共查询到20条相似文献,搜索用时 0 毫秒
1.
Gardiner EJ Hunter CA Packer MJ Palmer DS Willett P 《Journal of molecular biology》2003,332(5):1025-1035
We have constructed the potential energy surfaces for all unique tetramers, hexamers and octamers in double helical DNA, as a function of the two principal degrees of freedom, slide and shift at the central step. From these potential energy maps, we have calculated a database of structural and flexibility properties for each of these sequences. These properties include: the values of each of the six step parameters (twist roll, tilt, rise, slide and shift), for each step of the sequence; flexibility measures for both decrease and increase in each property value from the minimum energy conformation for the central step; and the deviation from the path of a hypothetical straight octamer. In an analysis of structural change as a function of sequence length, we observe that almost all DNA tends to B-DNA and becomes less flexible. A more detailed analysis of octamer properties has allowed us to determine the structural preferences of particular sequence elements. GGC and GCC sequences tend to confer bistability, low stability and a predisposition to A-form DNA, whereas AA steps strongly prefer B-DNA and inhibit A-structures. There is no correlation between flexibility and intrinsic curvature, but bent DNA is less stable than straight. The most difficult deformation is undertwisting. The TA step stands out as the most flexible sequence element with respect to decreasing twist and increasing roll. However, as with the structural properties, this behavior is highly context-dependent and some TA steps are very straight. 相似文献
2.
Bharanidharan D Gautham N 《Biochemical and biophysical research communications》2006,340(4):1229-1237
The microstructure of a DNA helix is characterized by several base pair and base step parameters such as twist, rise, roll, propeller twist, etc., in addition to conformational parameters such as the backbone and the glycosidic torsion angles. Among these only a few, which are independent of all others and of each other, may be used to precisely characterize the helix. The problem however is to identify these independent parameters. We have used principal component analysis to identify a relatively small set of independent parameters, with which to characterize each DNA helix. We show that these principal components clearly discriminate between A and B DNA helical types. The calculations further suggest that the microstructure of a DNA helix is better characterized using dinucleotides. 相似文献
3.
Federica Battistini Eleanor J. Gardiner Martin J. Packer 《Journal of molecular biology》2010,396(2):264-279
Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597°) in one plane and very little curvature (10°) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30° per helical turn throughout most of the structure but that there are two sharper kinks of 50° at ± 2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500° of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure were obtained by applying a constant bending moment. When a single bending moment was applied to the entire sequence, the local details of the calculated structure did not match the experiment. However, when local 10-step bending moments were applied separately, the calculated structure showed excellent agreement with experiment. This implies that the protein applies variable bending forces along the DNA to maintain the superhelical path required for nucleosome wrapping. In particular, the 50° kinks are constraints imposed by the protein rather than a feature of the 1kx5 DNA sequence. The kinks coincide with a relatively flexible region of the sequence, and this is probably a prerequisite for high-affinity nucleosome binding, but the bending strain energy is significantly higher at these points than for the rest of the sequence. In the most rigid regions of the sequence, a higher strain energy is also required to achieve the standard 30° curvature per helical turn. We conclude that matching of the DNA sequence to the local roll periodicity required to achieve bending, together with the increased flexibility required at the kinks, determines the sequence selectivity of DNA wrapping in the nucleosome. 相似文献
4.
5.
Winding DNA in a superhelix can be considered a process consisting of two smooth deformations: bending and twisting. The extra
twist angle introduced by winding DNA into the nucleosomal superhelix is calculated by means of the Crick formula to be −0.5°
per base pair (bp). This is equivalent to a change of −0.15±0.015 bp in the DNA double-helical repeat. Free DNA in solution
is known to have a helical repeat of 10.55±0.1 bp. On the other hand, a weighted average of various estimates of the DNA repeat
in the nucleosome is 10.38±0.02. The difference happens to be perfectly accounted for by the superhelicity of the nucleosomal
DNA. This implies that the latter is essentially nonconstrained. 相似文献
6.
Structural similarity between the pleckstrin homology domain and verotoxin: the problem of measuring and evaluating structural similarity. 下载免费PDF全文
C. A. Orengo M. B. Swindells A. D. Michie M. J. Zvelebil P. C. Driscoll M. D. Waterfield J. M. Thornton 《Protein science : a publication of the Protein Society》1995,4(10):1977-1983
An unexpected structural similarity is described between the pleckstrin homology (PH) domain and verotoxin. This similarity has escaped detection primarily due to the differences in topology that exist between the two proteins. By comparing this result with two previously reported similarities for the PH domain, one with the lipocalins and another with the FK506 binding protein, we discuss the problems of measuring and assessing structural similarities. 相似文献
7.
Richard Owczarzy Peter M. Vallone Frank J. Gallo Teodoro M. Paner Michael J. Lane Albert S. Benight 《Biopolymers》1997,44(3):217-239
Many important applications of DNA sequence-dependent hybridization reactions have recently emerged. This has sparked a renewed interest in analytical calculations of sequence-dependent melting stability of duplex DNA. In particular, for many applications it is often desirable to accurately predict the transition temperature, or tm, of short duplex DNA oligomers (∼ 20 base pairs or less) from their sequence and concentration. The thermodynamic analytical method underlying these predictive calculations is based on the nearest-neighbor model. At least 11 sets of nearest-neighbor sequence-dependent thermodynamic parameters for DNA have been published. These sets are compared. Use of the nearest-neighbor sets in predicting tm from the DNA sequence is demonstrated, and the ability of the nearest-neighbor parameters to provide accurate predictions of experimental tm's of short duplex DNA oligomers is assessed. © 1998 John Wiley & Sons, Inc. Biopoly 44: 217–239, 1997 相似文献
8.
State of the art molecular dynamics simulations are used to study the structure, dynamics, molecular interaction properties and flexibility of DNA and RNA duplexes in aqueous solution. Special attention is paid to the deformability of both types of structures, revisiting concepts on the relative flexibility of DNA and RNA duplexes. Our simulations strongly suggest that the concepts of flexibility, rigidity and deformability are much more complex than usually believed, and that it is not always true that DNA is more flexible than RNA. 相似文献
9.
Here we propose a weighted measure for the similarity analysis of DNA sequences. It is based on LZ complexity and (0,1) characteristic sequences of DNA sequences. This weighted measure enables biologists to extract similarity information from biological sequences according to their requirements. For example, by this weighted measure, one can obtain either the full similarity information or a similarity analysis from a given biological aspect. Moreover, the length of DNA sequence is not problematic. The application of the weighted measure to the similarity analysis of β-globin genes from nine species shows its flexibility. 相似文献
10.
11.
Methylation at the N1 site of adenine leads to the formation of cytotoxic 1-methyladenine (m1A). Since the N1 site of adenine is involved in the hydrogen bonding of T·A and A·T Watson–Crick base pairs, it is expected that the pairing interactions will be disrupted upon 1-methylation. In this study, high-resolution NMR investigations were performed to determine the effect of m1A on double-helical DNA structures. Interestingly, instead of disrupting hydrogen bonding, we found that 1-methylation altered the T·A Watson–Crick base pair to T(anti)·m1A(syn) Hoogsteen base pair, providing insights into the observed differences in AlkB-repair efficiency between dsDNA and ssDNA. 相似文献
12.
Akinori Kidera Yasuo Konishi Tatsuo Ooi Harold A. Scheraga 《Journal of Protein Chemistry》1985,4(5):265-297
In a previous paper we obtained ten (orthogonal) factors, linear combinations of which can express the properties of the 20 naturally occurring amino acids. In this paper, we assume that the most important properties (linear combinations of these ten factors) that determine the three-dimensional structure of a protein are conserved properties, i.e., are those that have been conserved during evolution. Two definitions of a conserved property are presented: (1) a conserved property for an average protein is defined as that linear combination of the ten factors that optimally expresses the similarity of one amino acid to another (hence, little change during evolution), as given by the relatedness odds matrix of Dayhoff et al.; (2) a conserved property for each position in the amino acid sequence (locus) of a specific family of homologous proteins (the cytochromec family or the globin family) is defined as that linear combination of the ten factors that is common among a set of amino acids at a given locus when the sequences are properly aligned. When the specificity at each locus is averaged over all loci, the same features are observed for three expressions of these two definitions, namely the conserved property for an average protein, the average conserved property for the cytochromec family, and the average conserved property for the globin family; we find that bulk and hydrophobicity (information about packing and long-range interactions) are more important than other properties, such as the preference for adopting a specific backbone structure (information about short-range interactions). We also demonstrate that the sequence profile of a conserved property, defined for each locus of a protein family (definition 2), corresponds uniquely to the three-dimensional structure, while the conserved property for an average protein (definition 1) is not useful for the prediction of protein structure. The amino acid sequences of numerous proteins are searched to find those that are similar, in terms of the conserved properties (definition 2), to sequences of the same size from one of the homologous families (cytochromec and globin, respectively) for whose loci the conserved properties were defined. Many similar sequences are found, the number of similarities decreasing with increasing size of the segment. However, the segments must be rather long (15 residues) before the comparisons become meaningful. As an example, one sufficiently large sequence (20 residues) from a protein of known structure (apo-liver alcohol dehydrogenase that is not a member of either family) is found to be similar in the conserved properties to a particular sequence of a member of the family of human hemoglobin chains, and the two sequences have similar structures. This means that, since conserved properties are expected to be structure determinants, we can use the conserved properties to predict an initial protein structure for subsequent energy minimization for a protein for which the conserved properties are similar to those of a family of proteins with a sufficiently large number of homologous amino acid sequences; such a large number of homologous sequences is required to define a conserved property for each locus of the homologous protein family. 相似文献
13.
Aaron J. Oakley 《Protein science : a publication of the Protein Society》2019,28(6):990-1004
DNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate‐driven nanomachines such as the DNA‐unwinding helicase DnaB and the clamp loader complex that loads DNA‐clamps onto primer–template junctions. DNA‐clamps are required for the processivity of the DNA polymerase III core, a heterotrimer of α, ε, and θ, required for leading‐ and lagging‐strand synthesis. DnaB binds the DnaG primase that synthesizes RNA primers on both strands. Representative structures are available for most classes of DNA replication proteins, although there are gaps in our understanding of their interactions and the structural transitions that occur in nanomachines such as the helicase, clamp loader, and replicase core as they function. Reviewed here is the structural biology of these bacterial DNA replication proteins and prospects for future research. 相似文献
14.
In the era of structural genomics, it is necessary to generate accurate structural alignments in order to build good templates for homology modeling. Although a great number of structural alignment algorithms have been developed, most of them ignore intermolecular interactions during the alignment procedure. Therefore, structures in different oligomeric states are barely distinguishable, and it is very challenging to find correct alignment in coil regions. Here we present a novel approach to structural alignment using a clique finding algorithm and environmental information (SAUCE). In this approach, we build the alignment based on not only structural coordinate information but also realistic environmental information extracted from biological unit files provided by the Protein Data Bank (PDB). At first, we eliminate all environmentally unfavorable pairings of residues. Then we identify alignments in core regions via a maximal clique finding algorithm. Two extreme value distribution (EVD) form statistics have been developed to evaluate core region alignments. With an optional extension step, global alignment can be derived based on environment-based dynamic programming linking. We show that our method is able to differentiate three-dimensional structures in different oligomeric states, and is able to find flexible alignments between multidomain structures without predetermined hinge regions. The overall performance is also evaluated on a large scale by comparisons to current structural classification databases as well as to other alignment methods. 相似文献
15.
16.
昆虫区系多元相似性分析方法 总被引:4,自引:0,他引:4
由植物学领域首先提出的相似性概念已广泛应用于动植物区系地理研究以及生物学、生态学等诸多自然学科乃至社会科学领域.根据Jacard提出的二元相似性系数公式SI=C/(A B-C)和Sprensen提出的二元相似性系数公式SI=2C/(A B),分别推导出2个计算多元相似性系数的数学表达式,SIJab…n=[(∑Hij)2/n (∑Hijk)3/n … Hab…n]/[∑Si-∑Hij-2∑Hijk-…-(n-1)Hab…n]和 SISab…n=[2(∑Hij)2/n (3∑Hijk)3/n … nHab…n]/ ∑Si,并用中国夜蛾广布种类在中国7个动物地理区的分布资料为例进行验证,从而可以直接从整体角度和宏观规模上简便、快捷地考量多个系统间的亲疏程度和相似关系.建议在以相似性为基础的聚类分析中,不必再先把2个系统合并成一个新系统后,再和第3个系统比较,而可直接计算多个系统的相似性系数,以避免由于合并带来的信息损失.还讨论了应该提高Sprensen公式0.5的显著性标准,以使同一组数据的两种计算结果趋向一致. 相似文献
17.
合并与不合并:两个相似性聚类分析方法比较 总被引:1,自引:0,他引:1
以山西省4638种昆虫在7个地理小区的分布、内蒙古7766种昆虫在14个地理小区的分布和中国16804属昆虫在67个生态区域的分布3组数据为样本,用传统的层层合并的相似性聚类分析法(SCA)和新的不需合并的多元相似性聚类分析法(MSCA)进行运算分析,对比结果表明,不合并法都能得到既符合统计学逻辑,又符合地理学、生物学逻辑的结果;合并法在参与小区较少时,还能够得到与不合并法类似的结果,随着参与小区的增多,聚类结构发生变化,以致聚类功能彻底丧失.无论两种聚类结果差异大小,其性质都迥然不同:不合并法的相似性系数是固有的、互相独立的、同时存在的,聚类结果是所有小区之间关系亲疏、距离远近的状态;合并法的每个相似性系数都是合并的依据或结果,前一个系数是后一个系数产生的条件,后一个系数是前一个系数消亡的结果,严格按照顺序,当最后一个系数产生时,前面所有系数和所有小区都已不复存在,聚类结果只是记录不断合并、不断消亡的过程.因此在肯定合并法历史价值的同时,认为申效诚等创建的多元相似性系数公式及多元相似性聚类分析法摈弃合并降阶这一产生偏差和错误的根源,能够得出相对客观的聚类结果,是生物地理学研究领域有效的聚类分析工具,必将推动生物地理学定量研究迈入一个新阶段. 相似文献
18.
DNA polymorphisms among Arabidopsis thaliana ecotypes are widely used as genetic markers in map-based cloning strategies. New PCR-based molecular markers do not only facilitate molecular mapping, but can also be used to obtain reliable sequence information for cladistic analyses. We have used CAPS (cleaved amplified polymorphic sequences) markers and a direct sequencing strategy to estimate genetic similarity among eighteen Arabidopsis ecotypes. Sequences at four loci, two from the nuclear and two from a non-nuclaar genome, were analysed. For each ecotype more than 1000pb of sequence information was obtained, and genetic similarity was calculated from a total of 35 polymorphic sites using a character-based approach. Divergence ranged from zero up to 50 discordant characters among the 72 characters defined by the polymorphisms. Separate calculations based on the nuclear and the non-nuclear sequences were performed and revealed a number of common features, including the existence of small clusters of very closely related ecotypes separated from each other by extensive sequence divergence. Our results provide information useful especially to investigators setting up crosses for chromosome landing strategies. 相似文献
19.
We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA nonhomologous complexes from the Protein Data Bank (PDB). Globally, H-bonds are the most frequent interactions (approximately 50%), followed by van der Waals, hydrophobic, and electrostatic interactions. From the protein viewpoint, hydrophilic amino acids are over-represented in the interaction databases: Positively charged amino acids mainly contact nucleic acid phosphate groups but can also interact with base edges. From the nucleotide point of view, DNA and RNA behave differently: Most protein-DNA interactions involve phosphate atoms, while protein-RNA interactions involve more frequently base edge and ribose atoms. The increased participation of DNA phosphate involves H-bonds rather than salt bridges. A statistical analysis was performed to find the occurrence of amino acid-nucleotide pairs most different from chance. These pairs were analyzed individually. Finally, we studied the conformation of DNA in the interaction sites. Despite the prevalence of B-DNA in the database, our results suggest that A-DNA is favored in the interaction sites. 相似文献
20.
Chao JA Prasad GS White SA Stout CD Williamson JR 《Journal of molecular biology》2003,326(4):999-1004
The Saccharomyces cerevisiae ribosomal protein L30 autoregulates its own expression by binding to a purine-rich internal loop in its pre-mRNA and mRNA. NMR studies of L30 and its RNA complex showed that both the internal loop of the RNA as well as a region of the protein become substantially more ordered upon binding. A crystal structure of a maltose binding protein (MBP)-L30 fusion protein with two copies in the asymmetric unit has been determined. The flexible RNA-binding region in the L30 copies has two distinct conformations, one resembles the RNA bound form solved by NMR and the other is unique. Structure prediction algorithms also had difficulty accurately predicting this region, which is consistent with conformational flexibility seen in the NMR and X-ray crystallography studies. Inherent conformational flexibility may be a hallmark of regions involved in intermolecular interactions. 相似文献