects of partial sciatic nerve ligation (PSNL) on Ca2+ currents in small/medium diameter dorsal root ganglia (DRG) neurones isolated from CaV2.3(−/−) knock-out and wild-type (WT) mice. DRG neurones from CaV2.3(−/−) mice had significantly reduced sensitivity to SNX-482 versus WT mice. DRGs from CaV2.3(−/−) mice also had increased sensitivity to the CaV2.2 VDCC blocker ω-conotoxin. In WT mice, PSNL caused a significant increase in ω-conotoxin-sensitivity and a reduction in SNX-482-sensitivity. In CaV2.3(−/−) mice, PSNL caused a significant reduction in ω-conotoxin-sensitivity and an increase in nifedipine sensitivity. PSNL-induced changes in Ca2+ current were not accompanied by effects on voltage-dependence of activation in either CaV2.3(−/−) or WT mice. These data suggest that CaV2.3 subunits contribute, but do not fully underlie, drug-resistant (R-type) Ca2+ current in these cells. In WT mice, PSNL caused adaptive changes in CaV2.2- and CaV2.3-mediated Ca2+ currents, supporting roles for these VDCCs in nociception during neuropathy. In CaV2.3(−/−) mice, PSNL-induced changes in CaV1 and CaV2.2 Ca2+ current, consistent with alternative adaptive mechanisms occurring in the absence of CaV2.3 subunits.  相似文献   

11.
12.
Calcium and signal transduction in plants   总被引:1,自引:0,他引:1  
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.  相似文献   

13.
Calcium influx in active Aplysia neurones detected by injected aequorin   总被引:10,自引:0,他引:10  
J Stinnakre  L Tauc 《Nature: New biology》1973,242(117):113-115
  相似文献   

14.
During axis formation in amniotes, posterior and lateral epiblast cells in the area pellucida undergo a counter-rotating movement along the midline to form primitive streak (Polonaise movements). Using chick blastoderms, we investigated the signaling involved in this cellular movement in epithelial-epiblast. In cultured posterior blastoderm explants from stage X to XI embryos, either Lefty1 or Cerberus-S inhibited initial migration of the explants on chamber slides. In vivo analysis showed that inhibition of Nodal signaling by Lefty1 affected the movement of DiI-marked epiblast cells prior to the formation of primitive streak. In Lefty1-treated embryos without a primitive streak, Brachyury expression showed a patchy distribution. However, SU5402 did not affect the movement of DiI-marked epiblast cells. Multi-cellular rosette, which is thought to be involved in epithelial morphogenesis, was found predominantly in the posterior half of the epiblast, and Lefty1 inhibited the formation of rosettes. Three-dimensional reconstruction showed two types of rosette, one with a protruding cell, the other with a ventral hollow. Our results suggest that Nodal signaling may have a pivotal role in the morphogenetic movements of epithelial epiblast including Polonaise movements and formation of multi-cellular rosette.  相似文献   

15.
The pharmacology of the direct central connections between the fast extensor and flexor motor neurones of a locust (Schistocerca gregaria) hind leg was studied. A spike in the fast extensor produces an EPSP in the flexor motor neurones. Glutamate depolarized the flexor motor neurones when injected into the neuropil. Quisqualate, but not by kainate or NMDA, also depolarized the flexor motor neurones. The fast extensor was also depolarized by glutamate, and also by kainate, but not by quisqualate, AMPA or NMDA. The glutamate response in the flexor motor neurones and the EPSP evoked by a spike in FETi both had similar reversal potentials. The FETi-evoked EPSP was blocked by bath application of the glutamate antagonist glutamic acid diethyl ester. The responses of extrasynaptic somata receptors to glutamate were compared to the neuropil responses. Glutamate usually hyperpolarized the somata of FETi and the flexor motor neurones. The response of a flexor motor neurone to glutamate was abolished at potentials less negative than -90 mV. The results provide evidence for glutamate transmission at central synapses in the locust, and show that presumed synaptic receptors in the neuropil differ to the extrasynaptic soma response  相似文献   

16.
Protective vasodilation during acid back diffusion into the rat gastric mucosa depends on activation of sensory neurons and mast cell degranulation with histamine release. We hypothesized that these two mediator systems interact and that histamine partly exerts its effect via sensory nerves. Gastric blood flow (GBF) and luminal histamine were measured in chambered stomachs, and mast cell numbers were assessed by morphometry. Ablation of sensory neurons and depletion of mast cells were produced by pretreatment with capsaicin or dexamethasone, respectively. Mucosal exposure to 1.5 M NaCl and then to pH 1.0 saline in ablated and control rats caused increased luminal histamine and reduced numbers of mast cells. Enterochromaffin-like cell marker pancreastatin remained unchanged. Only control rats responded with an increase in GBF. Capsaicin stimulation (640 microM) of the undamaged mucosa induced identical increase in GBF and unchanged mast cell mass in normal and dexamethasone-treated rats. Increase in GBF after topical exposure to histamine (30 mM) in rats pretreated with capsaicin or a calcitonin gene-related peptide (CGRP)(1) antagonist human CGRP(8-37) or exposed to the calcium pore blocker ruthenium red was less than one-half of that in control rats. These data suggest that mast cell-derived histamine is involved in gastric vasodilatation during acid back diffusion partly via sensory neurons.  相似文献   

17.
The effect of amidiniums on high-threshold Ca2+ channel currents (I Ca) was studied in chick dorsal root ganglion neurons. Guanidinium reduced I Ca in a dose-dependent fashion. The block was relieved by increasing the concentration of the permeant ions, Ba2+ or Ca2+, suggesting a competition for a common binding site within the channel. Formamidinium and methyl-guanidinium suppressed I Ca with similar potencies, whereas l-arginine had no effect. A neutral amidine, urea, increased I Ca. In Ca2+-free solutions guanidinium and Na+ permeated through the Ca2+ channel equally well. Structure-activity relationship obtained for blocking efficacies of different amidiniums are used to discuss possible configurations of the selectivity filter in the Ca2+ channel.The author wishes to thank Ms. S. Engers for the cell isolation and making of the electrodes.  相似文献   

18.
19.
Calcium signaling in restricted diffusion spaces.   总被引:4,自引:0,他引:4  
One- and two-dimensional models of Ca2+ diffusion and regulation were developed and used to study the magnitudes and the spatial and temporal characteristics of the Ca2+ transients that are likely to develop in smooth muscle cells in restricted diffusion spaces between the plasma membrane and intracellular organelles. Simulations with the models showed that high [Ca2+] (on the order of several microM) can develop in such spaces and persist for 100-200 ms. These Ca2+ transients could: 1) facilitate the coupling of Ca2+ influx to intracellular Ca2+ release; 2) provide a mechanism for the regulation of stored Ca2+ that does not affect the contractile state of smooth muscle; 3) locally activate specific signal transduction pathways, before, or without activating other Ca2+ dependent pathways in the central cytoplasm of the cell. The latter possibility suggests that independent enzymatic processes in cells could be differentially regulated by the same intracellular second messenger.  相似文献   

20.
Calcium diffusion in the brain cell microenvironment   总被引:1,自引:0,他引:1  
A review of some of the literature on Ca2+ diffusion in free media and a variety of nervous tissues is presented. In the majority of tissue studies the apparent diffusion coefficient of Ca2+ is three to nine times smaller than that in a free aqueous medium. The methodology of using pressure microejection and Ca2+ ion-selective microelectrodes to measure Ca2+ diffusion is discussed. Our ongoing studies of Ca2+ diffusion in the cerebral cortex of the rat, using these methods, also confirm that Ca2+ diffusion is mainly influenced by the tortuosity of the tissue rather than other factors such as binding to extracellular charge sites or uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号