首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aim:  To evaluate the physicochemical cell surface and adhesive properties of selected probiotic strains for human use.
Methods and Results:  Probiotic strains, Bifidobacterium longum B6, Lactobacillus acidophilus ADH, Lactobacillus paracasei , Lactobacillus rhamnosus GG, Lactobacillus brevis , Lactobacillus casei , Leuconostoc mesenteroides and Pediococcus acidilactici were tested for the physicochemical properties of cell surfaces and the adhesion abilities against foodborne pathogens. Bif .  longum B6 (53·6%) and Lact .  rhamnosus GG (46·5%) showed the highest hydrophobicity, while the least affinity to xylene was observed in Ped .  acidilactici (10·4%). Bifidobacterium longum B6 showed the strongest coaggregation phenotype with Listeria monocytogenes (53·0%), Shigella boydii (42·0%) and Staphylococcus aureus (45·9%). Lactobacillus rhamnosus GG had the strong binding ability to Caco-2 cells and effectively inhibited the adhesion of L .  monocytogenes , Salmonella Typhimurium, Sh .  boydii and Staph .  aureus to Caco-2 cells. The hydrophobicity was highly correlated with coaggregative abilities and competitive inhibition, suggesting a good relationship between in vitro adhesion and in vivo colonization.
Conclusion:  The results suggest that Bif .  longum B6 and Lact .  rhamnosus GG can be candidate probiotics available for human consumption.
Significance and Impact of the Study:  Because the use of probiotic strains has been more concerned with their beneficial effects in the GI tract, it is essential to examine the potential of probiotic strains based on the physicochemical properties in terms of bacterial-binding and adhesion capabilities.  相似文献   

3.
Aims:  To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco-2 cells.
Methods and Results:  Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells.
Conclusion:  The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells.
Significance and Impact of the Study:  The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells.  相似文献   

4.
Aims:  To investigate the abilities of various probiotic bacteria to produce volatile sulfur compounds (VSCs) relevant to food flavour and aroma.
Methods and Results:  Probiotic strains ( Lactobacillus acidophilus NCFM, Lactobacillus plantarum 299v, Lactobacillus rhamnosus GG, Lactobacillus reuteri ATCC55730 and L. reuteri BR11), Lactobacillus delbrueckii ATCC4797, L. plantarum ATCC14917 and Lactococcus lactis MG1363 were incubated with either cysteine or methionine. Volatile compounds were captured, identified and quantified using a sensitive solid-phase microextraction (SPME) technique combined with gas chromatography coupled to a pulsed flame photometric detector (SPME/GC/PFPD). Several VSCs were identified including H2S, methanethiol, dimethyldisulfide and dimethyltrisulfide. The VSC profiles varied substantially for different strains of L. plantarum and L. reuteri and it was found that L. reuteri ATCC55730 and L. lactis MG1363 produced the lowest levels of VSCs ( P  < 0·05). Levels of VSCs generated by bacteria were found to be equivalent to, or higher than, that found in commercial cheeses.
Conclusions:  Several probiotic strains are able to generate considerable levels of VSCs and substantial variations in VSC generating potential exists between different strains from the same species.
Significance and Importance of the Study:  This study demonstrates that probiotic bacteria are able to efficiently generate important flavour and aroma compounds and therefore has implications for the development of probiotic containing foods.  相似文献   

5.
Aims:  The aim of this study was to develop a sensitive and an effective method suitable for large-scale detection and quantification of Ralstonia solanacearum in soil.
Methods and Results:  Based on the specific sequence of R. solanacearum strain G1000, the primer pair R.sol1-R.sol2 and the TaqMan probe Rs-pro were designed, and specific and sensitive PCR detection methods were successfully established. The detection limit was 100 fg μl−1 DNA in conventional PCR and 1·2 fg μl−1 in real-time PCR. By combining real-time PCR with the modified protocols to extract DNA from soil, it was possible to achieve real-time detection of R. solanacearum in soil, and the degree of sensitivity was 100 fg μl−1. To detect inhibition in soil samples, an exogenous internal positive control (IPC) was included preventing false negative results, and IPC was successfully amplified from all samples tested. The methodology developed was used to detect the presence of R. solanacearum in tobacco fields in China.
Conclusions:  The real-time PCR combined with the protocol to extract DNA from soil led to the development of a specific, sensitive and rapid detection method for R. solanacearum in soil.
Significance and Impact of the Study:  The real-time PCR improves the detection sensitivity and specificity and provides an important tool for routine detection of R. solanacearum in soil samples and for epidemiological and ecological studies.  相似文献   

6.
Recovery of Lactobacillus rhamnosus GG from human colonic biopsies   总被引:4,自引:0,他引:4  
The colonization of Lactobacillus rhamnosus GG (ATCC 53103, henceforth L.GG) in five human colonoscopy patients was studied. The test subjects consumed whey drink fermented with the bacterium for 12 d before the colonoscopy. The presence of L.GG was subsequently checked both in the faecal samples and in the colonic biopsies obtained from various locations in the large intestine. In all patients L.GG was the dominant faecal lactic acid bacterium as a result of the administration. In four patients L.GG could also be recovered from the biopsies, while with one patient (suffering from ulcerative colitis diagnosed during the colonoscopy) no L.GG was detected in the biopsy samples. The results suggest that L.GG is able to adhere in vivo to the colon. Study of the faecal samples alone is apparently not sufficient for elucidation of the gastrointestinal ecology of probiotic bacteria.  相似文献   

7.
Aims:  White spot syndrome virus (WSSV) continues to be the most pathogenic virus among the crustacean aquaculture causing mass mortality. In the present study, we established a one-step, single tube, real-time accelerated loop-mediated isothermal amplification (real-time LAMP) for quantitative detection of WSSV.
Materials and Methods:  A set of six specially designed primers that recognize eight distinct sequences of the target. The whole process can be completed in 1 h under isothermal conditions at 63°C. Detection and quantification can be achieved by real-time monitoring in an inexpensive turbidimeter based on threshold time required for turbidity in the LAMP reaction. A standard curve was constructed by plotting viral titre against the threshold time ( T t) using plasmid standards with high correlation coefficient ( R 2 = 0·988).
Conclusions:  Sensitivity analysis using 10-fold dilutions (equivalent to 35 ng  μ l−1 to 35 ag  μ l−1) of plasmid standards revealed this method is capable of detecting upto 100 copies of template DNA. Cross-reactivity analysis with DNA/cDNA of IHHNV, TSV, YHV-infected and healthy shrimp showed this method is highly specific for quantitative detection of WSSV.
Significance and Impact of the Study:  WSSV real-time LAMP assay appears to be precise, accurate and a valuable tool for the detection and quantification of WSSV in large field samples and epidemiological studies.  相似文献   

8.
Aims:  To develop real-time PCR assays for tracking and tracing clostridia responsible for human botulism.
Methods and Results:  Real-time PCR assays based on the detection of the genes ntnh encoding the nontoxin-nonhaemagglutinin (NTNH) proteins or the most homologous regions of the botulinum neurotoxin ( bont ) genes have been developed together with four real-time PCR assays, each being specific of the genes bont/A , bont/B , bont/E , bont/F and enables a toxin type-specific identification. The specificity of the assays was demonstrated using a panel of botulinum toxin producing clostridia (29 strains), nonbotulinum toxin producing clostridia (21 strains) and various other bacterial strains. The toxin type-specific assays had a sensitivity of 100 fg–1000 fg of total DNA in the PCR tube (25–250 genome equivalents) which correspond to 103 to 104 cells ml−1. After a 48 h enrichment in anaerobic conditions, these PCR assays allowed the detection of Clostridium botulinum type A in a naturally contaminated sample of 'foie gras' suspected in a C. botulinum outbreak.
Conclusion:  These PCR tests are specific and reliable for detection of heterogeneous BoNT producing clostridia responsible for human botulism.
Significance and Impact of the Study:  Adoption of these PCR assays is a step forward a reliable and rapid detection of these clostridia in food samples.  相似文献   

9.
Aims:  To develop a quick, easy-to-use, robust and sensitive multiplex PCR assay to detect common sources of agricultural faecal contamination using a combination of bacterial and eukaryote-specific PCR targets.
Method and Results:  A novel multiplex PCR method was developed that utilizes primers specific for a conserved region of the eukaryote cytochrome-B gene as well as a universal 16S rRNA and the E. coli -specific uidA gene. This multiplex PCR assay was capable of identifying faecal amendments from pig, sheep, cow and goat sources in 24/30 (80%) of amended water samples.
Conclusions:  The method was capable of accurately identifying common agricultural sources.
Significance and Impact of the study:  The procedure described here is simple, rapid (<5 h) and can be used as a first step in microbial source tracking studies, particularly where agricultural faecal contamination is suspected.  相似文献   

10.
Aims:  Species-specific primers targeting the 16S–23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis , Lactobacillus panis , Lactobacillus paralimentarius , Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough.
Methods and Results:  The 16S–23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388–1406 of the 16S rRNA gene and to positions 207–189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331 ). Clone libraries of the resulting amplicons were constructed using a pCR2·1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S–23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNAIle and tRNAAla genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested.
Conclusions:  Designed species-specific primers enable a rapid and accurate identification of L. mindensis , L. paralimentarius , L. panis , L. pontis and L. frumenti species among other lactobacilli.
Significance and Impact of the Study:  The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.  相似文献   

11.
Aims:  To develop a rapid and sensitive detection method for cereulide-producing Bacillus cereus using a real-time PCR based on the sequence of the cereulide synthesis gene.
Methods and Results:  A total of 56 cereulide-producing B. cereus and 15 cereulide-negative strains were tested. We designed specific primers and probes for the detection of cereulide-producing B. cereus . The new cycleave real-time PCR assay gave positive detections for all of 56 cereulide-producing B. cereus strains, whereas all other strains including 10 systemic infectious disease strains were negative. No cross-reaction was observed and the internal control showed positive for all samples.
Conclusions:  The performance of the assay was highly reproducible and specific for cereulide-producing B. cereus . The positive detection was obtained within only 2 h for cereulide-producing strains. The detection limit of this assay was evaluated as 104 CFU g−1 food sample. The assay also confirmed that strains from systemic infectious cases were cereulide-negative.
Significance and Impact of the Study:  This assay is applicable for contaminated foods as well as specimens from infectious disease cases. We recommend this assay for routine examination of suspected B. cereus food poisonings.  相似文献   

12.
Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.  相似文献   

13.
Aims:  Comparison of an internally-controlled real-time PCR assay with the current plate-based assay for the detection of Bacillus sensu lato contaminants in gelatine.
Methods and Results:  A comprehensive TaqMan® probe was designed allowing the real-time PCR assay to be fully inclusive for the gelatine-contaminating Bacillus s.l. species. An internal amplification control was implemented at 500 copies per reaction without impact on target detection. Specific and selective detection of target cells was achieved with a quick and simple DNA preparation procedure. No significant difference (Kappa value = 0·94) was observed between the performance of the real-time PCR and the current plate-based method on naturally contaminated gelatines ( n  = 162). Relative accuracy, relative sensitivity and relative specificity were 97·5%.
Conclusions:  The real-time PCR assay is an adequate alternative of the current plate-based assay.
Significance and Impact of the Study:  The real-time PCR assay decreased the time between sample collection and result from 2 days to 2 h. The gelatine-producing industry can ensure gelatine quality in a much faster way.  相似文献   

14.
Aims:  Bifidobacteria and lactobacilli are part of the human normal intestinal microbiota and may possibly be transferred to the placenta. It was hypothesized that intestinal bacteria or their components are present in the placenta and that the foetus may be exposed to them. We investigated the presence of bifidobacteria and lactobacilli and their DNA in the human placenta.
Methods and Results:  We studied 34 human placentae (25 vaginal and nine caesarean deliveries) for the presence Bifidobacterium spp. and Lactobacillus rhamnosus. Cultivation was used for the detection of viable cells and genus and species-specific PCR for the detection of DNA. No bifidobacteria or lactobacilli were found by cultivation. Bifidobacterial DNA was detected in 33 and L. rhamnosus DNA in 31 placenta samples.
Conclusions:  DNA from intestinal bacteria was found in most placenta samples. The results suggest that horizontal transfer of bacterial DNA from mother to foetus may occur via placenta.
Significance and Impact of the Study:  Bacterial DNA contains unmethylated CpG oligodeoxynucleotide motifs which induce immune effects. Specific CpG motifs activate Toll-like receptor 9 and subsequently trigger Th-1-type immune responses. Although the newborn infant is considered immunologically immature, exposure by bacterial DNA may programme the infant's immune development during foetal life earlier than previously considered.  相似文献   

15.
Aims:  Aeromonas hydrophila is recognized as a human pathogen following wound exposure or ingestion of contaminated water and food. For rapid identification of this bacterium, a TaqMan-based real-time PCR assay has been developed.
Methods and Results:  Primers and probes that target specific sequences of the 16S rRNA gene and cytolytic enterotoxin gene ( aerA ) were combined in a duplex assay. Presence and size of PCR products were confirmed with microchannel fluidics electrophoresis analysis. After validation, using type strain CIP7614T DNA, the PCR assay was tested on 12 positive and negative controls. Twenty-one Aeromonas strains were isolated from environmental samples and were identified with biochemical tests as Aer. sobria , Aer. caviae and Aer. hydrophila . Only Aer. hydrophila strains tested positive by PCR assay.
Conclusions:  The PCR developed here was successfully applied for the identification of Aer. hydrophila from reference, clinical and environmental samples and showed a high discrimination between Aer. hydrophila and other Aeromonas species.
Significance and Impact of the Study:  This molecular method is convenient, rapid (2·5 h vs 24 h), specific to identify Aer. hydrophila and usable for diagnosis in medical and veterinary laboratories.  相似文献   

16.
Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35.  相似文献   

17.
Aims:  The focus of this study was to identify a bacterial 16S rRNA gene sequence, unique to microbiota in the human gut, for use in development of a dependable PCR assay to detect human faecal pollution in water.
Methods and Results:  Suppression subtractive hybridization (SSH) and bioinformatics were used to identify a genetic marker, within the 16S rRNA gene of Faecalibacterium , for the detection of human faeces. DNA sequencing analysis demonstrated that a majority (16) of 74 clones of the SSH library contained insertion sequences identified as Faecalibacterium 16S rRNA genes . Human faeces-specific sequences were derived and six PCR primer sets designed and tested against faecal DNA samples from human and nonhuman sources. One PCR primer set, HFB-F3 and HFB-R5, was exclusively associated with human faeces. These primers generated a human faeces-specific amplicon of 399 bp from 60·2% of human faecal samples and 100% of sewage samples.
Conclusions:  The subject Faecalibacterium marker is specific for sewage.
Significance and Impact of the Study:  This study represents the initial report of a Faecalibacterium marker for human faeces, which may prove useful for microbial source tracking.  相似文献   

18.
Aims:  A new real-time PCR assay that simultaneously amplifies a 102-bp fragment of the cagE gene from Helicobacter pylori and a new internal positive control containing a specific sequence of the gyrB gene from Aeromonas hydrophila , was developed and validated for the detection of H. pylori in environmental samples.
Methods and Results:  The specificity, limits of detection and quantification, repeatability, reproducibility, and accuracy of the method were calculated. The resulting values confirmed the applicability of the method for the quantitative detection of H. pylori . The feasibility of the method was also evaluated by testing 13 pyloric antrum-positive biopsies and 69 water samples, including potable (10), surface (19) and wastewater (40) matrices. The results showed that all the biopsies and 3 of the 40 wastewater samples analysed were positive.
Conclusions:  This real-time PCR method provides a sensitive, specific, and accurate method for the rapid quantification of H. pylori in environmental samples.
Significance and Impact of the Study:  The PCR diagnostic system proposed in this work, provides a suitable tool for the quantitative detection of H. pylori in environmental samples and can be useful for verifying the role of water as a potential route of its transmission.  相似文献   

19.
Aims:  To design the Aspergillus flavus and Aspergillus parasiticus -specific primers and a real-time PCR assay for quantification of the conidial density in soil.
Methods and Results:  Aspergillus flavus and A. parasiticus -specific DNA primers were designed based on internal transcribed spacer sequences to distinguish these two species and from other Aspergillus and other fungal species. A method of pathogen DNA extraction directly from soil samples was developed. Using the designed primers, a real-time PCR assay was developed to quantitatively determine the conidial density of each A. flavus and A. parasiticus in soil, after generating corresponding standard curves. Known conidial densities of each A. flavus or A. parasiticus in soil significantly correlated with those tested with the real-time PCR.
Conclusions:  This study demonstrated the applicability of the real-time PCR assay in studies of quantifying A. flavus and A. parasiticus in soil as inoculum sources.
Significance and Impact of the Study:  The A. flacus and A. parasitic -specific primers can be widely used in aflatoxin research. The real-time PCR assay developed in this study provides a potential approach to quantify the plant pathogen density from not only soil but also other sources in relation to aflatoxin contamination from environment, food and feed commodities.  相似文献   

20.
Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号