首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of elevated atmospheric CO2 (ambient + 340 μmol mol–1) on above-ground litter decomposition were investigated over a 6-week period using a field-based mesocosm system. Soil respiratory activity in mesocosms incubated in ambient and elevated atmospheric CO2 concentrations were not significantly different (t-test, P > 0.05) indicating that there were no direct effects of elevated atmospheric CO2 on litter decomposition. A study of the indirect effects of CO2 on soil respiration showed that soil mesocosms to which naturally senescent plant litter had been added (0.5% w/w) from the C3 sedge Scirpus olneyi grown in elevated atmospheric CO2 was reduced by an average of 17% throughout the study when compared to soil mesocosms to which litter from Scirpus olneyi grown in ambient conditions had been added. In contrast, similar experiments using senescent material from the C4 grass Spartina patens showed no difference in soil respiration rates between mesocosms to which litter from plants grown in elevated or ambient CO2 conditions had been added. Analysis of the C:N ratio and lignin content of the senescent material showed that, while the C:N ratio and lignin content of the Spartina patens litter did not vary with atmospheric CO2 conditions, the C:N ratio (but not the lignin content) of the litter from Scirpus olneyi was significantly greater (t-test;P < 0.05) when derived from plants grown under elevated CO2 (105:1 compared to 86:1 for litter derived from Scirpus olneyi grown under ambient conditions). The results suggest that the increased C:N ratio of the litter from the C3 plant Scirpus olneyi grown under elevated CO2 led to the lower rates of biodegradation observed as reduced soil respiration in the mesocosms. Further long-term experiments are now required to determine the effects of elevated CO2 on C partitioning in terrestrial ecosystems.  相似文献   

2.
Acclimation of photosynthesis and respiration in shoots and ecosystem carbon dioxide fluxes to rising atmospheric carbon dioxide concentration (C a ) was studied in a brackish wetland. Open top chambers were used to create test atmospheres of normal ambient and elevated C a (=normal ambient + 34 Pa CO2) over mono-specific stands of the C3 sedge Scirpus olneyi, the dominant C3 species in the wetland ecosystem, throughout each growing season since April of 1987. Acclimation of photosynthesis and respiration were evaluated by measurements of gas exchange in excised shoots. The impact of elevated C a on the accumulation of carbon in the ecosystem was determined by ecosystem gas exchange measurements made using the open top chamber as a cuvette.Elevated C a increased carbohydrate and reduced Rubisco and soluble protein concentrations as well as photosynthetic capacity(A) and dark respiration (R d ; dry weight basis) in excised shoots and canopies (leaf area area basis) of Scirpus olneyi. Nevertheless, the rate of photosynthesis was stimulated 53% in shoots and 30% in canopies growing in elevated C a compared to normal ambient concentration. Elevated C a inhibited R d measured in excised shoots (–19 to –40%) and in seasonally integrated ecosystem respiration (R e ; –36 to –57%). Growth of shoots in elevated C a was stimulated 14–21%, but this effect was not statistically significant at peak standing biomass in midseason. Although the effect of elevated C a on growth of shoots was relatively small, the combined effect of increased number of shoots and stimulation of photosynthesis produced a 30% stimulation in seasonally integrated gross primary production (GPP). The stimulation of photosynthesis and inhibition of respiration by elevated C a increased net ecosystem production (NEP=GPP–R e ) 59% in 1993 and 50% in 1994. While this study consistently showed that elevated C a produced a significant increase in NEP, we have not identified a correspondingly large pool of carbon below ground.  相似文献   

3.
The long‐term effects of elevated (ambient plus 350 μmol mol?1) atmospheric CO2 concentration (Ca) on the leaf senescence of Quercus myrtifolia Willd was studied in a scrub‐oak community during the transition from autumn (December 1997) to spring (April 1998). Plants were grown in large open‐top chambers at the Smithsonian CO2 Research Site, Merritt Island Wildlife Refuge, Cape Canaveral, Florida. Chlorophyll (a + b) concentration, Rubisco activity and N concentration decreased by 75%, 82%, and 52%, respectively, from December (1997) to April (1998) in the leaves grown at ambient Ca. In contrast, the leaves of plants grown at elevated Ca showed no significant decrease in chlorophyll (a + b) concentration or Rubisco activity, and only a 25% reduction in nitrogen. These results indicate that leaf senescence was delayed during this period at elevated Ca. Delayed leaf senescence in elevated Ca had important consequences for leaf photosynthesis. In elevated Ca the net photosynthetic rate of leaves that flushed in Spring 1997 (last year's leaves) and were 13 months old was not different from fully‐expanded leaves that flushed in 1998, and were approximately 1 month old (current year's leaves). In ambient Ca the net photosynthetic rate of last year's leaves was 54% lower than for current year's leaves. When leaves were fully senesced, nitrogen concentration decreased to about 40% of the concentration in non‐senesced leaves, in both CO2 treatments. In April, net photosynthesis was 97% greater in leaves grown in elevated Ca than in those grown at ambient. During the period when elevated Ca delayed leaf senescence, more leaves operating at higher photosynthetic rate would allow the ecosystem dominated by Q. myrtifolia to gain more carbon at elevated Ca than at ambient Ca.  相似文献   

4.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

5.
Summary Mono-specific communities of the C3 sedge, Scirpus olneyi and the C4 grass, Spartina patens, were exposed to normal ambient or elevated CO2, (ca. 680 l l–1) throughout the 1987 and 1988 growing seasons in open-top field chambers located on a tidal marsh. Single stems of C3 plants grown in ambient or elevated CO2 showed an increased photosynthetic rate when tested at elevated CO2 for both seasons. This increase in photosynthetic response in the C3 species was maintained throughout the 1987 and 1988 growing season. The stimulation of photosynthesis with elevated CO2 appeared to increase as temperature increased and decreased as photosynthetic photon flux (PPF) increased. Analysis of the photosynthetic response of the C3 species during the 1988 season indicated that significant differences in light-saturated photosynthetic rate between ambient and elevated CO2 conditions continued until October. In contrast to the C3 sedge, the C4 grass showed no significant photosynthetic increase to elevated CO2 except at the beginning of the 1988 season.  相似文献   

6.
Wetlands evapotranspire more water than other ecosystems, including agricultural, forest and grassland ecosystems. However, the effects of elevated atmospheric carbon dioxide (CO2) concentration (Ca) on wetland evapotranspiration (ET) are largely unknown. Here, we present data on 12 years of measurements of ET, net ecosystem CO2 exchange (NEE), and ecosystem water use efficiency (EWUE, i.e. NEE/ET) at 13:00–15:00 hours in July and August for a Scirpus olneyi (C3 sedge) community and a Spartina patens (C4 grass) community exposed to ambient and elevated (ambient+340 μmol mol?1) Ca in a Chesapeake Bay wetland. Although a decrease in stomatal conductance at elevated Ca in the S. olneyi community was counteracted by an increase in leaf area index (LAI) to some extend, ET was still reduced by 19% on average over 12 years. In the S. patens community, LAI was not affected by elevated Ca and the reduction of ET was 34%, larger than in the S. olneyi community. For both communities, the relative reduction in ET by elevated Ca was directly proportional to precipitation due to a larger reduction in stomatal conductance in the control plants as precipitation decreased. NEE was stimulated about 36% at elevated Ca in the S. olneyi community but was not significantly affected by elevated Ca in S. patens community. A negative correlation between salinity and precipitation observed in the field indicated that precipitation affected ET through altered salinity and interacted with growth Ca. This proposed mechanism was supported by a greenhouse study that showed a greater Ca effect on ET in controlled low salinity conditions compared with high salinity. In spite of the differences between the two communities in their responses to elevated Ca, EWUE was increased about 83% by elevated Ca in both the S. olneyi and S. patens communities. These findings suggest that rising Ca could have significant impacts on the hydrologic cycles of coastal wetlands.  相似文献   

7.
Upland rice (Oryza sativa L.) was grown at both ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 in either the presence or absence of the root hemi‐parasitic angiosperm Striga hermonthica (Del) Benth. Elevated CO2 alleviated the impact of the parasite on host growth: biomass of infected rice grown at ambient CO2 was 35% that of uninfected, control plants, while at elevated CO2, biomass of infected plants was 73% that of controls. This amelioration occurred despite the fact that O. sativa grown at elevated CO2 supported both greater numbers and a higher biomass of parasites per host than plants grown at ambient CO2. The impact of infection on host leaf area, leaf mass, root mass and reproductive tissue mass was significantly lower in plants grown at elevated as compared with ambient CO2. There were significant CO2 and Striga effects on photosynthetic metabolism and instantaneous water‐use efficiency of O. sativa. The response of photosynthesis to internal [CO2] (A/Ci curves) indicated that, at 45 days after sowing (DAS), prior to emergence of the parasites, uninfected plants grown at elevated CO2 had significantly lower CO2 saturated rates of photosynthesis, carboxylation efficiencies and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) contents than uninfected, ambient CO2‐grown O. sativa. In contrast, infection with S. hermonthica prevented down‐regulation of photosynthesis in O. sativa grown at elevated CO2, but had no impact on photosynthesis of hosts grown at ambient CO2. At 76 DAS (after parasites had emerged), however, infected plants grown at both elevated and ambient CO2 had lower carboxylation efficiencies and Rubisco contents than uninfected O. sativa grown at ambient CO2. The reductions in carboxylation efficiency (and Rubisco content) were accompanied by similar reductions in nitrogen concentration of O. sativa leaves, both before and after parasite emergence. There were no significant CO2 or infection effects on the concentrations of soluble sugars in leaves of O. sativa, but starch concentration was significantly lower in infected plants at both CO2 concentrations. These results demonstrate that elevated CO2 concentrations can alleviate the impact of infection with Striga on the growth of C3 hosts such as rice and also that infection can delay the onset of photosynthetic down‐regulation in rice grown at elevated CO2.  相似文献   

8.
Abstract For two species of oak, we determined whether increasing atmospheric CO2 concentration (Ca) would decrease leaf mitochondrial respiration (R) directly, or indirectly owing to their growth in elevated Ca, or both. In particular, we tested whether acclimatory decreases in leaf‐Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current ambient + 350 µmol mol?1) Ca, in open‐top chambers (OTCs). For Q. myrtifolia, an increase in Ca from 360 to 710 µmol mol?1 had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated Ca—the only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N) concentration for the sun and shade leaves of both the species of oak. Acclimation of photosynthesis in elevated Ca significantly reduced maximum RuBP‐saturated carboxylation capacity (Vc max) for both the sun and shade leaves of only Q. geminata. However, we estimated that only 11–12% of total leaf N was invested in Rubisco; consequently, acclimation in this plant resulted in a small effect on N and an insignificant effect on R. In this study measurements of respiration and photosynthesis were made on material removed from the field; this procedure had no effect on gas exchange properties. The findings of this study were applicable to R expressed either per unit leaf area or unit dry weight, and did not support the hypothesis that elevated Ca decreases R directly, or indirectly owing to acclimatory decreases in Rubisco content.  相似文献   

9.
The mechanisms controlling the photosynthetic performance of C4 plants at low temperature were investigated using ecotypes of Bouteloua gracilis Lag. from high (3000 m) and low (1500 m) elevation sites in the Rocky Mountains of Colorado. Plants were grown in controlled‐environment cabinets at a photon flux density of 700 μ mol m?2 s?1 and day/night temperatures of 26/16 °C or 14/7 °C. The thermal response of the net CO2 assimilation rate (A) was evaluated using leaf gas‐exchange analysis and activity assays of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPCase) and pyruvate,orthophosphate dikinase (PPDK). In both ecotypes, a reduction in measurement temperature caused the CO2‐saturated rate of photosynthesis to decline to a greater degree than the initial slope of A versus the intercellular CO2 response, thereby reducing the photosynthetic CO2 saturation point. As a consequence, A in normal air was CO2‐saturated at sub‐optimal temperatures. Ecotypic variation was low when grown at 26/16 °C, with the major difference between the ecotypes being that the low‐elevation plants had higher A; however, the ecotypes responded differently when grown at cool temperature. At temperatures below the thermal optimum, A in high‐elevation plants grown at 14/7 °C was enhanced relative to plants grown at 26/16 °C, while A in low‐elevation plants grown at 14/7 °C was reduced compared to 26/16 °C‐grown plants. Photoinhibition at low growth temperature was minor in both ecotypes as indicated by small reductions in dark‐adapted Fv/Fm. In both ecotypes, the activity of Rubisco was equivalent to A below 17 °C but well in excess of A above 25 °C. Activities of PEPCase and PPDK responded to temperature in a similar proportion relative to Rubisco, and showed no evidence for dissociation that would cause them to become principal limitations at low temperature. Because of the similar temperature response of Rubisco and A, we propose that Rubisco is a major limitation on C4 photosynthesis in B. gracilis below 17 °C. Based on these results and for theoretical reasons associated with how C4 plants use Rubisco, we further suggest that Rubisco capacity may be a widespread limitation upon C4 photosynthesis at low temperature.  相似文献   

10.
Elevated atmospheric carbon dioxide concentrations ([CO2]) generally increase plant photosynthesis in C3 species, but not in C4 species, and reduce stomatal conductance in both C3 and C4 plants. In addition, tissue nitrogen concentration ([N]) often fails to keep pace with enhanced carbon gain under elevated CO2, particularly in C3 species. While these responses are well documented in many species, implications for plant growth and nutrient cycling in native ecosystems are not clear. Here we present data on 18 years of measurement of above and belowground biomass, tissue [N] and total standing crop of N for a Scirpus olneyi‐dominated (C3 sedge) community, a Spartina patens‐dominated (C4 grass) community and a C3–C4‐mixed species community exposed to ambient and elevated (ambient +340 ppm) atmospheric [CO2] in natural salinity and sea level conditions of a Chesapeake Bay wetland. Increased biomass production (shoots plus roots) under elevated [CO2] in the S. olneyi‐dominated community was sustained throughout the study, averaging approximately 35%, while no significant effect of elevated [CO2] was found for total biomass in the C4‐dominated community. We found a significant decline in C4 biomass (correlated with rising sea level) and a concomitant increase in C3 biomass in the mixed community. This shift from C4 to C3 was accelerated by the elevated [CO2] treatment. The elevated [CO2] stimulation of total biomass accumulation was greatest during rainy, low salinity years: the average increase above the ambient treatment during the three wettest years (1994, 1996, 2003) was 2.9 t ha−1 but in the three driest years (1995, 1999, 2002), it was 1.2 t ha−1. Elevated [CO2] depressed tissue [N] in both species, but especially in the S. olneyi where the relative depression was positively correlated with salinity and negatively related with the relative enhancement of total biomass production. Thus, the greatest amount of carbon was added to the S. olneyi‐dominated community during years when shoot [N] was reduced the most, suggesting that the availability of N was not the most or even the main limitation to elevated [CO2] stimulation of carbon accumulation in this ecosystem.  相似文献   

11.
The effects of elevated atmospheric CO2 concentration on plant-fungi and plant-insect interactions were studied in an emergent marsh in the Chesapeake Bay. Stands of the C3 sedge Scirpus olneyi Grey, and the C4 grass Spartina patens (Ait.) Muhl. have been exposed to elevated atmospheric CO2 concentrations during each growing season since 1987. In August 1991 the severities of fungal infections and insect infestations were quantified. Shoot nitrogen concentration ([N]) and water content (WC) were determined. In elevated concentrations of atmospheric CO2, 32% fewer S. olneyi plants were infested by insects, and there was a 37% reduction in the severity of a pathogenic fungal infection, compared with plants grown in ambient CO2 concentrations. S. olneyi also had reduced [N], which correlated positively with the severities of fungal infections and insect infestations. Conversely, S. patens had increased WC but unchanged [N] in elevated concentrations of atmospheric CO2 and the severity of fungal infection increased. Elevated atmospheric CO2 concentration increased or decreased the severity of fungal infection depending on at least two interacting factors, [N] and WC; but it did not change the number of plants that were infected with fungi. In contrast, the major results for insects were that the number of plants infected with insects decreased, and that the amount of tissue that each insect ate also decreased.  相似文献   

12.
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures.  相似文献   

13.
A mechanistic evaluation of photosynthetic acclimation at elevated CO2   总被引:5,自引:0,他引:5  
Plants grown at elevated pCO2 often fail to sustain the initial stimulation of net CO2 uptake rate (A). This reduced, acclimated, stimulation of A often occurs concomitantly with a reduction in the maximum carboxylation velocity (Vc,max) of Rubisco. To investigate this relationship we used the Farquhar model of C3 photosynthesis to predict the minimum Vc,max capable of supporting the acclimated stimulation in A observed at elevated pCO2. For a wide range of species grown at elevated pCO2 under contrasting conditions we found a strong correlation between observed and predicted values of Vc,max. This exercise mechanistically and quantitatively demonstrated that the observed acclimated stimulation of A and the simultaneous decrease in Vc,max observed at elevated pCO2 is mechanistically consistent. With the exception of plants grown at a high elevated pCO2 (> 90 Pa), which show evidence of an excess investment in Rubisco, the failure to maintain the initial stimulation of A is almost entirely attributable to the decrease in Vc,max and investment in Rubisco is coupled to requirements.  相似文献   

14.
Summary Laboratory and field gas exchange measurements were made on C3 (Scirpus olneyi Gray) and C4 (Spartina patens (Ait.) Mahl., Distichlis spicata (L.) Green) species from an irregularly flooded tidal marsh on the Chesapeake Bay. Laboratory measurements were made on plants grown from root stocks that were transplanted to a greenhouse and grown under high light and high nutrient conditions. The two C4 species were similar in their laboratory gas exchange characteristics: both had higher net carbon exchange rates, higher mesophyll conductances, higher photosynthetic temperature optima and lower leaf conductances than the C3 species. The laboratory photosynthetic water use efficiency of the C4 species was approximately three times that of the C3 species.Field gas exchange responses of the above species were measured in situ a Chesapeake Bay tidal marsh. Despite differences in biological potential measured in the laboratory, all three species had similar in situ carbon exchange rates on a leaf area basis. On a dry weight basis, leaves of the two C4 species had about 1.4 times higher light saturated CO2 assimilation rates than the C3 species. Light saturation of CO2 exchange occurred at photosynthetic photon flux densities of 80 n Einstein cm-2s-1, compared with 160 n Einstein cm -2s-1 in the laboratory grown plants. Spartina patens and Scirpus olneyi had similar daily CO2 assimilation rates, but the daily transpiration rate of the C3 species was almost twice that of the C4 species. Spartina patens showed greater seasonal decrease in photosynthesis than Distichlis spicata and Scirpus olneyi. The two C4 grass species maintained higher mesophyll conductances and photosynthetic water use efficiencies than the C4 sedge.  相似文献   

15.
Rising levels of atmospheric CO2 will have profound, direct effects on plant carbon metabolism. In this study we used gas exchange measurements, models describing the instantaneous response of leaf net CO2 assimilation rate (A) to intercellular CO2 partial pressure (Ci), in vitro enzyme activity assay, and carbohydrate assay in order to investigate the photosynthetic responses of wheat (Triticum aestivum L., cv. Wembley) to growth under elevated partial pressures of atmospheric CO2 (Ca). At flag leaf ligule emergence, the modelled, in vivo, maximum carboxylation velocity for RuBisCO was significantly lower in plants grown at elevated Ca than in plants grown at ambient Ca (70 Pa compared with 40 Pa). By 12 d after ligule emergence, no significant difference in this parameter was detectable. At ligule emergence, plants grown at elevated Ca exhibited reduced in vitro initial activities and activation states of RuBisCO. At their respective growth Ci values, the photosynthesis of 40-Pa-grown plants was sensitive to p(O2) and to p(CO2) whereas that of 70-Pa-grown plants was insensitive. Both sucrose and starch accumulated more rapidly in the leaves of plants grown at 70 Pa. At flag leaf ligule emergence, modelled non-photorespiratory respiration in the light (Rd) was significantly higher in 70-Pa-grown plants than in 40-Pa-grown plants. By 12 d after ligule emergence no significant differences in Rd were detectable.  相似文献   

16.
The nature of the interaction between drought and elevated CO2 partial pressure (pCa) is critically important for the effects of global change on crops. Some crop models assume that the relative responses of transpiration and photosynthesis to soil water deficit are unaltered by elevated pCa, while others predict decreased sensitivity to drought at elevated pCa. These assumptions were tested by measuring canopy photosynthesis and transpiration in spring wheat (cv. Minaret) stands grown in boxes with 100 L rooting volume. Plants were grown under controlled environments with constant light (300 µmol m?2 s?1) at ambient (36 Pa) or elevated (68 Pa) pCa and were well watered throughout growth or had a controlled decline in soil water starting at ear emergence. Drought decreased final aboveground biomass (?15%) and grain yield (?19%) while elevated pCa increased biomass (+24%) and grain yield (+29%) and there was no significant interaction. Elevated pCa increased canopy photosynthesis by 15% on average for both water regimes and increased dark respiration per unit ground area in well‐watered plants, but not drought‐grown ones. Canopy transpiration and photosynthesis were decreased in drought‐grown plants relative to well‐watered plants after about 20–25 days from the start of the drought. Elevated pCa decreased transpiration only slightly during drought, but canopy photosynthesis continued to be stimulated so that net growth per unit water transpired increased by 21%. The effect of drought on canopy photosynthesis was not the consequence of a loss of photosynthetic capacity initially, as photosynthesis continued to be stimulated proportionately by a fixed increase in irradiance. Drought began to decrease canopy transpiration below a relative plant‐available soil water content of 0.6 and canopy photosynthesis and growth below 0.4. The shape of these responses were unaffected by pCa, supporting the simple assumption used in some models that they are independent of pCa.  相似文献   

17.
Elevated atmospheric carbon dioxide (Ca) usually reduces stomatal conductance, but the effects on plant transpiration in the field are not well understood. Using constant‐power sap flow gauges, we measured transpiration from Quercus myrtifolia Willd., the dominant species of the Florida scrub‐oak ecosystem, which had been exposed in situ to elevated Ca (350 µmol mol ? 1 above ambient) in open‐top chambers since May 1996. Elevated Ca reduced average transpiration per unit leaf area by 37%, 48% and 49% in March, May and October 2000, respectively. Temporarily reversing the Ca treatments showed that at least part of the reduction in transpiration was an immediate, reversible response to elevated Ca. However, there was also an apparent indirect effect of Ca on transpiration: when transpiration in all plants was measured under common Ca, transpiration in elevated Ca‐grown plants was lower than that in plants grown in normal ambient Ca. Results from measurements of stomatal conductance (gs), leaf area index (LAI), canopy light interception and correlation between light and gs indicated that the direct, reversible Ca effect on transpiration was due to changes in gs caused by Ca, and the indirect effect was caused mainly by greater self‐shading resulting from enhanced LAI, not from stomatal acclimation. By reducing light penetration through the canopy, the enhanced self‐shading at elevated Ca decreased stomatal conductance and transpiration of leaves at the middle and bottom of canopy. This self‐shading mechanism is likely to be important in ecosystems where LAI increases in response to elevated Ca.  相似文献   

18.
Rice (Oryza sativa L. cv. IR-72) and soybean (Glycine max L. Merr. cv. Bragg), which have been reported to differ in acclimation to elevated CO2, were grown for a season in sunlight at ambient and twice-ambient [CO2], and under daytime temperature regimes ranging from 28 to 40°C. The objectives of the study were to test whether CO2 enrichment could compensate for adverse effects of high growth temperatures on photosynthesis, and whether these two C3 species differed in this regard. Leaf photosynthetic assimilation rates (A) of both species, when measured at the growth [CO2], were increased by CO2 enrichment, but decreased by supraoptimal temperatures. However, CO2 enrichment more than compensated for the temperature-induced decline in A. For soybean, this CO2 enhancement of A increased in a linear manner by 32–95% with increasing growth temperatures from 28 to 40°C, whereas with rice the degree of enhancement was relatively constant at about 60%, from 32 to 38°C. Both elevated CO2 and temperature exerted coarse control on the Rubisco protein content, but the two species differed in the degree of responsiveness. CO2 enrichment and high growth temperatures reduced the Rubisco content of rice by 22 and 23%, respectively, but only by 8 and 17% for soybean. The maximum degree of Rubisco down-regulation appeared to be limited, as in rice the substantial individual effects of these two variables, when combined, were less than additive. Fine control of Rubisco activation was also influenced by both elevated [CO2] and temperature. In rice, total activity and activation were reduced, but in soybean only activation was lowered. The apparent catalytic turnover rate (Kcat) of rice Rubisco was unaffected by these variables, but in soybean elevated [CO2] and temperature increased the apparent Kcat by 8 and 22%, respectively. Post-sunset declines in Rubisco activities were accelerated by elevated [CO2] in rice, but by high temperature in soybean, suggesting that [CO2] and growth temperature influenced the metabolism of 2-carboxyarabinitol-1-phosphate, and that the effects might be species-specific. The greater capacity of soybean for CO2 enhancement of A at supraoptimal temperatures was probably not due to changes in stomatal conductance, but may be partially attributed to less down-regulation of Rubisco by elevated [CO2] in soybean than in rice. However, unidentified species differences in the temperature optimum for photosynthesis also appeared to be important. The responses of photosynthesis and Rubisco in rice and soybean suggest that among C3 plants species-specific differences will be encountered as a result of future increases in global [CO2] and air temperatures.  相似文献   

19.
Field-grown spring wheat (Triticum aestivum L. cv. Dragon) was exposed to ambient and elevated CO2 concentrations (1.5 and 2 times ambient) in open-top chambers. Contents of non-structural carbohydrates were analysed enzymatically in leaves, stems and ears six times during the growing season. The impact of elevated CO2 on wheat carbohydrates was non-significant in most harvests. However, differences in the carbohydrate contents due to elevated CO2 were found in all plant compartments. Before anthesis, at growth stage (GS) 30 (the stem is 1 cm to the shoot apex), the plants grown in elevated CO2 contained significantly more water soluble carbohydrates (WSC), fructans, starch and total non-structural carbohydrates (TNC) in the leaves in comparison with the plants grown in ambient CO2. It is hypothesised that the plants from the treatments with elevated CO2 were sink-limited at GS30. After anthesis, the leaf WSC and TNC contents of the plants from elevated CO2 started to decline earlier than those of the plants from ambient CO2. This may indicate that the leaves of plants grown in the chambers with elevated CO2 senesced earlier. Elevated CO2 accelerated grain development: 2 weeks after anthesis, the plants grown in elevated CO2 contained significantly more starch and significantly less fructans in the ears compared to the plants grown in ambient CO2. Elevated CO2 had no effect on ear starch and TNC contents at the final harvest. Increasing the CO2 concentration from 360 to 520 μmol mol?1 had a larger effect on wheat non-structural carbohydrates than the further increase from 520 to 680 μmol mol?1. The results are discussed in relation to the effects of elevated CO2 on yield and yield components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号