首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraneuronal calcium ([Ca(2+)](i)) regulation is altered in aging brain, possibly because of the changes in critical Ca(2+) transporters. We previously reported that the levels of the plasma membrane Ca(2+)-ATPase (PMCA) and the V(max) for enzyme activity are significantly reduced in synaptic membranes in aging rat brain. The goal of these studies was to use RNA(i) techniques to suppress expression of a major neuronal isoform, PMCA2, in neurons in culture to determine the potential functional consequences of a decrease in PMCA activity. Embryonic rat brain neurons and SH-SY5Y neuroblastoma cells were transfected with in vitro--transcribed short interfering RNA or a short hairpin RNA expressing vector, respectively, leading to 80% suppression of PMCA2 expression within 48 h. Fluorescence ratio imaging of free [Ca(2+)](i) revealed that primary neurons with reduced PMCA2 expression had higher basal [Ca(2+)](i), slower recovery from KCl-induced Ca(2+) transients, and incomplete return to pre-stimulation Ca(2+) levels. Primary neurons and SH-SY5Y cells with PMCA2 suppression both exhibited significantly greater vulnerability to the toxicity of various stresses. Our results indicate that a loss of PMCA such as occurs in aging brain likely leads to subtle disruptions in normal Ca(2+) signaling and enhanced susceptibility to stresses that can alter the regulation of Ca(2+) homeostasis.  相似文献   

2.
Calcium homeostasis and modulation of synaptic plasticity in the aged brain   总被引:2,自引:1,他引:1  
Foster TC 《Aging cell》2007,6(3):319-325
The level of intracellular Ca2+ plays a central role in normal and pathological signaling within and between neurons. These processes involve a cascade of events for locally raising and lowering cytosolic Ca2+. As the mechanisms for age-related alteration in Ca2+ dysregulation have been illuminated, hypotheses concerning Ca2+ homeostasis and brain aging have been modified. The idea that senescence is due to pervasive cell loss associated with elevated resting Ca2+ has been replaced by concepts concerning changes in local Ca2+ levels associated with neural activity. This article reviews evidence for a shift in the sources of intracellular Ca2+ characterized by a diminished role for N-methyl-D-aspartate receptors and an increased role for intracellular stores and voltage-dependent Ca2+ channels. Physiological and biological models are outlined, which relate a shift in Ca2+ regulation with changes in cell excitability and synaptic plasticity, resulting in a functional lesion of the hippocampus.  相似文献   

3.
中枢神经系统钙稳态失调和老龄脑功能   总被引:12,自引:0,他引:12  
脑的老化表现为记忆力的减退。脑老化的钙假说认为脑的老化与中枢神经系统「Ca^2+」i的调节机制紊乱有关,衰老可以通过多种因素导致「Ca^2+」i升高,影响突触传导,神经递质释放,信号转导等导致记忆障碍,本文综述了近年来的进展。  相似文献   

4.
Wojda U  Salinska E  Kuznicki J 《IUBMB life》2008,60(9):575-590
Neuronal Ca(2+) homeostasis and Ca(2+) signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca(2+) homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca(2+) homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca(2+) homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca(2+) dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca(2+) dyshomeostasis escalates with time eventually leading to neuronal loss. Ca(2+) dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca(2+) buffering impairment, glutamate excitotoxicity and alterations in Ca(2+) entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca(2+) homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca(2+) dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca(2+) homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca(2+) homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here.  相似文献   

5.
The plasma membrane Ca(2+)-ATPase (PMCA) pumps play an important role in the maintenance of precise levels of intracellular Ca(2+) [Ca(2+)](i), essential to the functioning of neurons. In this article, we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes (SPMs). PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance. The major signatures of oxidative modification in the PMCAs are rapid inactivation, conformational changes, aggregation, internalization from the plasma membrane and proteolytic degradation. PMCA proteolysis appears to be mediated by both calpains and caspases. The predominance of one proteolytic pathway vs the other, the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult, its intensity and duration. Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca(2+) handling but also has a myriad of downstream consequences on various aspects of cell function, indicating a broad role of these pumps. Age- and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and stroke. Therapeutic approaches that protect the PMCAs and stabilize [Ca(2+)](i) homeostasis may be capable of slowing and/or preventing neuronal degeneration. The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.  相似文献   

6.
Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. In addition, other studies have reported aging- or AD model-related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+-sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+-induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L-VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+-related biomarkers of aging. Consequently, we propose an expanded L-VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L-type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+-dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.  相似文献   

7.
8.
Repetitive nerve activity induces various forms of short-term synaptic plasticity that have important computational roles in neuronal networks. Several forms of short-term plasticity are caused largely by changes in transmitter release, but the mechanisms that underlie these changes in the release process have been difficult to address. Recent studies of a giant synapse - the calyx of Held - have shed new light on this issue. Recordings of Ca(2+) currents or Ca(2+) concentrations at nerve terminals reveal that regulation of presynaptic Ca(2+) channels has a significant role in three important forms of short-term plasticity: short-term depression, facilitation and post-tetanic potentiation.  相似文献   

9.
Changes in the structural complexity of the aged brain   总被引:8,自引:1,他引:7  
Structural changes of neurons in the brain during aging are complex and not well understood. Neurons have significant homeostatic control of essential brain functions, including synaptic excitability, gene expression, and metabolic regulation. Any deviations from the norm can have severe consequences as seen in aging and injury. In this review, we present some of the structural adaptations that neurons undergo throughout normal and pathological aging and discuss their effects on electrophysiological properties and cognition. During aging, it is evident that neurons undergo morphological changes such as a reduction in the complexity of dendrite arborization and dendritic length. Spine numbers are also decreased, and because spines are the major sites for excitatory synapses, changes in their numbers could reflect a change in synaptic densities. This idea has been supported by studies that demonstrate a decrease in the overall frequency of spontaneous glutamate receptor-mediated excitatory responses, as well as a decrease in the levels of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and N-methyl-d-aspartate receptor expression. Other properties such as gamma-aminobutyric acid A receptor-mediated inhibitory responses and action potential firing rates are both significantly increased with age. These findings suggest that age-related neuronal dysfunction, which must underlie observed decline in cognitive function, probably involves a host of other subtle changes within the cortex that could include alterations in receptors, loss of dendrites, and spines and myelin dystrophy, as well as the alterations in synaptic transmission. Together these multiple alterations in the brain may constitute the substrate for age-related loss of cognitive function.  相似文献   

10.
Normal brain ageing is associated with a degree of functional impairment of neuronal activity that results in a reduction in memory and cognitive functions. One mechanism proposed to explain the age-dependent changes was the "Ca(2+) hypothesis of ageing" but data accumulated in the last decade revealed a number of inconsistencies. Two important questions were raised: (a) which are, if any, the most reliable age-associated change in neuronal Ca(2+) homeostasis and (b) are these changes primary, and thus determinant of the ageing phenotype, or are they secondary to other changes in the physiology of the aged neurones. After a brief review of the evidence accumulated for the age-induced changes in synaptic plasticity, we assess the proposal that these changes are, ultimately, determined by changes in the metabolic state of the aged neurones, that are manifest particularly after neuronal stimulation. In this context, it appears that the changes in mitochondrial status and function are of primary importance.  相似文献   

11.
Aging in the hippocampus of several species is characterized by alterations in multiple Ca(2+)-mediated processes, including an increase in L-type voltage-gated Ca(2+) channel (L-VGCC) current, an enhanced Ca(2+)-dependent slow afterhyperpolarization (AHP), impaired synaptic plasticity and elevated Ca(2+) transients. Previously, we found that 1alpha,25-dihydoxyvitamin D(3) (1,25VitD), a major Ca(2+) regulating hormone, down-regulates L-VGCC expression in cultured hippocampal neurons. Here, we tested whether in vivo treatment of aged F344 rats with 1,25VitD would reverse some of the Ca(2+) -mediated biomarkers of aging seen in hippocampal CA1 neurons. As previously reported, L-VGCC currents and the AHP were larger in aged than in young neurons. Treatment with 1,25VitD over 7 days decreased L-VGCC activity in aged rats, as well as the age-related increase in AHP amplitude and duration. In addition, reduced L-VGCC activity was correlated with reduced AHPs in the same animals. These data provide direct evidence that 1,25VitD can regulate multiple Ca(2+)-dependent processes in neurons, with particular impact on reducing age-related changes associated with Ca(2+) dysregulation. Thus, these results may have therapeutic implications and suggest that 1,25VitD, often taken to maintain bone health, may also retard some consequences of brain aging.  相似文献   

12.
13.
Rusakov DA  Fine A 《Neuron》2003,37(2):287-297
Synaptic activation is associated with rapid changes in intracellular Ca(2+), while the extracellular Ca(2+) level is generally assumed to be constant. Here, using a novel optical method to measure changes in extracellular Ca(2+) at high spatial and temporal resolution, we find that brief trains of synaptic transmission in hippocampal area CA1 induce transient depletion of extracellular Ca(2+). We show that this depletion, which depends on postsynaptic NMDA receptor activation, decreases the Ca(2+) available to enter individual presynaptic boutons of CA3 pyramidal cells. This in turn reduces the probability of consecutive synaptic releases at CA3-CA1 synapses and therefore contributes to short-term paired-pulse depression of minimal responses. This activity-dependent depletion of extracellular Ca(2+) represents a novel form of fast retrograde synaptic signaling that can modulate glutamatergic information transfer in the brain.  相似文献   

14.
Different intracellular pools participate in generating Ca(2+) signals in neuronal cells and in shaping their spatio-temporal patterns. They include the endoplasmic reticulum (endowed with different classes of Ca(2+) channels, with distinct functional properties and highly defined expression patterns in the brain), the Golgi apparatus, and the mitochondria. The release of Ca(2+) from intracellular pools plays an important role in controlling processes such as neurite outgrowth, synaptic plasticity, secretion and neurodegeneration.  相似文献   

15.
The aging brain shows a progressive loss of neuropil, which is accompanied by subtle changes in neuronal plasticity, sensory learning and memory. Neurophysiologically, aging attenuates evoked responses—including the mismatch negativity (MMN). This is accompanied by a shift in cortical responsivity from sensory (posterior) regions to executive (anterior) regions, which has been interpreted as a compensatory response for cognitive decline. Theoretical neurobiology offers a simpler explanation for all of these effects—from a Bayesian perspective, as the brain is progressively optimized to model its world, its complexity will decrease. A corollary of this complexity reduction is an attenuation of Bayesian updating or sensory learning. Here we confirmed this hypothesis using magnetoencephalographic recordings of the mismatch negativity elicited in a large cohort of human subjects, in their third to ninth decade. Employing dynamic causal modeling to assay the synaptic mechanisms underlying these non-invasive recordings, we found a selective age-related attenuation of synaptic connectivity changes that underpin rapid sensory learning. In contrast, baseline synaptic connectivity strengths were consistently strong over the decades. Our findings suggest that the lifetime accrual of sensory experience optimizes functional brain architectures to enable efficient and generalizable predictions of the world.  相似文献   

16.
The physical distance between presynaptic Ca(2+) channels and the Ca(2+) sensors that trigger exocytosis of neurotransmitter-containing vesicles is a key determinant of the signalling properties of synapses in the nervous system. Recent functional analysis indicates that in some fast central synapses, transmitter release is triggered by a small number of Ca(2+) channels that are coupled to Ca(2+) sensors at the nanometre scale. Molecular analysis suggests that this tight coupling is generated by protein-protein interactions involving Ca(2+) channels, Ca(2+) sensors and various other synaptic proteins. Nanodomain coupling has several functional advantages, as it increases the efficacy, speed and energy efficiency of synaptic transmission.  相似文献   

17.
Calcium signaling is used by neurons to control a variety of functions, including cellular differentiation, synaptic maturation, neurotransmitter release, intracellular signaling and cell death. This review focuses on one of the most important Ca(2+) regulators in the cell, the plasma membrane Ca(2+)-ATPase (PMCA), which has a high affinity for Ca(2+) and is widely expressed in brain. The ontogeny of PMCA isoforms, linked to specific requirements of Ca(2+) during development of different brain areas, is addressed, as well as their function in the adult tissue. This is based on the high diversity of variants in the PMCA family in brain, which show particular kinetic differences possibly related to specific localizations and functions of the cell. Conversely, alterations in the activity of PMCAs could lead to changes in Ca(2+) homeostasis and, consequently, to neural dysfunction. The involvement of PMCA isoforms in certain neuropathologies and in brain ageing is also discussed.  相似文献   

18.
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which arelocated both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.  相似文献   

19.
Glial cells in (patho)physiology   总被引:1,自引:0,他引:1  
Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.  相似文献   

20.
Biochemical changes of rat brain membranes with aging   总被引:4,自引:0,他引:4  
Modification of membrane composition and enzymatic activities both in total brain homogenate and purified synaptic plasma membrane of 3 and 24 month old rats has been investigated. Protein, cholesterol and phospholipid content and (Na+, K+)ATPase and 2',3' cyclic nucleotide phosphohydrolase activities were determined. The major changes occurred in the whole homogenate where a general increase in total protein and cholesterol content with age and a significant increase of the cholesterol/phospholipids molar ratio has been detected. In S.P.M. aging process induced a decrease of protein, cholesterol and phospholipids content associated with an increased membrane viscosity and a decrease of delta E. These data are consistent with a change in the structural organization and in the distribution pattern of different cell population in the aging brain. A possible artifactual effect of freezing on the reported parameter is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号