首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient genetic transformation protocol has been developed for strawberry cv. Redcoat using Agrobacterium tumefadens. The protocol relies on a high frequency (84%) shoot regeneration system from leaf disks. The leaf disks were inoculated with a non-oncogenic Agrobacterium tumefadens strain MP90 carrying a binary vector plasmid pBI121 which contains a chimeric nopaline synthase (NOS) promoter driven neomycin phosphotransferase (NPT II) gene and a cauliflower mosaic virus 35S (CaMV35S) promoter driven, ß-glucuronidase (GUS) marker gene. The inoculated leaf disks, pre-cultured for 10 days on non-selective shoot regeneration medium, formed light green meristematic regions on selection medium containing 50 g/ml kanamycin. These meristematic regions developed into transformed shoots at a frequency of 6.5% on a second selection medium containing 25 g/ml kanamycin. The selected shoots were multiplied on shoot proliferation medium in the presence of kanamycin. All such shoots were resistant to kanamycin and expressed varying levels of NPT II and GUS enzyme activity. Histochemical assays for GUS activity indicated that the 35S promoter was highly active in meristematic cells of shoot and root apices. Molecular analysis of each transgenic clone confirmed the integration of both marker genes into the strawberry genome. Leaf disks prepared from transformed plants, when put through the second selection cycle on kanamycin, formed callus and exhibited GUS activity. The rooted transformed plants were grown in a greenhouse for further characterization. The protocol may be useful for improvement of strawberry through gene manipulations.NRCC No. 31491During the editorial process, a report has appeared on transformation of strawberry (James et al. 1990 Plant Sci 69:79–94).  相似文献   

2.
Cotyledon explants of muskmelon (Cucumis melo L., cv. Amarillo Oro) seedlings were co-cultivated with disarmed Agrobacterium tumefaciens strain LBA4404 that contained the binary vector plasmid pBI121.1. The T-DNA region of this binary vector contains the Nopaline synthase/neomycin phosphotransferase II (NPTII) chimeric gene for kanamycin resistance and the Cauliflower Mosaic Virus 35S/-glucuronidase (GUS) chimeric gene. After infection, the cotyledon pieces were placed in induction medium containing 100 mg/l kanamycin. Putative transformed shoots were obtained, followed by the development of morphologically normal plantlets. The transgenic nature of regenerants was demonstrated by polymerase chain reaction, Southern blot analysis, plant growth on medium selective for the transgene (NPTII) and expression of the co-transformed GUS gene. Factors affecting the transformation procedure are discussed.Abbreviations CaMV Cauliflower Mosaic Virus - Cf Cefotaxime - GUS -glucuronidase - Km Kanamycin - MS Murashige and Skoog - NOS nopaline synthase - NPTII neomycin phosphotransferase II - PCR polymerase chain reaction  相似文献   

3.
Summary A high frequency shoot regeneration (80%) was developed from callus of leaf discs and stem internodes of Moricandia arvensis. Leaf discs were shown to be a preferable starting material for transformation experiments. Agrobacterium tumefaciens strain GV3101/pMP90 used in this study contained a binary vector with genes for kanamycin resistance, hygromycin resistance and -glucuronidase (GUS). Maximum transformation efficiency (10.3%) was achieved by using kanamycin at the rate of 200 mg/l as a selection agent. Presence of tobacco suspension culture during co-cultivation and a pre-selection period of seven days after co-cultivation was essential for successful transformation. Transgenic plants grew to maturity and exhibited flowering in a glasshouse. GUS activity was evident in all parts of leaf and the presence of GUS gene in plant gemone was confirmed by PCR analysis.Abbreviations GUS -glucuronidase  相似文献   

4.
Experiments in shoot regeneration and virulentAgrobacterium tumefaciens-mediated transformation were used to develop a protocol forRubus transformation. This protocol was then used to produce transformedRubus plants fromin vitro internodes inoculated with anAgrobacterium tumefaciens encoding neomycin phosphotransferase on its disarmed T-DNA. Two transformed plants were selected from 800 inoculations on a medium containing 10 µg ml–1 kanamycin. Results indicated that this level of kanamycin successfully selected against non-transformed cells but did not reduce the number of transformed, kanamycin-resistant, shoots formed. Enzyme assays and Southern blot analysis verified the presence of the -glucuronidase gene in the plant genome.  相似文献   

5.
Summary Agrobacterium-mediated gene transformation of Populus tremuloides Michx was accomplished by co-cultivation of leaf disks excised from greenhouse plants with Agrobacterium tumefaciens containing a binary Ti-plasmid vector harboring chimeric neomycin phosphotransferase (NPT II) and ß-glucuronidase (GUS) genes. Shoot regeneration in the presence of kanamycin was achieved when thidiazuron (TDZ) was used as a plant growth regulator. Transformation was verified by amplification of NPT II and GUS gene fragments from genomic DNA of transgenic plants with polymerase chain reaction (PCR) and integration of these genes into nuclear genome of transgenic plants was confirmed by genomic Southern hybridization analysis. Histochemical assay revealed the expression of GUS gene in leaf, stem and root tissues of transgenic plants, further confirming the integration and expression of T-DNA in these plants. This protocol allows effective transformation and regeneration of quaking aspen using greenhouse-grown materials as an explant source. Whole plant regeneration from cuttings of fieldgrown mature quaking aspen and hybrid poplar (P. alba x P. grandidentata) was also readily achieved by using this protocol, which represents a potential system for producing transgenic quaking aspen and hybrid poplar of valuable genotypes.Abbreviations AMV RNA4 Alfalfa mosaic virus RNA4 - BA 6-benzyladenine - CaMV cauliflower mosaic virus - 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylenediaminetetraacetic acid - FAA formalin-acetic acid-alcohol - GUS ß-glucuronidase - NAA 1-naphthylacetic acid - NPT II neomycin phosphotransferase II - PCR polymerase chain reaction - SDS sodium dodecyl sulphate - TE Tris-Cl/EDTA - TDZ N-phenyl-N-1,2,3-thiadiazol-5-yl-urea (thidiazuron) - WPM woody plant medium (Lloyd and McCown 1980) - X-GLUC 5-bromo-4-chloro-3-indolyl-ß-glucuronic acid  相似文献   

6.
Stable transformation of lettuce cultivar South Bay from cotyledon explants   总被引:2,自引:0,他引:2  
Transgenic plants of lettuce cultivar (cv.) South Bay were produced by using Agrobacterium tumefaciens vectors containing the -glucuronidase (GUS) reporter gene and the NPT II gene for kanamycin resistance as a selectable marker. High frequency of transformation, based on kanamycin resistance and assays for GUS expression, was obtained with 24 to 72-h-old cotyledon explants cocultivated for 48 h with Agrobacterium tumefaciens. After the cocultivation period, the explants were placed in selection medium containing 50 or 100 mg l–1 of kanamycin, 100 mg l–1 cefotaxime and 500 mg l–1 carbenicillin for 10 days. Surviving explants were transferred every 14 days on shoot elongation medium. Progenies of R0 plants demonstrated linked monogenic segregation for kanamycin resistance and GUS activity.Florida Agricultural Experiment Station Journal Series R-02231. This research was partially supported by CNPq/RHAE (Brazil).  相似文献   

7.
Regeneration of pepino (Solanum muricatum Ait.) shoots was achieved both by organogenesis and by embryogenesis. Shoots derived via organogenesis were easily rooted and most regenerated plants appeared phenotypically normal. Transgenic plants were obtained using the binary vector pKIWI110 in the avirulent Agrobacterium tumefaciens strain LBA4404. Optimization of transformation protocols was rapidly achieved by monitoring early expression of the GUS (-D-glucuronidase) reporter gene carried on pKIWI110. Transgenic plants expressed GUS and selectable marker genes for kanamycin resistance and chlorsulfuron resistance. PCR (polymerase chain reaction) and Southern analysis provided molecular evidence for transformation.  相似文献   

8.
An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical -glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis.  相似文献   

9.
10.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

11.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

12.
Summary TransgenicRhododendron plants were obtained byAgrobacterium tumefaciens-mediated gene transfer.A. tumefaciens harboring a binary vector that contained the chimeric neomycin phosphotransferase II (NPTII) and (3-glucuronidase (GUS) genes was co-cultivated with stem and leaf segments fromRhododendron tissues culturedin vitro. Adventitious buds were fonned and shoots were regenerated on kanamycin selection medium 3-4 months after inoculation. Integration of the NPTII and the GUS genes was confirmed by polymerase chain reaction (PCR) and by Southern hybridization analyses. Histochemical GUS assay showed that the inserted gene was expressed in all tissues with the cauliflower mosaic virus (CaMV) 35S promoter. This transformation procedure has the potential to expand the range of genetic variation inRhododendron.  相似文献   

13.
Chen Y  Lu L  Deng W  Yang X  McAvoy R  Zhao D  Pei Y  Luo K  Duan H  Smith W  Thammina C  Zheng X  Ellis D  Li Y 《Plant cell reports》2006,25(10):1043-1051
An in vitro plant regeneration method and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Euonymus alatus. More than 60% of cotyledon and 70% of hypocotyl sections from 10-day-old seedlings of E. alatus produced 2–4 shoots on woody plant medium (WPM) supplemented with 5.0 mg/l 6-benzylaminopurine (BA) plus 0.2 mg/l α-naphthalene acetic acid (NAA), and 77% of shoots produced roots on WPM medium with 0.3 mg/l NAA and 0.5 mg/l Indole-3-butyricacid (IBA). On infection with Agrobacterium tumefaciens strain EHA105 harboring a gusplus gene that contained a plant recognizable intron from the castor bean catalase gene to ensure plant-specific β-glucuronidase (GUS) expression, 16% of cotyledon and 15% of hypocotyl explants produced transgenic shoots using kanamycin as a selection agent, and 67% of these shoots rooted. Stable insertion of T-DNA into the host genome was determined with organ- and tissue-specific expression of the gusplus gene and further confirmed with a PCR-based molecular analysis.  相似文献   

14.
Transformation of fenugreek (Trigonella foenumgraecum) was carried out with A281 oncogenic strain of Agrobacterium tumefaciens using root, cotyledon and hypocotyl explants excised from 1-week-old seedlings, which showed that the plant was highly susceptible to transformation. Tumors (calli) were selected on 50 mg dm–3 kanamycin. They were analyzed for -glucuronidase (GUS) expression. Presence of uidA (gus) gene, was confirmed by polymerase chain reaction (PCR) amplification.  相似文献   

15.
Stable expression of foreign genes was achieved in sweet potato (Ipomoea batatas (L.) Lam) plants using anAgrobacterium tumefaciens mediated system. Embryogenic calluses produced from apical meristems of cultivar White Star were multiplied and cocultivated withA. tumefaciens strain EHA101 harboring a binary vector containing the -glucuronidase (GUS) and neomycin phosphotransferase (NPT II) genes. The calluses were transferred to selective regeneration medium and kanamycin resistant embryos were recovered which developed into morphologically normal plants. Histochemical and fluorimetric GUS assays of plants developed from the kanamycin resistant embryos were positive. Amplified DNA fragments were produced in polymerase chain reactions using GUS-specific primers and DNA from these plants. Transformation was confirmed by Southern analysis of the GUS gene. With the developed method, transgenic sweet potato plants were obtained within 7 weeks. This method will allow genetic improvement of this crop by the introduction of agronomically important genes.Florida Agricultural Experiment Station Journal Series N-02231. This research was partially supported by CNPq/RHAE (Brazil).  相似文献   

16.
The expression of a stress- and salicylic acidinducible protein gene from tobacco, PR1a protein gene, was determined after its Introduction to lettuce (Lactuca sativa L.) plants. The 5 flanking 2.4 Kb fragment from PR1a gene was joined to the bacterial -glucuronidase (GUS) gene (PR-GUS) and introduced into lettuce cotyledons by Agrobacterium-mediated gene transfer using a binary vector containing a kanamycin-resistance gene as a selectable marker. As a control with constitutive expression, the chimeric gene consisting of CaMV 35S RNA promoter and GUS gene (35S-GUS) was used. An improved method for shoot formation directly from lettuce cotyledons was used effectively for transformation, shortening the time for regeneration. In 70% or more of kanamycin-resistant regenerated lettuce plants, into which PR-GUS or 35S-GUS was introduced, high GUS activity and integration of the chimeric gene into the lettuce genome were detected. By treatment with salicylic acid, GUS activity increased 3- to 50-fold in PR-GUS transformants, however, no increase was detected in 35S-GUS plants. These results showed that the promoter of the stress-inducible tobacco PR1a protein gene was introduced into lettuce plants, and the introduced chimeric gene was expressed normally under the regulated control of the PRla promoter.Abbreviations BA N6-benzyladenine - GUS -glucuronidase - NAA -naphthaleneacetic acid - Km kanamycin - Kms kanamycin resistant - Km0 kanamycin sensitive - NPT- II neomycin phosphotransferase II - PR pathogenesis-related - SA salicylic acid - MS Murashige and Skoog medium - NOS nopaline synthase  相似文献   

17.
 Embryo axes of four accessions of chickpea (Cicer arietinum L.) were treated with Agrobacterium tumefaciens strains C58C1/GV2260 carrying the plasmid p35SGUSINT and EHA101 harbouring the plasmid pIBGUS. In both vectors the GUS gene is interrupted by an intron. After inoculation shoot formation was promoted on MS medium containing 0.5 mg/l BAP under a selection pressure of 100 mg/l kanamycin or 10 mg/l phosphinothricin, depending on the construct used for transformation. Expression of the chimeric GUS gene was confirmed by histochemical localization of GUS activity in regenerated shoots. Resistant shoots were grafted onto 5-day-old dark-grown seedlings, and mature plants could be recovered. T-DNA integration was confirmed by Southern analysis by random selection of putative transformants. The analysis of 4 plantlets of the T1 progeny revealed that none of them was GUS-positive, whereas the presence of the nptII gene could be detected by polymerase chain reaction. Received: 30 May 1997 / Revision received: 18 September 1997 / Accepted: 22 March 1999  相似文献   

18.
Summary Transgenic sweet orange (Citrus sinensis L. Osbeck) plants have been obtained by Agrobacterium tumefaciens-mediated gene transfer. An hypervirulent A. tumefaciens strain harboring a binary vector that contains the chimeric neomycin phosphotransferase II (NPT II) and ß-glucuronidase (GUS) genes was cocultivated with stem segments from in vivo grown seedlings. Shoots regenerated under kanamycin selection were harvested from the stem segments within 12 weeks. Shoot basal portions were assayed for GUS activity and the remaining portions were shoot tip grafted in vitro for production of plants. Integration of the GUS gene was confirmed by Southern analysis. This transformation procedure showed the highest transgenic plant production efficiency reported for Citrus.Abbreviations BA benzyladenine - CaMV cauliflowermosaic virus - GUS ß-glucuronidase - LB Luria Broth - MS Murashige and Skoog - NAA naphthalenacetic acid - NOS nopaline synthase - NPT II neomycin phosphotransferase II - PEG polyethylene glycol - RM rooting medium - SRM shoot regeneration medium  相似文献   

19.
Stable transformation and regeneration was developed for a grain legume, azuki bean (Vigna angularis Willd. Ohwi & Ohashi). Two constructs containing the neomycin phosphotransferase II gene (nptII) and either the -glucuronidase (GUS) gene or the modified green fluorescent protein [sGFP(S65T)] gene were introduced independently via Agrobacterium tumefaciens-mediated transformation. After 2 days of co-cultivation on MS medium supplemented with 100 M acetosyringone and 10 mg l–1 6-benzyladenine, seedling epicotyl explants were placed on regeneration medium containing 100 mg l–1 kanamycin. Adventitious shoots developing from explant calli were excised onto rooting medium containing 100 mg l–1 kanamycin. Rooted shoots were excised and repeatedly selected on the same medium containing kanamycin. Surviving plants were transferred to soil and grown in a green house to produce viable seeds. This process took 5 to 7 months after co-cultivation. Molecular analysis confirmed the stable integration and expression of foreign genes.  相似文献   

20.
Genetic transformation of rice (Oryza sativa L.) mediated by Agrobacterium ttumefaciens has been confirmed for japonica varieties and extended to include the more recalcitrant indica varieties. Immature embryos were inoculated with either A. tumefaciens At656 (pCNL56) or LBA4404 (pTOK233). Experimental conditions were developed initially for immature embryos treated with strain At656, based upon both transient and stable -glucuromdase (GUS) activities. However, plant regeneration following selection on G418 (pCNL56 contained the nptII gene) did not occur. Using the same basic protocol, but inoculating immature embryos of rice with LBA4404 (pTOK233), resulted in efficient (about 27%) production of transgenic plants of the japonica variety, Radon, and an acceptable efficiency (from 1–5%) for the indica varieties IR72 and TCS10. Transformation was based upon resistance to hygromycin (pTOK233 contains the hpt gene), the presence of GUS activity (from the gusA gene), Southern blots for detection of the integrated gusA gene, and transmission of GUS activity to progeny in a Mendelian 3:1 segregation ratio. Southern blots indicated two to three copies of the gene integrated in most transformants. Transgenic plants of both the japonica and indica varieties were self-fertile and comparable in this respect to seed-grown plants. Key factors facilitating the transformation of rice by Agrobacterium tumefaciens appeared to be the use of embryos as the expiant, the use of hygromycin as the selection agent (which does not interfere with rice regeneration), the presence of extra copies of certain vir genes on the binary vector of pTOK233, and maintaining high concentrations of acetosyringone for inducing the vir genes during co-cultivation of embryos with Agrobacterium.Abbreviations AS acetosyringone - DMRT Duncan's Multiple Range Test - GUS -glucuronidase - T-DNA transferred DNA We wish to thank Dr. Toshihiko Komari, Japan Tobacco Inc. for providing Ayrobacterium tumefaciens strain LBA4404 (pTOK322). Support by the Rockefeller Foundation in the form of a fellowship to R.R.A. and a grant to T.K.H. is acknowledged. This is journal paper number 14,914 from the Purdue University Agricultural Experiment Station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号