首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.  相似文献   

2.
Apoptosis has been associated with oxidative stress in biological systems. Caspases have been considered to play a pivotal role in the execution phase of apoptosis. However, which caspases function as executioners in reactive oxygen species (ROS)-induced apoptosis is not known. The present study was performed to identify the major caspases acting in ROS-induced apoptosis. Treatment of HL-60 cells with 50 μM hydrogen peroxide (H2O2) for 4 h induced the morphological changes such as condensed and/or fragmented nuclei, increase in caspase-3 subfamily protease activities, reduction of the procaspase-3 and a DNA fragmentation. To determine the role of caspases in H2O2-induced apoptosis, caspase inhibitors, acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone(Ac-YVAD-cmk), acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) and acetyl-Val-Glu-lle-Aspaldehyde (Ac-VEID-CHO), selective for caspase-1 subfamily, caspase-3 subfamily and caspase-6, respectively, were loaded into the cells using an osmotic lysis of pinosomes method. Of these caspase inhibitors, only Ac-DEVD-CHO completely blocked morphological changes, caspase-3 subfamily protease activation and DNA ladder formation in H2O2-treated HL-60 cells. This inhibitory effect was dose-dependent. These results suggest that caspase-3, but not caspase-1 is required for commitment to ROS-triggered apoptosis.  相似文献   

3.
The caspases are an evolutionarily conserved family of cysteine proteases, with essential roles in apoptosis or inflammation. Caspase-2 was the second caspase to be cloned and it resembles the prototypical nematode caspase CED-3 more closely than any other mammalian protein. An absence of caspase-2-specific reagents and the subtle phenotype of caspase-2-deficient mice have hampered definition of the physiological role of caspase-2 and identification of factors regulating its activity. Although some data implicate caspase-2 in apoptotic pathways, a link with apoptosis has been less firmly established for caspase-2 than for some other caspases. Emerging evidence suggests that caspase-2 regulates the cell cycle and may act as a tumour suppressor. This article critically reviews the current state of knowledge regarding the biochemistry and biology of this controversial caspase.  相似文献   

4.
To define the role of caspase-3 in H2O2-induced apoptosis, we introduced caspase-3 cDNA into MCF-7 breast carcinoma cells that otherwise lack caspase-3 expression. H2O2 treatment induced DNA fragmentation and nuclear condensation in the caspase-3-expressing cells, but not in the caspase-3-deficient cells. This indicated that caspase-3 is essential for nuclear events. However, H2O2 induced an externalization of membrane phosphatidylserine (PS) and cell death regardless of caspase-3 expression. These events were not suppressed by Ac-DEVD-CHO and Z-VAD-fmk, which inhibit DEVD-specific caspases and a broad spectrum of caspases, respectively. In Jurkat T cells, these inhibitors abolished H2O2-induced PS relocalization, but not cell death. Therefore, caspases appear to be dispensable for lethality by H2O2, but required for PS redistribution in a cell-type-specific manner.  相似文献   

5.
A subgroup of caspase family of inflammatory caspases (-1, -4, -5, -11, and -12) play important role during cytokine maturation and inflammation but their regulation is not well understood as much as the initiator and effector caspases. Here, the biochemical mechanism of caspase-4 activation is elucidated. With citrate, a well-known kosmotrope to enhance the monomer-dimer transition, caspase-4 was activated approximately 40 times that was comparable with that of caspase-9 ( approximately 75-fold increments). The activation reaction was mainly bimolecular (n=1.67+/-0.04) for monomeric caspase-4. In addition, the interdomain cleavage was also responsible to activate caspase-4 more than 100-fold, again comparable with that of effector caspases where the proteolytic processing is considered as the sole activation mechanism. Thus, caspase-4 shows a novel activation mechanism of the synergism between dimerization and proteolysis that sharply differs from the established activation mechanism of dimerization for initiators and interdomain cleavage for effector caspases.  相似文献   

6.
Caspases, the intracellular cysteine proteinases, play a central role in the process of programmed cell death. Caspases induce apoptosis through a highly integrated and regulated biological, biochemical, and genetic mechanism. Although proper execution of apoptosis is fundamental for cell growth artificial caspase inhibition can be considered in certain degenerative diseases. This realization has attracted attention towards caspases as likely targets for pharmaceutical intervention. Here we analyze the structure of caspase-6 and also predict the possible glycosylation, phosphorylation, and myristoylation sites as very little is known about the functional role of these post translational modifications in the caspase family. These studies are expected to improve our understanding of associations of caspases with other molecules and the possible role played in apoptosis. The predicted tertiary structure of caspase-6 as well as the enzyme complexed with its inhibitor (tetra-peptide aldehyde Ac-IETD-CHO) shows similar binding feature as seen in other caspases. Cys/His catalytic dyad for caspase-6 and -8 show possible involvement of a third component, i.e., Pro29 and Arg258 in caspase-6 and caspase-8, respectively. Changes in the length and nature of loop between alpha5 and beta9, involved in defining the S4 subsite, result in modification of P4 (Ile) site. These interactions provide detail of inhibitor binding on structural level and also help in designing mutants for structure-function studies of these enzymes.  相似文献   

7.
The apoptosome, a heptameric complex of Apaf-1, cytochrome c, and caspase-9, has been considered indispensable for the activation of caspase-9 during apoptosis. By using a large panel of genetically modified murine embryonic fibroblasts, we show here that, in response to tumor necrosis factor (TNF), caspase-8 cleaves and activates caspase-9 in an apoptosome-independent manner. Interestingly, caspase-8-cleaved caspase-9 induced lysosomal membrane permeabilization but failed to activate the effector caspases whereas apoptosome-dependent activation of caspase-9 could trigger both events. Consistent with the ability of TNF to activate the intrinsic apoptosis pathway and the caspase-9-dependent lysosomal cell death pathway in parallel, their individual inhibition conferred only a modest delay in TNF-induced cell death whereas simultaneous inhibition of both pathways was required to achieve protection comparable to that observed in caspase-9-deficient cells. Taken together, the findings indicate that caspase-9 plays a dual role in cell death signaling, as an activator of effector caspases and lysosomal membrane permeabilization.  相似文献   

8.
Fifteen years have passed since the cloning and characterization of the interleukin-1beta-converting enzyme (ICE/caspase-1), the first identified member of a family of proteases currently known as caspases. Caspase-1 is the prototypical member of a subclass of caspases involved in cytokine maturation termed inflammatory caspases that also include caspase-4 caspase -5, caspase -11 and caspase -12. Efforts to elucidate the molecular mechanisms involved in the activation of these proteases have uncovered an important role for the NLR family members, NALPs, NAIP and IPAF. These proteins promote the assembly of multiprotein complexes termed inflammasomes, which are required for activation of inflammatory caspases. This article will review some evolutionary aspects, biochemical evidences and genetic studies, underlining the role of inflammasomes and inflammatory caspases in innate immunity against pathogens, autoinflammatory syndromes and in the biology of reproduction.  相似文献   

9.
Caspase-8 is believed to play an obligatory role in apoptosis initiation by death receptors, but the role of its structural relative, caspase-10, remains controversial. Although earlier evidence implicated caspase-10 in apoptosis signaling by CD95L and Apo2L/TRAIL, recent studies indicated that these death receptor ligands recruit caspase-8 but not caspase-10 to their death-inducing signaling complex (DISC) even in presence of abundant caspase-10. We characterized a series of caspase-10-specific antibodies and found that certain commercially available antibodies cross-react with HSP60, shedding new light on previous results. The majority of 55 lung and breast carcinoma cell lines expressed mRNA for both caspase-8 and -10; however, immunoblot analysis revealed that caspase-10 protein expression was more frequently absent than that of caspase-8, suggesting a possible selective pressure against caspase-10 production in cancer cells. In nontransfected cells expressing both caspases, CD95L and Apo2L/TRAIL recruited endogenous caspase-10 as well as caspase-8 to their DISC, where both enzymes were proteolytically processed with similar kinetics. Caspase-10 recruitment required the adaptor FADD/Mort1, and caspase-10 cleavage in vitro required DISC assembly, consistent with the processing of an apoptosis initiator. Cells expressing only one of the caspases underwent ligand-induced apoptosis, indicating that each caspase can initiate apoptosis independently of the other. Thus, apoptosis signaling by death receptors involves not only caspase-8 but also caspase-10, and both caspases may have equally important roles in apoptosis initiation.  相似文献   

10.
Apoptosis in response to developmental cues and stress stimuli is mediated by caspases that are regulated by the Bcl-2 protein family. Although caspases 2 and 9 have each been proposed as the apical caspase in that pathway, neither is indispensable for the apoptosis of leukocytes or fibroblasts. To investigate whether these caspases share a redundant role in apoptosis initiation, we generated caspase-2(-/-)9(-/-) mice. Their overt phenotype, embryonic brain malformation and perinatal lethality mirrored that of caspase-9(-/-) mice but were not exacerbated. Analysis of adult mice reconstituted with caspase-2(-/-)9(-/-) hematopoietic cells revealed that the absence of both caspases did not influence hematopoietic development. Furthermore, lymphocytes and fibroblasts lacking both remained sensitive to diverse apoptotic stimuli. Dying caspase-2(-/-)9(-/-) lymphocytes displayed multiple hallmarks of caspase-dependent apoptosis, including the release of cytochrome c from mitochondria, and their demise was antagonized by several caspase inhibitors. These findings suggest that caspases other than caspases 2 and 9 can promote cytochrome c release and initiate Bcl-2-regulated apoptosis.  相似文献   

11.
12.
Resistance toward cytotoxic drugs is one of the primary causes for therapeutic failure in cancer therapy. DNA repair mechanisms as well as deficient caspases activation play a critical role in apoptosis resistance of tumor cells toward anticancer drug treatment. Here, we discovered that deficient caspases activation in apoptosis-resistant cancer cells depends on DNA-ligase IV and DNA-protein kinase (DNA-PK), playing crucial roles in the nonhomologous end joining (NHEJ) pathway, which is the predominant pathway for DNA double-strand break repair (DNA-DSB-repair) in mammalian cells. DNA-PK(+/+) as well as DNA-ligase IV (+/+) cancer cells were apoptosis resistant and deficient in activation of caspase-3, caspase-9, and caspase-8 and in cleavage of poly(ADP-ribose) polymerase after doxorubicin treatment. Inhibition of NHEJ by knocking out DNA-PK or DNA-ligase IV restored caspases activation and apoptosis sensitivity after doxorubicin treatment. In addition, inhibition of caspases activation prevented doxorubicin-induced apoptosis but could not prevent doxorubicin-induced DNA damage, indicating that induction of DNA damage is independent of caspases activation. However, caspases activation depends on induction of DNA damage left unrepaired by NHEJ-DNA-DSB-repair. We conclude that DNA damage left unrepaired by DNA-ligase IV or DNA-PK might be the initiator for caspases activation by doxorubicin in cancer cells. Failure in caspases activation using doxorubicin depends on loss of DNA damage and is due to higher rates of NHEJ-DNA-DBS-repair.  相似文献   

13.
Role of the executioner caspases during lens development   总被引:2,自引:0,他引:2  
  相似文献   

14.
Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Although caspase-3, a typical executioner caspase, has been studied for its mechanism and substrates, little is known of caspase-6, one of the executioner caspases. To understand the biological functions of caspase-6, we performed proteomics analyses, to seek for novel caspase-6 substrates, using recombinant caspase-6 and HepG2 extract. Consequently, 34 different candidate proteins were identified, through 2-dimensional electrophoresis/MALDI-TOF analyses. Of these identified proteins, 8 proteins were validated with in vitro and in vivo cleavage assay. Herein, we report that HAUSP, Kinesin5B, GEP100, SDCCAG3 and PARD3 are novel substrates for caspase-6 during apoptosis. [BMB Reports 2013; 46(12): 588-593]  相似文献   

15.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

16.
X-linked inhibitor of apoptosis protein (XIAP) is a potent antagonist of caspases, and functions as a ubiquitin-E3 ligase by itself and for caspases. Recently, NEDD8, a ubiquitin-like modifier, has been suggested to be used for modification of caspase-7 mediated by XIAP. However, it is not clear whether caspase-7 is a bona fide target for NEDD8. Here we showed that no neddylation of caspase-7 but that of XIAP itself was observed under the conditions in which caspase-7 was modified with ubiquitin. These results reveal that XIAP does not function as a NEDD8-E3 ligase for caspase-7 in vivo.  相似文献   

17.
Mechanism of XIAP-mediated inhibition of caspase-9   总被引:27,自引:0,他引:27  
The inhibitor of apoptosis (IAP) proteins potently inhibit the catalytic activity of caspases. While profound insight into the inhibition of the effector caspases has been gained in recent years, the mechanism of how the initiator caspase-9 is regulated by IAPs remains enigmatic. This paper reports the crystal structure of caspase-9 in an inhibitory complex with the third baculoviral IAP repeat (BIR3) of XIAP at 2.4 A resolution. The structure reveals that the BIR3 domain forms a heterodimer with a caspase-9 monomer. Strikingly, the surface of caspase-9 that interacts with BIR3 also mediates its homodimerization. We demonstrate that monomeric caspase-9 is catalytically inactive due to the absence of a supporting sequence element that could be provided by homodimerization. Thus, XIAP sequesters caspase-9 in a monomeric state, which serves to prevent catalytic activity. These studies, in conjunction with other observations, define a unified mechanism for the activation of all caspases.  相似文献   

18.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

19.
BACKGROUND: In the initial stages of Fas-mediated apoptosis the cysteine protease caspase-8 is recruited to the cell receptor as a zymogen (procaspase-8) and is incorporated into the death-signalling complex. Procaspase-8 is subsequently activated leading to a cascade of proteolytic events, one of them being the activation of caspase-3, and ultimately resulting in cell destruction. Variations in the substrate specificity of different caspases have been reported. RESULTS: We report here the crystal structure of a complex of the activated human caspase-8 (proteolytic domain) with the irreversible peptidic inhibitor Z-Glu-Val-Asp-dichloromethylketone at 2.8 A resolution. This is the first structure of a representative of the long prodomain initiator caspases and of the group III substrate specificity class. The overall protein architecture resembles the caspase-1 and caspase-3 folds, but shows distinct structural differences in regions forming the active site. In particular, differences observed in subsites S(3), S(4) and the loops involved in inhibitor interactions explain the preference of caspase-8 for substrates with the sequence (Leu/Val)-Glu-X-Asp. CONCLUSIONS: The structural differences could be correlated with the observed substrate specificities of caspase-1, caspase-3 and caspase-8, as determined from kinetic experiments. This information will help us to understand the role of the various caspases in the propagation of the apoptotic signal. The information gained from this investigation should be useful for the design of specific inhibitors.  相似文献   

20.
The caspases are a family of cytosolic proteases with essential roles in inflammation and apoptosis. Drug discovery efforts have focused on developing molecules directed against the active sites of caspases, but this approach has proved challenging and has not yielded any approved therapeutics. Here we describe a new strategy for generating inhibitors of caspase-6, a potential therapeutic target in neurodegenerative disorders, by screening against its zymogen form. Using phage display to discover molecules that bind the zymogen, we report the identification of a peptide that specifically impairs the function of caspase-6 in vitro and in neuronal cells. Remarkably, the peptide binds at a tetramerization interface that is uniquely present in zymogen caspase-6, rather than binding into the active site, and acts via a new allosteric mechanism that promotes caspase tetramerization. Our data illustrate that screening against the zymogen holds promise as an approach for targeting caspases in drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号