首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP (cAMP) elevation causes diverse types of cultured cells to round partially and develop arborized cell processes. Renal glomerular mesangial cells are smooth, muscle-like cells and in culture contain abundant actin microfilament cables that insert into substratum focal contacts. cAMP elevation causes adhesion loss, microfilament cable fragmentation, and shape change in cultured mesangial cells. We investigated the roles of the classical vitronectin (αVβ3 integrin) and fibronectin (α5β1 integrin) receptors in these changes. Mesangial cells on vitronectin-rich substrata contained microfilament cables that terminated in focal contacts that stained with antibodies to vitronectin receptor. cAMP elevation caused loss of focal contact and associated vitronectin receptor. Both fibronectin and its receptor stained in a fibrillary pattern at the cell surface under control conditions but appeared aggregated along the cell processes after cAMP elevation. This suggested that cAMP elevation caused loss of adhesion mediated by vitronectin receptor but not by fibronectin receptor. We plated cells onto fibronectin-coated slides to test the effect of ligand immobilization on the cellular response to cAMP. On fibronectin-coated slides fibronectin receptor was observed in peripheral focal contacts where actin filaments terminated, as seen with vitronectin receptor on vitronectin-coated substrata, and in abundant linear arrays distributed along microfilaments as well. Substratum contacts mediated by fibronectin receptor along the length of actin filaments have been termed fibronexus contacts. After cAMP elevation, microfilaments fragmented and fibronectin receptor disappeared from peripheral focal contacts, but the more central contacts along residual microfilament fragments appeared intact. Also, substratum adhesion was maintained after cAMP elevation on fibronectin—but not on vitronectincoated surfaces. Although other types of extracellular matrix receptors may also be involved, our observations suggest that cAMP regulates adhesion at focal contacts but not at fibronexus-type extracellular matrix contacts. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Some members of the integrin family recognize the RGD sequence which is common to cell adhesive proteins in a divalent cation-dependent manner. In the presence of Ca2+ and Mg2+, the fibronectin receptor of placenta recognizes the RGD sequence of fibronectin, but not that of vitronectin, while the vitronectin receptor of placenta recognizes the RGD sequence of vitronectin, but not that of fibronectin, although both receptors recognize the same RGD sequence. We have found by performing an enzyme-linked immunosorbent assay (ELISA) using receptor-specific monoclonal antibodies and by electrophoretic analysis that in the presence of Mn2+ a vitronectin receptor of placenta binds to an affinity column coupled with the cell-binding domain of fibronectin. By replacing divalent cations from Mn2+ to Ca2+ and Mg2+, the vitronectin receptor was completely eluted from the column. When the synthetic peptides GRGDSP and GRGESP were applied to the column as competitors, the Mn(2+)-dependent binding was inhibited by both peptides. These results suggest that Mn2+ elicits a binding activity of the placenta vitronectin receptor to the RGD site of fibronectin. The modulation of ligand specificity by Mn2+ will provide an important clue in the elucidation of the cause of individual ligand specificity of RGD-recognizing integrins.  相似文献   

3.
A simple adhesion assay was used to measure the interaction between rat oligodendrocytes and various substrata, including a matrix secreted by glial cells. Oligodendrocytes bound to surfaces coated with fibronectin, vitronectin and a protein component of the glial matrix. The binding of cells to all of these substrates was inhibited by a synthetic peptide (GRGDSP) modeled after the cell-binding domain of fibronectin. The component of the glial matrix responsible for the oligodendrocyte interaction is a protein which is either secreted by the glial cells or removed from serum by products of these cultures; serum alone does not promote adhesion to the same extent as the glial-derived matrix. The interaction of cells with this glial-derived matrix requires divalent cations and is not mediated by several known RGD-containing extracellular proteins, including fibronectin, vitronectin, thrombospondin, type I and type IV collagen, and tenascin.  相似文献   

4.
Cells are capable of adhering to and migrating on protein components of the extracellular matrix. These cell-matrix interactions are thought to be mediated largely through a family of cell surface receptors termed integrins. However, the manner in which individual integrins are involved in cell adhesion and motility has not been fully determined. To explore this issue, we previously selected a series of CHO variants that are deficient in expression of the integrin alpha 5 beta 1, the "classical" fibronectin receptor. Two sets of subclones of these variants were defined which respectively express approximately 20% or 2% of fibronectin receptor on the cell surface when compared to wild-type cells (Schreiner, C. L., J. S. Bauer, Y. N. Danilov, S. Hussein, M. M. Sczekan, and R. L. Juliano. 1989. J. Cell Biol. 109:3157-3167). In the current study, the variant clones were tested for haptotactic motility on substrata coated with fibronectin or vitronectin. Data from assays using fibronectin show that cellular motility of the 20% variants was substantially decreased (30-75% of wild type), while the motility of the 2% variants was nearly abolished (2-20% of wild type). Surprisingly, a similar pattern was seen for haptotactic motility of both 2% and 20% variants when vitronectin was used (approximately 20-30% of wild type). The reduced haptotactic motility of the fibronectin receptor-deficient variant clones on vitronectin was shown not to be due to reduced vitronectin receptor (alpha v beta 3) expression nor to a failure of these variants to adhere to vitronectin substrata. Transfection of the deficient variants with a cDNA for the human alpha 5 subunit resulted in normal levels of fibronectin receptor expression (as a human alpha 5/hamster beta 1 chimera) and restored the motility of the CHO variants on fibronectin and vitronectin. This indicates that expression of the alpha 5 subunit is required for normal haptotactic motility on vitronectin substrata and suggests that the fibronectin receptor (alpha 5 beta 1) plays a cooperative role with vitronectin receptors in cell motility.  相似文献   

5.
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD-containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process.  相似文献   

6.
The amino acid sequence Arg-Gly-Asp (RGD) is highly conserved on the VP1 proteins of different serotypes and subtypes of foot-and-mouth disease virus (FMDV) and is essential for cell attachment. This sequence is also found in certain extracellular matrix proteins that bind to a family of cell surface receptors called integrins. Within the Picornaviridae family, enterovirus coxsackievirus A9 also has an RGD motif on its VP1 capsid protein and has recently been shown to utilize the vitronectin receptor integrin alpha V beta 3 as a receptor on monkey kidney cells. Competition binding experiments between type A12 FMDV and coxsackievirus A9 using BHK-21 and LLC-MK2 cells revealed shared receptor specificity between these two viruses. Polyclonal anti-serum to the vitronectin receptor and a monoclonal antibody to the alpha V subunit inhibited both FMDV binding and plaque formation, while a monoclonal antibody to the beta 3 subunit inhibited virus binding. In contrast, antibodies to the fibronectin receptor (alpha 5 beta 1) or to the integrin (alpha V beta 5) had no effect on either binding or plaque formation. These data demonstrate that the alpha V beta 3 vitronectin receptor can function as a receptor for FMDV.  相似文献   

7.
《The Journal of cell biology》1990,111(6):2795-2800
The vitronectin receptor (alpha v beta 3) is a member of the integrin superfamily of adhesive protein receptors that mediate a wide spectrum of adhesive cellular interactions, including attachment to vitronectin, von Willebrand factor, fibrinogen, and thrombospondin. We have studied the binding of fibronectin to the purified vitronectin receptor, and the role of this receptor in the attachment of cells to fibronectin. A solid-phase microtiter assay was developed to investigate the binding properties of the vitronectin receptor. Purified alpha v beta 3 bound fibronectin with high affinity in a saturable, divalent cation- dependent manner. Binding was inhibited by soluble vitronectin, by RGD- containing peptides, and by LM609, a monoclonal antibody against the vitronectin receptor known to inhibit the binding of adhesive proteins to alpha v beta 3. Immunoinhibition experiments showed that M21 human melanoma cells, which express the fibronectin receptor, alpha 5 beta 1, as well as alpha v beta 3, used both of these integrins to attach and spread on fibronectin. In support of this finding, M21-L cells, a variant cell line that specifically lacks alpha v beta 3 but expresses alpha v beta 1, attached and spread poorly on fibronectin. In addition, alpha v beta 3 from surface-labeled M21 cells was retained, and selectively eluted by RGDS from a fibronectin affinity column. These results indicate that alpha v beta 3 acts in concert with alpha 5 beta 1 in promoting fibronectin recognition by these cells. We conclude that fibronectin binds to the alpha v beta 3 vitronectin receptor specifically and with high affinity, and that this interaction is biologically relevant in supporting cell adhesion to matrix proteins.  相似文献   

8.
Summary Bovine inner cell masses (ICM) cultured on fibronectin give rise to extensive cellular outgrowths containing endoderm. Peptides with the Glu-Ile-Leu-Asp-Val (EILDV) and Arg-Gly-Asp (RGD) sequences inhibit cell migration on fibronectin by binding to the fibronectin-recognition site in several integrins. To identify integrins involved in endodermal cell outgrowth on fibronectin and vitronectin, the effects of the EILDV and RGD peptides were evaluated in vitro. In experiment 1, ICM were cultured on fibronectin in medium containing 0.5 or 1.0 mg/ml EILDV or RGD (or both). Compared with 0 mg/ml, 0.5 mg/ml EILDV suppressed (P<0.10) outgrowth area overall, and 1.0 mg/ml EILDV reduced (P<0.05) outgrowth area after 72 h of culture. Compared with 0 mg/ml, 0.5 and 1.0 mg/ml RGD reduced (P<0.05) outgrowth area after 72 h of culture. Plasminogen activator activity in conditioned medium increased (P<0.05) in 0.5 mg/ml RGD but decreased (P<0.10) in 1.0 mg/ml RGD compared with 0 mg/ml RGD. In experiment 2, bovine ICM were cultured on vitronectin in medium containing 0.5 or 1.0 mg/ml RGD. Neither concentration of RGD (P>0.10) affected the extent of cellular outgrowth on vitronectin. Bovine endodermal cell migration on fibronectin can be modulated by the RGD and EILDV peptides. Despite inhibition, neither peptide completely prevented outgrowth on fibronectin. In contrast, cellular outgrowth on vitronectin was unaffected by RGD. The persistence of cellular outgrowth on fibronectin and the absence of inhibition by RGD for ICM cultured on vitronectin suggests that bovine endodermal cells can use alternative cellular adhesion systems, such as nonintegrin receptors, during outgrowth.  相似文献   

9.
Chinese hamster ovary (CHO) suspension culture cells adhere readily to substrata coated with extracellular matrix proteins such as fibronectin, vitronectin, or laminin. In the case of fibronectin, it is known that adhesion is mediated by an integrin-type, cell surface fibronectin receptor (FnR). We demonstrate here that treatment of CHO cells with submicromolar concentrations of phorbol ester produces a remarkable increase in the ability of these cells to adhere to fibronectin. Both the rate of adhesion and the efficiency of adhesion are enhanced about four- to fivefold. Further, phorbol ester treatment renders the fibronectin-mediated adhesion process less sensitive to inhibitors, including GRGDSP peptide and PB1, a monoclonal anti-FnR antibody. By contrast, nonspecific adhesion processes, for example cell attachment to substrata coated with polylysine or concanavalin A, are not affected by phorbol ester treatment. Thus integrin-mediated adhesion is modulated by phorbol esters, but nonspecific adhesion is not. Neither the number of cell surface FnRs nor the receptor affinity, as measured by 125I-fibronectin and 125I-anti-FnR antibody binding, is altered by phorbol ester treatment. Thus, the effect of phorbol ester on cell adhesion seems to occur at a step subsequent to initial ligand-receptor binding events. Since phorbol ester is a potent activator of protein kinase C, we examined phosphorylation patterns in control and phorbol-treated cells. In immunoprecipitates of lysates from suspension culture cells, there was no evidence of phorbol ester-stimulated phosphorylation of FnR or of talin, a protein thought to interact with FnR. These results suggest that phorbol ester effects on fibronectin-dependent adhesion are not due to phosphorylation of the FnR itself but rather may be due to postreceptor events, possibly the phosphorylation of cytoskeletal proteins involved in integrin-mediated adhesion.  相似文献   

10.
The Arg-Gly-Asp peptide (RGD), contained in several extracellular matrix proteins such as fibronectin, laminin, vitronectin, and collagen, is a tripeptide that plays a role as a recognition sequence in many cell-to-cell and cell-to-matrix adhesion mechanisms, through its interaction with several receptors of the integrin family. We previously described the ability of the oolemma of hamster oocytes to bind GRGDTP coupled to the surface of activated immunobeads and demonstrated that RGD-containing oligopeptides inhibit the adhesion of human and hamster spermatozoa to zona-free hamster oocytes and their subsequent penetration. In the present experiments, we show, utilizing immunobeads coated with an RGD-containing peptide (PepTiteTM 2000), that the oolemma of unfertilized human eggs is also able to recognize this adhesion sequence. The binding of PepTiteTM 2000-coated immunobeads to the oolemma was inhibited by the oligopeptide GRGDTP as well as by fibronectin and laminin. When immunobeads were prepared with a PepTiteTM concentration of 10 micrograms/ml, GRGDTP 150 micrograms/ml, laminin 80 micrograms/ml, and fibronectin 60 micrograms/ml inhibited bead rosetting on the egg surface. These data suggest that a specific binding moiety for RGD is present on the human egg surface. The binding of fibronectin to the oolemma was also demonstrated by the rosetting of immunobeads coupled with antifibronectin antibody to human oocytes after their exposure to 1 mg/ml free fibronectin. Such binding of fibronectin to the oolemma could be inhibited by coincubation with a monoclonal antibody directed against the cell adhesion fragment of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In this report we have studied the mechanism of human B lymphocyte adhesion to fibronectin and to proteolytic fragments of this protein. B cells adhered to fibronectin and to a 38-kDa fragment, derived from the A chain, containing the Hep II domain and most of the type III connecting segment, IIICS, of fibronectin. Cells did not bind to an 80-kDa fragment containing the RGD adhesive sequence of fibronectin. Attachment to fibronectin or to the 38-kDa fragment was not affected by the 80-kDa fragment, the GRGDSPC synthetic peptide, or by a mAb specific for the alpha chain of the RGD-dependent fibronectin receptor, alpha 5 beta 1. However, B cell adhesion to fibronectin was inhibited by the synthetic peptides CS-1, comprising the first 25 amino acids of IIICS and B12, containing the sequence LHGPEILDVPST of CS-1 (residues 14-25). Moreover, this sequence was shown to be sufficient to induce stable cell adhesion when coated on plastic surfaces. A mAb specific for the alpha-subunit of the alpha 4 beta 1 integrin, completely inhibited B cell attachment to B12, CS-1, 38 kDa, and fibronectin coated substrata. These data clearly indicate that adhesion of B lymphocytes to fibronectin is exclusively mediated by the interaction of alpha 4 beta 1 with residues 14-25 of the IIICS region in fibronectin. Therefore this interaction constitutes an alternative pathway of adhesion to fibronectin, independent of RGD and alpha 5 beta 1.  相似文献   

12.
Integrin receptors are the main mediators of cell adhesion to the extracellular matrix. They bind to their ligands by interacting with short amino acid sequences, such as the RGD sequence. Soluble, small RGD-based peptides have been used to block integrin-binding to ligands, thereby interfering with cell adhesion, migration and survival, while substrate-immobilized RGD sequences have been used to enhance cell binding to artificial surfaces. This approach has several important medical applications, e.g. in suppression of tumor angiogenesis or stimulation of bone formation around implants. However, the relatively weak affinity of short RGD-containing peptides often results in incomplete integrin inhibition or ineffective ligation. In this work, we designed and synthesized several new multivalent RGD-containing molecules and tested their ability to inhibit or to promote integrin-dependent cell adhesion when used in solution or immobilized on substrates, respectively. These molecules consist of an oligomeric structure formed by alpha-helical coiled coil peptides fused at their amino-terminal ends with an RGD-containing fragment. When immobilized on a substrate, these peptides specifically promoted integrin alphaVbeta3-dependent cell adhesion, but when used in solution, they blocked alphaVbeta3-dependent cell adhesion to the natural substrates fibronectin and vitronectin. One of the peptides was nearly 10-fold more efficient than fibronectin or vitronectin in promoting cell adhesion, and almost 100-fold more efficient than a linear RGD tripeptide in blocking adhesion. These results indicate that alpha-helical coiled coil peptides carrying an amino-terminal RGD motif can be used as soluble antagonists or surface-immobilized agonists to efficiently inhibit or promote integrin alphaVbeta3-mediated cell adhesion, respectively.  相似文献   

13.
The receptor for fibronectin is a member of the integrin superfamily of cell surface adhesion receptors, many of which recognize the sequence RGD in their ligands. We have developed sensitive enzyme-linked and radioreceptor assays to examine the ligand specificity of the fibronectin receptor. The fibronectin receptor bound only to fibronectin of the various Arg-Gly-Asp (RGD)-containing proteins tested. The smallest amount of receptor detectable in the assay was about 10 ng. Mn2+ enhanced the binding of the receptor to fibronectin 3-10-fold as compared to Ca2+ and Mg2+. Scatchard analysis of the saturation plot from the radioreceptor assay gave a dissociation constant (Kd) of 3 x 10(-8) M for the binding of fibronectin receptor to fibronectin in the presence of Mn2+. Inhibition experiments showed that the affinities of the ligands for the receptor decreased in the order of fibronectin approximately 110-kDa fibronectin fragment greater than GRGDSP peptide greater than 11.5-kDa fragment. Peptides not containing an RGD were several hundred to several thousand-fold less inhibitory than GRGDSP. These included the closely related peptides GRADSP and GRGESP, as well as three peptides containing the reverse sequence DGR. A peptide from the fibrinogen gamma-chain, KQAGDV, which had about 0.5% of the inhibitory activity of the standard GRGDSP peptide, was the most active peptide not containing an RGD. These results document the exquisite specificity of the fibronectin receptor for the RGD sequence.  相似文献   

14.
Integrins are a complex family of divalent cation-dependent cell adhesion receptors composed of one alpha and one beta subunit noncovalently bound to one another. A subset of integrins contains the alpha v subunit in association with one of several beta subunits (e.g. beta 3, beta 5, beta 1). We have recently identified a novel integrin beta subunit, beta 6, that is present in a number of epithelial cell lines. Using a polyclonal antibody raised against the carboxyl-terminal peptide of beta 6, we have now identified the integrin heterodimer, alpha v beta 6, on the surface of two human carcinoma cell lines. Using affinity chromatography of lysates from the pancreatic carcinoma cell line, FG-2, we demonstrate that alpha v beta 6 binds to fibronectin, but not to vitronectin or collagen I. In contrast, the alpha v beta 5 integrin, which is also expressed on FG-2 cells, binds exclusively to vitronectin. Immobilized collagen I does not interact with alpha v integrins, but binds beta 1-containing integrins. Both alpha v beta 6 and alpha v beta 5 are eluted from their respective immobilized ligands by a hexa-peptide containing the sequence Arg-Gly-Asp (RGD). RGD is highly effective in the presence of Ca2+, somewhat less effective in Mg2+, and virtually inactive in Mn2+. These results suggest that alpha v beta 6 functions as an RGD-dependent fibronectin receptor in FG-2 carcinoma cells. In agreement with this notion, cell adhesion assays show that FG-2 cell attachment to fibronectin is only partially inhibited by anti-beta 1 integrin antibodies, implying that other fibronectin receptors may be involved. Taken together with recent reports on the vitronectin receptor function of alpha v beta 5, our results suggest that the previously described carcinoma cell integrin, alpha v beta x (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), is a mixture of at least two different receptors: alpha v beta 5, mediating adhesion to vitronectin, and alpha v beta 6, mediating adhesion to fibronectin.  相似文献   

15.
A synthetic adhesion protein was designed by chemical grafting of the RGD tailed cyclic peptide cyclo[-d-Val-Arg-Gly-Asp-Glu(-Ahx-Tyr-Cys-NH2)-] on the carrier protein bovine serum albumin (BSA). The cyclic conformation of the RGD motif grafted on the protein mimics the conformation of the motif displayed in native adhesion proteins such as fibronectin. The adhesion of the cells on polystyrene coated with the conjugate BSA–peptide was similar or even better than the one obtained when the proadhesive protein fibronectin was coated on the plates. Results also indicated that covalent coupling of the peptide on BSA is not absolutely required, since simple adsorption of the peptide on the protein coated on plates was efficient for enhancing cell adhesion. These results show that polystyrene support can be reconditioned with conformationally constrained RGD peptides to enhance cell adhesion on solid supports. The same methodology can be adapted for the development of new biomaterials based on the recognition of specific peptides.  相似文献   

16.
Arrest and formation of stable adhesive interactions between circulating cells and the endothelium or exposed subendothelial matrix are important processes in many biological situations. We have developed a highly sensitive hydrodynamic assay that utilizes a parallel-plate flow chamber, video microscopy, and digital image processing to separate and measure the primary arrest and adhesion stabilization of flowing cells. Our data indicate that primary cell contact triggers secondary adhesion stabilization, and the secondary events are likely to be critical to metastasis formation. To study the relationship between tumor cell adhesion stabilization and organ-specific blood-borne metastasis, we investigated the adhesion stabilization of metastatic murine RAW117 large-cell lymphoma cells to the extracellular matrix proteins fibronectin and vitronectin, several Arg-Gly-Asp (RGD) containing peptides, and microvascular endothelial cells from the liver or lung. The highly liver metastatic RAW117-H10 subline showed the fastest stabilization to fibronectin, vitronectin, and RGD peptides. Poorly metastatic RAW117-P cells had stabilization times 3-10 times longer than for RAW117-H10 cells, while the lung- and liver-metastatic RAW117-L17 subline failed to stabilize at all. The adhesion stabilization of the RAW117-H10 cells to the extracellular matrix proteins and RGD peptides was inhibited by anti-beta(3) integrin monoclonal antibodies and RGD peptides. In contrast, the RAW117-L17 subline had the shortest stabilization time to unstimulated microvascular endothelial cells of the lung and hepatic sinusoids, followed by RAW117-H10 cells and RAW117-P cells. Monoclonal antibodies against the beta(3) integrin subunit and RGD peptides did not inhibit adhesion stabilization of RAW117-H10 cells to endothelial cells, suggesting that different metastatic variants of large-cell lymphoma cells use differing mechanisms to adhere to organ-specific endothelial cells. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
We describe a novel integrin heterodimer on the surface of the human embryonic kidney cell line 293. This receptor is comprised of alpha v and beta 1 subunits, each of which has been previously found in association with other integrin subunits. This alpha v.beta 1 complex was identified as the predominant vitronectin receptor (VnR) on the surface of 293 cells by immunoprecipitation with antibodies raised against the alpha v subunit. Polymerase chain reaction analysis detected mRNAs for alpha v and beta 1 subunits while no evidence was obtained for beta 2, beta 3, or alpha IIb integrin subunit mRNA. Immunoprecipitation of surface-iodinated proteins with antibodies to alpha v gave bands of 150 and 120 kDa. The 120-kDa band reacted with antibodies to beta 1 in immunoblotting experiments. 293 cells adhere to vitronectin, fibronectin, laminin, and collagen IV, while von Willebrand factor and fibrinogen, known ligands of the VnR (alpha v.beta 3), did not support adhesion. A polyclonal antibody directed against both subunits of the VnR (alpha v, beta 3) inhibits attachment of 293 cells to vitronectin but not to other adhesive proteins. A beta 1-specific monoclonal inhibited attachment to fibronectin, laminin, and collagen IV, known ligands of beta 1 integrins, as well as vitronectin. This novel (alpha v. beta 1) VnR thus appears to mediate cell adhesion exclusively to vitronectin, in contrast to previously described VnRs which have multiple ligands.  相似文献   

18.
In manganese-containing medium, tissue cells can spread on albumin and other substrata typically nonadhesive for cells in calcium/magnesium-containing medium. To learn whether integrin receptors play a role in Mn-dependent adhesion, we tested the effects of RGD peptides and polyclonal anti-fibronectin receptor antibodies on BHK cell spreading on fibronectin and albumin-coated substrata. In Ca/Mg-containing medium on fibronectin substrata, the RGD-related peptides GRG-DSP and GRGDS but not RGDS inhibited cell spreading. In Mn-containing medium, spreading on albumin was inhibited by GRGDSP and GRGDS and also by RGDS. GRGESP, on the other hand, did not inhibit cell spreading under any condition tested. Antibodies directed against fibronectin receptors also inhibited Mn-dependent cell spreading on albumin substrata, but higher levels of antibody were required than were necessary to inhibit Ca/Mg-dependent spreading on fibronectin. On the basis of these results, we suggest that integrin receptors, but probably not fibronectin receptors, mediate Mn-dependent BHK cell spreading on albumin.  相似文献   

19.
Lactoferrin (LF) is an iron-binding secretory protein, which is distributed in the secondary granules of polynuclear lymphocytes as well as in the milk produced by female mammals. Although it has multiple functions, for example antimicrobial, immunomodulatory, antiviral, and anti-tumor metastasis activities, the receptors responsible for these activities are not fully understood. In this study, the binding epitopes for human LF were first isolated from a hexameric random peptide library displayed on T7 phage. Interestingly, two of the four isolated peptides had a representative cell adhesion motif, Arg-Gly-Asp (RGD), implying that human LF interacts with proteins with the RGD motif. We found that human LF bound to the RGD-containing human extracellular matrix proteins, fibronectin and vitronectin. Furthermore, human LF inhibited cell adhesion to these matrix proteins in a concentration-dependent manner but not to the RGD-independent cell adhesion molecule like laminin or collagen. These results indicate that a function of human LF is to block the various interactions between the cell surface and adhesion molecules. This may explain the multifunctionality of LF.  相似文献   

20.
A new artificial cell adhesive protein was engineered by grafting the Arg-Gly-Asp (RGD) sequence, the minimal recognition signal of fibronectin for interaction with integrins, to a calpastatin segment by in vitro mutagenesis. The mutagenized protein showed cell adhesive activity in addition to calpain inhibitory activity. The RGD signal grafted to the calpastatin segment was recognized by the vitronectin receptor but not by the fibronectin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号