首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of eight piperidine derivatives with nicotinic receptor complexes fromTorpedo californica electric organ were studied using [125I]alpha-bungarotoxin ([125I]BGT) as a probe for the acetylcholine binding site and [3H]perhydrohistrionicotoxin ([3H]H12-HTX) as a probe for a site associated with the receptor-gated ion channel.Cis- andtrans-2-methyl-6-n-undecanyl piperidines (MUP), major constituents of fire ant venom, had a high-affinity for [3H]H12-HTX binding sites (Ki=0.08–0.24 M), but had no affect on receptor binding. MUP affinity for [3H]H12-HTX binding sites was approximately doubled in the presence of 1 M carbamylcholine. Introduction of a 2-hydroxyl group to the undecanyl side channel had little effect on activity of the alkaloid. The analog 2,6- (but not 3,5-) dimethylpiperidine was a moderately active inhibitor of [3H]H12-HTX binding (K i-8.8 M). 2-Methylpiperidine was considerably less active (K i=600 M), although it was more potent than either 3- or 4-methylpiperidine. The affinities of 2,6-dimethylpiperidine and 2-methylpiperidine for [3H]H12-HTX binding sites were decreased in the presence of 1 M carbamylcholine. Carbamylcholine affinity for the receptor was increased by up to 7 fold in the presence of 10 and 32 M MUP, but was decreased in the presence of 2,6-dimethylpiperidine and 2-methylpiperidine. Thecis- andtrans-isomers of MUP were equipotent in producing each of its effects. In these actions, MUP resembles a variety of other compounds derived from 2,6-disubstituted piperidines, including histrionicotoxins, gephyrotoxins and pumiliotoxins. These studies establish the importance of alkyl substitutions in theortho position of the piperidine ring in conferring ion channel specificity, and the importance of substantial alkyl side chains in conferring the ability of channel blockers to stabilize the nicotinic receptor complex in high affinity, desensitized conformations.  相似文献   

2.
The in vivo regulation of [3H]acetylcholine [( 3H]ACh) recognition sites on nicotinic receptors in rat brain was examined by administering drugs that increase stimulation of nicotinic cholinergic receptors, either directly or indirectly. After 10 days of treatment with the cholinesterase inhibitor diisopropyl fluorophosphate, [3H]ACh binding in the cortex, thalamus, striatum, and hypothalamus was decreased. Scatchard analyses indicated that the decrease in binding in the cortex was due to a reduction in the apparent density of [3H]ACh recognition sites. In contrast, after repeated administration of nicotine (5-21 days), the number of [3H]ACh recognition sites was increased in the cortex, thalamus, striatum, and hypothalamus. Similar effects were observed in the cortex and thalamus following repeated administration of the nicotinic agonist cytisin. The nicotinic antagonists mecamylamine and dihydro-beta-erythroidine did not alter [3H]ACh binding following 10-14 days of administration. Further, concurrent treatment with these antagonists and nicotine did not prevent the nicotine-induced increase in these binding sites. The data indicate that [3H]ACh recognition sites on nicotinic receptors are subject to up- and down-regulation, and that repeated administration of nicotine results in a signal for up-regulation, probably through protracted desensitization at the recognition site.  相似文献   

3.
It has been reported that N-methylcarbamylcholine (MCC), a nicotinic agonist, binds to central nicotinic receptors and causes an increase of acetylcholine (ACh) release from certain central cholinergic nerve terminals. The present experiments determine whether these two phenomena change in response to the chronic administration of nicotine, a procedure known to result in an increase in nicotinic binding sites. Chronic nicotine caused a brain region-specific up-regulation of [3H]MCC sites; binding increased in the frontal cortex, parietal cortex, striatum, and hippocampus, but not in the occipital cortex or cerebellum. The effect of nicotine was selective to nicotinic binding sites, because muscarinic sites, both M1 ([ 3H]pirenzepine) and M2 ([3H]ACh), were unaffected by chronic nicotine treatment. MCC increased the release of ACh from the frontal cortex and hippocampus by a calcium-dependent mechanism; MCC did not alter ACh release from striatum or occipital cortex of control animals. The MCC-induced increase in ACh release was not apparent in those animals which had been treated with nicotine. There was a partial recovery of nicotinic autoreceptor function when animals were allowed to recover (4 days) following chronic nicotine treatment, but the density of binding sites remained increased compared to control. Chronic nicotine did not change the potassium-evoked release of ACh from the frontal cortex or hippocampus, but decreased this measure from striatum. It also decreased the ACh content of the striatum, but not that of the cortex or the hippocampus; the activity of choline acetyltransferase was not altered in any of the regions tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-α-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.  相似文献   

5.
To identify binding domains in a ligand-gated ion channel for etomidate, an intravenous general anesthetic, we photolabeled nicotinic acetylcholine receptor (nAChR)-rich membranes from Torpedo electric organ with a photoactivatable analog, [(3)H]azietomidate. Based upon the inhibition of binding of the noncompetitive antagonist [(3)H]phencyclidine, azietomidate and etomidate bind with 10-fold higher affinity to nAChRs in the desensitized state (IC(50) = 70 microm) than in the closed channel state. In addition, both drugs between 0.1 and 1 mm produced a concentration-dependent enhancement of [(3)H]ACh equilibrium binding affinity, but they inhibited binding at higher concentrations. UV irradiation resulted in preferential [(3)H]azietomidate photoincorporation into the nAChR alpha and delta subunits. Photolabeled amino acids in both subunits were identified in the ion channel domain and in the ACh binding sites by Edman degradation. Within the nAChR ion channel in the desensitized state, there was labeling of alphaGlu-262 and deltaGln-276 at the extracellular end and deltaSer-258 and deltaSer-262 toward the cytoplasmic end. Within the acetylcholine binding sites, [(3)H]azietomidate photolabeled alphaTyr-93, alphaTyr-190, and alphaTyr-198 in the site at the alpha-gamma interface and deltaAsp-59 (but not the homologous position, gammaGlu-57). Increasing [(3)H]azietomidate concentration from 1.8 to 150 microm increased the efficiency of incorporation into amino acids within the ion channel by 10-fold and in the ACh sites by 100-fold, consistent with higher affinity binding within the ion channel. The state dependence and subunit selectivity of [(3)H]azietomidate photolabeling are discussed in terms of the structures of the nAChR transmembrane and extracellular domains.  相似文献   

6.
The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.  相似文献   

7.
The present experiments show that N-[3H]-methylcarbamylcholine ([3H]MCC) binds specifically and with high affinity to rat hippocampus, frontal cortex, and striatum. The highest maximal density of binding sites was apparent in frontal cortex and the lowest in hippocampus. [3H]MCC binding was potently inhibited by nicotinic, but not muscarinic, agonists and by the nicotinic antagonist dihydro-beta-erythroidine in all three brain regions studied. The effect of unlabeled MCC on acetylcholine (ACh) release from slices of rat brain was tested. The drug significantly enhanced spontaneous ACh release from slices of hippocampus and frontal cortex, but not from striatal slices. This effect of MCC to increase ACh release from rat hippocampus and frontal cortex was antagonized by the nicotinic antagonists dihydro-beta-erythroidine and d-tubocurarine, but not by alpha-bungarotoxin or by the muscarinic antagonist atropine. The MCC-induced increase in spontaneous ACh release from hippocampal and frontal cortical slices was not affected by tetrodotoxin. The results suggest that MCC might alter cholinergic transmission in rat brain by a direct activation of presynaptic nicotinic receptors on the cholinergic terminals. That this alteration of ACh release is apparent in hippocampus and frontal cortex, but not in striatum, suggests that there may be a regional specificity in the regulation of ACh by nicotinic receptors in rat brain.  相似文献   

8.
Onali P  Adem A  Karlsson E  Olianas MC 《Life sciences》2005,76(14):1547-1552
The mamba toxin MT-7 is the most selective ligand currently available for the muscarinic M1 receptor subtype. The toxin binds stably to the receptor and blocks the agonist-induced activation non-competitively. Although its mode of action on M1 receptors is not yet fully understood, some of the toxin properties support an allosteric mechanism. Thus, the toxin fails to elicit a complete inhibition of the binding of either the muscarinic antagonist [3H]N-methyl-scopolamine ([3H]NMS) or the agonist [3H]acetylcholine ([3H]ACh). When added to ligand-occupied M1 receptors, the toxin slows the dissociation rate of [3H]NMS and increases that of [3H]ACh. Site-directed mutagenesis studies have provided important information about the toxin amino acid residues which are critical for the stable binding to the receptor and for the allosteric modulation of antagonist dissociation. In vivo studies have shown that the intracerebral injection of MT-7 causes a long-lasting blockade of M1 receptor, thus providing a tool for the characterization of the functional role of this receptor subtype in discrete brain areas.  相似文献   

9.
In isolated bovine adrenal chromaffin cells, beta-endorphin, dynorphin, and levorphanol caused a dose-dependent inhibition of catecholamine (CA) secretion elicited by acetylcholine (ACh), with an ID50 of 50, 1.3, and 4.3 microM, respectively. The inhibition by the opiate compounds was specific for the release evoked by ACh and nicotinic drugs and was noncompetitive with ACh. Stereospecific binding sites for the opiate agonist [3H]etorphine were found in homogenates of bovine adrenal medulla (KD = 0.59 nM). beta-Endorphin, dynorphin, levorphanol, and naloxone were potent inhibitors of the binding of [3H]etorphine with an ID50 of 12, 0.4, 5.2, and 6.2 nM, respectively. However, [3,5-I2Tyr1]-beta-endorphin, [3,5-I2Tyr1]-dynorphin, and dextrorphan, three opiate compounds with no or little activity in the guinea pig ileum assay, were relatively ineffective in inhibiting the binding of [3H]etorphine (ID50 700, 600, and 10,000 nM, respectively). On the other hand, these three compounds were equipotent with beta-endorphin, dynorphin, and levorphanol, respectively, in inhibiting the ACh-evoked release of CA from the adrenal chromaffin cells (ID50 of 10, 1.5, and 6 microM, respectively). Inhibition of CA release was also obtained with naloxone (ID50 = 14) microM) and naltrexone (ID50 greater than 10(-4) M), two classical antagonists of opiate receptors, and this effect was additive to that of beta-endorphin. These data indicate that the opiate modulation of CA release from adrenal chromaffin cells is not related to the stimulation of the high affinity stereospecific opiate binding sites of the adrenal medulla. The physiological function of these sites remains to be determined.  相似文献   

10.
We have studied putative nicotinic acetylcholine receptors in the optic lobe of the newborn chick, using 125I-labeled alpha-bungarotoxin, a specific blocker of acetylcholine receptors in the neuromuscular junction, and [3H]acetylcholine, a ligand which in the presence of atropine selectively labels binding sites of nicotinic character in rat brain cortex (Schwartz et al., 1982). [3H]Acetylcholine binds reversibly to a single class of high affinity binding sites (KD = 2.2 X 10(-8) M) which occur at a tissue concentration of 5.7 pmol/g. A large fraction (approximately 60%) of these binding sites is solubilized by Triton X-100, sodium cholate, or the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Solubilization increases the affinity for acetylcholine and several nicotinic drugs from 1.5- to 7-fold. The acetylcholine-binding macromolecule resembles the receptor for alpha-bungarotoxin present in the same tissue with respect to subcellular distribution, hydrodynamic properties, lectin binding, and agonist affinity rank order. It differs from the toxin receptor in affinity for nicotinic antagonists, sensitivity to thermal inactivation, and regional distribution. The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor.  相似文献   

11.
In order to identify the properties of nicotine in relation to oxidative stress or neuroprotection, differentiated PC12 cells were treated with nicotine, beta-amyloid peptide (Abeta(25-35)), free radical inducer and antioxidant by a separate addition or a combination way. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, lipid peroxidation, [3H]epibatidine binding sites for nicotinic receptor and [3H]quinuclidinyl benzilate (QNB) for muscarinic receptor have been detected. The significant decrease of MTT reduction and increase of lipid peroxidation in PC12 cells were only observed at treatments with high concentrations of nicotine (1 and 10 mM), while Vitamin E (VitE), an antioxidant, can prevent the neurotoxic effects. In addition, nicotine in low dosage (10 microM) rescued the decreased rates of cell viability and inhibited the production of lipid peroxidation resulted from H(2)O(2) and Abeta in the cultured cells. Significant increases in [3H]epibatidine binding sites were observed in PC12 cells exposed to nicotine, while no change was detected in [3H]QNB. The decreased number of nicotinic receptor binding sites due to the toxicity of Abeta was prevented by the addition of nicotine with low concentration. It is plausible that nicotine treatment may play dual effects on oxidative stress and neuroprotection, in which the effects are dependent on the differences in dosage of the drug used and their mechanisms of action. Generally, high dose of nicotine may induce neurotoxicity and stimulate oxidative stress, while reasonably low concentration may act as an antioxidant and play an important role for neuroprotective effect.  相似文献   

12.
Four nerve agents and one therapeutic organophosphate (OP) anticholinesterase (anti-ChE) bind to acetylcholine (ACh) receptors, inhibit or modulate binding of radioactive ligands to these receptors, and modify events regulated by them. The affinity of nicotinic (n) ACh receptors of Torpedo electric organs and most muscarinic (m) ACh receptors of rat brain and N1E-115 neuroblastoma cultures for the OP compounds was usually two to three orders of magnitude lower than concentrations required to inhibit 50% (IC-50) of ACh-esterase activity. However, a small population of m-ACh receptors had an affinity as high as that of ACh-esterase for the OP compound. This population is identified by its high-affinity [3H]-cis-methyldioxolane ([3H]-CD) binding. Although sarin, soman, and tabun had no effect, (O-ethyl S[2-(diisopropylamino)ethyl)] methyl phosphonothionate (VX) and echothiophate inhibited competitivel the binding of receptors. However, VX was more potent than echothiophate in inhibiting this binding and 50-fold more potent in inhibiting carbamylcholine (carb)-stimulated [3H]-cGMP synthesis in N1E-115 neuroblastoma cells—both acting as m receptor antagonist. All five OPs inhibited [3H]-CD binding, with IC-50s of 3, 10, 40, 100, and 800 nM for VX, soman, sarin, echothiophate, and tabun, respectively. The OP anticholinesterases also bound to allosteric sites on the n-ACh receptor (identified by inhibition of [3H]-phencyclidine binding), but some bound as well to the receptor's recognition site (identified by inhibition of [125I]-α-bungarotoxin binding). Soman and echothiophate in micromolar concentrations acted as partial agonists of the n-ACh receptor and induced receptor desensitization. On the other hand, VX acted as an open channel blocker of the activated receptor and also enhanced receptor desensitization. It is suggested that the toxicity of OP anticholinesterases may include their action on n-ACh as well as m-ACh receptors if their concentrations in circulation rise above micromolar levels. At nanomolar concentrations their toxicity is due mainly to their inhibition of ACh-esterase. However, at these low concentrations, many OP anticholinesterases (eg, VX and soman) may affect a small population of m-ACh receptors, which have a high affinity for CD. Such effects on m-ACh receptors may play an important role in the toxicity of certain OP compounds.  相似文献   

13.
Interactions of charatoxin (4-methylthio-1,2-dithiolane; ChTX) and four openchain analogs as well as nereistoxin (NTX) with acetylcholine (ACh) receptors were studied using biochemical assays on the Torpedo electric organ and honey bee brain receptors and using electrophysiological assays on the response of the cell body of the fast coxal depressor motoneuron (Df) of the cockroach Periplaneta americana to ACh. The actions of ChTXs were complex. Except for ChTX Xl, they all potentiated the ACh-induced current in Periplaneta neurons, but at higher concentrations all ChTXs, except for ChTX XII, caused voltage-dependent block of this current. All CHTXs inhibited binding of [3H]perhydrohistrionicotoxin in the presence of ACh to the highaffinity noncompetitive blocker site on the Torpedo receptor, but all, except for ChTX XI, potentiated its binding in absence of ACh. The actions of ChTXs on the honey bee brain receptor were quite different from those on the Torpedo receptor. They inhibited, or had no effect on, [125I]α-bungarotoxin (α-BGT) binding to the Torpedo receptor, but all ChTXs, except for ChTX I, potentiated its binding to the honey bee receptor. It is suggested that the action of ChTXs on nicotinic ACh-receptors resulted from binding to lowaffinity noncompetitive blocker site. On the other hand, NTX was more potent than ChTXs on nicotinic ACh-receptors, and some similarities were noted between the actions of NTX on Torpedo and honey bee receptors NTX had a weak agonistlike effect in both cases and possibly bound to the ACh binding sites as well as the high-affinity noncompetitive blocker site. Thus the mechanisms of action of ChTXs and NTX on nicotinic ACh-receptors are different, and there are also differences in the responses to these toxins between receptors of insect central nervous system and Torpedo electric organ.  相似文献   

14.
The positively charged quaternary ammonium group of agonists of the nicotinic acetylcholine (ACh) receptor binds to a negative subsite at most about 1 nm from a readily reducible disulfide. This disulfide is formed by alpha Cys192 and Cys193 (Kao and Karlin, 1986). In order to identify Asp or Glu residues that may contribute to the negative subsite, we synthesized S-(2-[3H]glycylamidoethyl)dithio-2-pyridine. Purified ACh receptor from Torpedo californica was mildly reduced and reacted with S-(2-[3H]glycylamidoethyl)dithio-2-pyridine. The predominant product was a mixed disulfide between the 3H-N-glycylcysteamine moiety and alpha Cys192 or Cys193. In the extended conformation of [3H] N-glycylcysteamine, the distance from the glycyl amino group to the cysteamine thio group is 0.9 nm. Thus, the amino group of disulfide-linked [3H]N-glycylcysteamine could react with carboxyls within 0.9 nm of Cys192/Cys193. To promote amide bond formation between the tethered amino group and receptor carboxyls, we added 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide. The predominant sites of amide coupling were on the delta subunit, in CNBr fragment 4 (delta 164-257). This reaction was inhibited by ACh. Only the first 61 residues of delta CNBr 4 are predicted to be extracellular, and there are 11 Asp or Gly residues in this region. One or more of these residues is likely to contribute to the binding of ACh.  相似文献   

15.
α-Bungarotoxin Binds to Low-Affinity Nicotine Binding Sites in Rat Brain   总被引:5,自引:4,他引:1  
Reported differences in the pharmacology and distribution of [3H]nicotine and [125I]alpha-bungarotoxin binding sites in mammalian brain suggest that these ligands label separate receptor sites. Affinity purification of an alpha-bungarotoxin binding protein from rat brain failed to copurify the high-affinity nicotine binding site, which remained in the nonbound soluble fraction after the affinity chromatography step. This confirms the independence of these putative receptor sites. Nevertheless, the binding of [125I]alpha-bungarotoxin to P2 membranes was inhibited by (-)-nicotine (Ki = 9 X 10(-6) M), and this sensitivity was preserved after affinity purification. It is proposed that alpha-bungarotoxin binds to a population of low-affinity nicotine binding sites. Comparison of the enantiomers of nicotine in competition studies at both radioligand binding sites revealed an 80-fold preference for the (-) form at the high-affinity [3H]nicotine binding site, whereas the site labelled by [125I]alpha-bungarotoxin displayed little stereoselectivity. In this respect, the brain alpha-bungarotoxin binding site resembles the nicotinic acetylcholine receptor from Torpedo electric organ.  相似文献   

16.
Radioligand binding, photoaffinity labeling, and docking and molecular dynamics were used to characterize the tricyclic antidepressant (TCA) binding sites in the nicotinic acetylcholine receptor (nAChR). Competition experiments indicate that the noncompetitive antagonist phencyclidine (PCP) inhibits [3H]imipramine binding to resting (closed) and desensitized nAChRs. [3H]2-azidoimipramine photoincorporates into each subunit from the desensitized nAChR with approximately 25% of the labeling specifically inhibited by TCP (a PCP analog), whereas no TCP-inhibitable labeling was observed in the resting (closed) state. For the desensitized nAChR and within the alpha subunit, the majority of specific [3H]2-azidoimipramine labeling mapped to a approximately 20 kDa Staphylococcus aureus V8 protease fragment (alphaV8-20; Ser173-Glu338). To further map the labeling site, the alphaV8-20 fragment was further digested with endoproteinase Lys-C and resolved by Tricine SDS-PAGE. The principal labeled fragment (11 kDa) was further purified by rpHPLC and subjected to N-terminal sequencing. Based on the amino terminus (alphaMet243) and apparent molecular weight, the 11 kDa fragment contains the channel lining M2 segment. Finally, docking and molecular dynamics results indicate that imipramine and PCP interact preferably with the M2 transmembrane segments in the middle of the ion channel. Collectively, these results are consistent with a model where PCP and TCA bind to overlapping sites within the lumen of the Torpedo nAChR ion channel.  相似文献   

17.
Neosurugatoxin, a Specific Antagonist of Nicotinic Acetylcholine Receptors   总被引:8,自引:6,他引:2  
Neosurugatoxin (NSTX) (3 nM-30 nM), recently isolated from the Japanese ivory mollusc (Babylonia japonica) exerted a potent antinicotinic action in the isolated guinea pig ileum. Specific [3H]nicotine binding to rat forebrain membranes was saturable, reversible, and of high affinity. Nicotinic cholinergic agonists exhibited a markedly greater affinity for [3H]nicotine binding sites than a muscarinic agonist, oxotremorine. Although alpha-bungarotoxin had no effect on [3H]nicotine binding, low concentrations (1 nM-1 microM) of NSTX inhibited [3H]nicotine binding in the forebrain membranes and its IC50 value was 69 +/- 6 nM. On the other hand, NSTX did not affect muscarinic receptor binding in the brain. These data indicate that NSTX may be of appreciable interest as a neurotoxin with a selective affinity for ganglionic nicotinic receptors.  相似文献   

18.
D C Chiara  Y Xie  J B Cohen 《Biochemistry》1999,38(20):6689-6698
Photoaffinity labeling of the Torpedo nicotinic acetylcholine receptor (nAChR) with [3H]d-tubocurarine (dTC) has identified a residue within the gamma-subunit which, along with the analogous residue in delta-subunit, confers selectivity in binding affinities between the two agonist sites for dTC and alpha-conotoxin (alpha Ctx) MI. nAChR gamma-subunit, isolated from nAChR-rich membranes photolabeled with [3H]dTC, was digested with Staphylococcus aureus V8 protease, and a 3H-labeled fragment was purified by reversed-phase high-performance liquid chromatography. Amino-terminal sequence analysis of this fragment identified 3H incorporation in gamma Tyr-111 and gamma Tyr-117 at about 5% and 1% of the efficiency of [3H]dTC photoincorporation at gamma Trp-55, the primary site of [3H]dTC photoincorporation within gamma-subunit [Chiara, D. C., and Cohen, J. B. (1997) J. Biol. Chem 272, 32940-32950]. The Torpedo nAChR delta-subunit residue corresponding to gamma Tyr-111 (delta Arg-113) contains a positive charge which could confer the lower binding affinity seen for some competitive antagonists at the alpha-delta agonist site. To test this hypothesis, we examined by voltage-clamp analysis and/or by [125I]alpha-bungarotoxin competition binding assays the interactions of acetylcholine (ACh), dTC, and alpha Ctx MI with nAChRs containing gamma Y111R or delta R113Y mutant subunits expressed in Xenopus oocytes. While these mutations affected neither ACh equilibrium binding affinity nor the concentration dependence of channel activation, the gamma Y111R mutation decreased by 10-fold dTC affinity and inhibition potency. Additionally, each mutation conferred a 1000-fold change in the equilibrium binding of alpha Ctx MI, with delta R113Y enhancing and gamma Y111R weakening affinity. Comparison of these results with previous results for mouse nAChR reveals that, while the same regions of gamma- (or delta-) subunit primary structure contribute to the agonist-binding sites, the particular amino acids that serve as antagonist affinity determinants are species-dependent.  相似文献   

19.
The nitromethylene heterocyclic compound 2(nitromethylene)tetrahydro)1,3-thiazine (NMTHT) inhibits the binding of [125I]alpha-bungarotoxin to membranes prepared from cockroach (Periplaneta americana) nerve cord and fish (Torpedo californica) electric organ. Electrophysiological studies on the cockroach fast coxal depressor motorneuron (Df) reveal a dose-dependent depolarization in response to bath-applied NMTHT. Responses to ionophoretic application of NMTHT onto the cell-body membrane of motorneuron Df are suppressed by bath-applied mecamylamine (1.0 x 10(-4) M) and alpha-bungarotoxin (1.0 x 10(-7) M). These findings, together with the detection of a reversal potential close to that estimated for acetylcholine, provide evidence for an agonist action of this nitromethylene on an insect neuronal nicotinic acetylcholine receptor. The binding of [3H]H12-histrionicotoxin to Torpedo membranes was enhanced in the presence of NMTHT indicating an agonist action at this vertebrate peripheral nicotinic acetylcholine receptor. NMTHT is ineffective in radioligand binding assays for rat brain GABAA receptors, rat brain L-glutamate receptors and insect (Musca domestica) L-glutamate receptors. Partial block of rat brain muscarinic acetylcholine receptors is detected at millimolar concentrations of NMTHT. Thus nitromethylenes appear to exhibit selectivity for acetylcholine receptors and exhibit an agonist action at nicotinic acetylcholine receptors.  相似文献   

20.
Presynaptic nicotinic acetylcholine receptors on striatal nerve terminals modulate the release of dopamine. We have compared the effects of a number of nicotinic agonists and antagonists on a perfused synaptosome preparation preloaded with [3H]dopamine. (-)-Nicotine, acetylcholine, and the nicotinic agonists cytisine and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), at micromolar concentrations, stimulated the release of [3H]dopamine from striatal nerve terminals. Carbamylcholine was a much weaker agonist. The actions of (-)-nicotine, cytisine, and DMPP were inhibited by low concentrations of the nicotinic antagonists dihydro-beta-erythroidine, mecamylamine, pempidine, and neosurugatoxin; alpha-bungarotoxin was without effect, and extending the time of exposure to this toxin resulted in only very modest inhibition. This pharmacology points to a specific nicotinic receptor mechanism that is clearly distinct from that at the neuromuscular junction. Atropine failed to antagonise the effects of acetylcholine and carbamylcholine, suggesting that no muscarinic component is involved. The nicotinic receptor ligands (-)-[3H]nicotine and 125I-alpha-bungarotoxin bound to specific sites enriched in the synaptosome preparation. Drugs tested on the perfused synaptosomes were examined for their ability to interact with these two ligand binding sites in brain membranes. The differential sensitivity to the neurotoxins alpha-bungarotoxin and neosurugatoxin of the 125I-alpha-bungarotoxin and (-)-[3H]nicotine binding sites, respectively, leads to a tentative correlation of the (-)-[3H]nicotine site with the presynaptic nicotinic receptor on striatal nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号