首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
S H Lee  I H Goldberg 《Biochemistry》1989,28(3):1019-1026
The sequence-specific interaction of neocarzinostatin chromophore (NCS-C) has been evaluated with a series of synthetic oligodeoxyribonucleotides of defined sequences containing the most preferred nucleotide cleavage site, T or A, or both. NCS-C preferentially cleaves T or A residues in the sequence GN1N2, where N2 is T or A. Greater cleavage occurs on the strand enriched with G residues, provided that they are adjacent to other G residues, but not at N1. These results are compatible with a model for drug binding in which the naphthoate moiety of NCS-C preferentially intercalates at GN1. This is accompanied by electrostatic binding interaction provided by the positively charged amino sugar moiety so as to place the reactive bicyclo[7.3.0]dodecadienediyne epoxide moiety in an appropriate orientation in the minor groove enabling, upon thiol activation, attack at C-5' of T or A. At certain sequences, such as GCT.AGC, a similar binding mode is also able to generate a basic lesions at the C residue on the opposite strand, forming a bistranded lesion. Although the reactions with glutathione generally show the same strand selectivity and sequence specificity as those with dithiothreitol, the former is usually more efficient than the latter.  相似文献   

2.
Unlike orthodox Type II restriction endonucleases that are homodimers and interact with the palindromic 4-8-bp DNA sequences, BcnI is a monomer which has a single active site but cuts both DNA strands within the 5'-CC↓CGG-3'/3'-GGG↓CC-5' target site ('↓' designates the cleavage position). Therefore, after cutting the first strand, the BcnI monomer must re-bind to the target site in the opposite orientation; but in this case, it runs into a different central base because of the broken symmetry of the recognition site. Crystal-structure analysis shows that to accept both the C:G and G:C base pairs at the center of its target site, BcnI employs two symmetrically positioned histidines H77 and H219 that presumably change their protonation state depending on the binding mode. We show here that a single mutation of BcnI H77 or H219 residues restricts the cleavage activity of the enzyme to either the 5'-CCCGG-3' or the 5'-CCGGG-3' strand, thereby converting BcnI into a strand-specific nicking endonuclease. This is a novel approach for engineering of monomeric restriction enzymes into strand-specific nucleases.  相似文献   

3.
Using purified integration protein (IN) from human immunodeficiency virus (HIV) type 1 and oligonucleotide mimics of viral and target DNA, we have investigated the DNA sequence specificity of the cleaving and joining reactions that take place during retroviral integration. The first reaction in this process is selective endonucleolytic cleaving of the viral DNA terminus that generates a recessed 3' OH group. This 3' OH group is then joined to a 5' phosphoryl group located at a break in the target DNA. We found that the conserved CA located close to the 3' end of the plus strand of the U5 viral terminus (also present on the minus strand of the U3 terminus) was required for both cleaving and joining reactions. Six bases of HIV U5 or U3 DNA at the ends of model substrates were sufficient for nearly maximal levels of selective endonucleolytic cleaving and joining. However, viral sequence elements upstream of the terminal 6 bases could also affect the efficiencies of the cleaving and joining reactions. The penultimate base (C) on the minus strand of HIV U5 was required for optimal joining activity. A synthetic oligonucleotide mimic of the putative in vivo viral "DNA" substrate for HIV IN, a molecule that contained a terminal adenosine 5'-phosphate (rA) on the minus strand, was indistinguishable in the cleaving and joining reactions from the DNA substrate containing deoxyadenosine instead of adenosine 5'-phosphate at the terminal position. Single-stranded DNA served as an in vitro integration target for HIV IN. The DNA sequence specificity of the joining reaction catalyzed in the reverse direction was also investigated.  相似文献   

4.
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C+5C+4C+3T+2T+1p downward arrow N-1 in duplex DNA. Here we study the effects of base modifications on the rate and extent of single-turnover DNA transesterification. Chiral trans opened C-10 R and S adducts of benzo[a]pyrene (BP) 7,8-diol 9,10-epoxide were introduced at single N6-deoxyadenosine (dA) positions within the 3'-G+5G+4G+3A+2A+1T-1A-2 sequence of the nonscissile DNA strand. The R and S BPdA adducts intercalate from the major groove on the 5' and 3' sides of the modified base, respectively, and perturb local base stacking. We found that R and S BPdA modifications at +1A reduced the transesterification rate by a factor of 700-1000 without affecting the yield of the covalent topoisomerase-DNA complex. BPdA modifications at +2A reduced the extent of transesterification and elicited rate decrements of 200- and 7000-fold for the S and R diastereomers, respectively. In contrast, BPdA adducts at the -2 position had no effect on the extent of the reaction and relatively little impact on the rate of cleavage. A more subtle probe of major groove contacts entailed substituting each of the purines of the nonscissile strand with its 8-oxo analog. The +3 oxoG modification slowed transesterification 35-fold, whereas other 8-oxo modifications were benign. 8-Oxo substitutions at the -1 position in the scissile strand slowed single-turnover cleavage by a factor of six but had an even greater slowing effect on religation, which resulted in an increase in the cleavage equilibrium constant. 2-Aminopurine at positions +3, +4, or +5 in the nonscissile strand had no effect on transesterification per se but had synergistic effects when combined with 8-oxoA at position -1 in the scissile strand. These findings illuminate the functional interface of vaccinia topoisomerase with the DNA major groove.  相似文献   

5.
6.
An endonuclease activity (called MS-nicking) for all possible base mismatches has been detected in the extracts of yeast, Saccharomyces cerevisiae. DNAs with twelve possible base mismatches at one defined position are cleaved at different efficiencies. DNA fragments with A/G, G/A, T/G, G/T, G/G, or A/A mismatches are nicked with greater efficiencies than C/T, T/C, C/A, and C/C. DNA with an A/C or T/T mismatch is nicked with an intermediate efficiency. The MS-nicking is only on one particular DNA strand, and this strand disparity is not controlled by methylation, strand break, or nature of the mismatch. The nicks have been mapped at 2-3 places at second, third, and fourth phosphodiester bonds 5' to the mispaired base; from the time course study, the fourth phosphodiester bond probably is the primary incision site. This activity may be involved in mismatch repair during genetic recombination.  相似文献   

7.
The bacteriophage P1 recombinase Cre mediates site-specific recombination between loxP sites. The loxP site consists of two 13 base-pair inverted repeats separated by an eight base-pair spacer region. When DNA containing the loxP site is incubated with Cre, specific cleavages occur within the spacer region, creating a six base-pair staggered cut. The cuts are centered on the axis of dyad symmetry of the loxP site, resulting in a 5' protruding terminus: 5' A decreases T-G-T-A-T-G C 3' T A-C-A-T-A-C increases G. At the point of cleavage, Cre becomes covalently attached to a 3' PO4, and produces a free 5' OH. A series of experiments were carried out in which a radioactively labeled loxP site is recombined with an unlabeled loxP site to locate the point at which strand exchange takes place during recombination. The points of strand exchange coincide with the sites at which Cre cleavage of the DNA backbone had been detected.  相似文献   

8.
Deamination of 5-methylcytidine (5MeC) in DNA results in a G:T mismatch unlike cytidine (C) deamination which gives rise to a G:U pair. Deamination of C was generally considered to arise spontaneously. It is now clear that human APOBEC3A (A3A), a polynucleotide cytidine deaminase (PCD) with specificity for single stranded DNA, can extensively deaminate human nuclear DNA. It is shown here that A3A among all human PCDs can deaminate 5-methylcytidine in a variety of single stranded DNA substrates both in vitro and in transfected cells almost as efficiently as cytidine itself. This ability of A3A to accommodate 5-methyl moiety extends to other small and physiologically relevant substituted cytidine bases such as 5-hydroxy and 5-bromocytidine. As 5MeCpG deamination hotspots characterize many genes associated with cancer it is plausible that A3A is a major player in the onset of cancer.  相似文献   

9.
Multiple studies have indicated that the TET oxidases and, more controversially, the activation-induced cytidine deaminase/APOBEC deaminases have the capacity to convert genomic DNA 5-methylcytosine (MeC) into altered nucleobases that provoke excision repair and culminate in the replacement of the original MeC with a normal cytosine (C). We show that human APOBEC3A (A3A) efficiently deaminates both MeC to thymine (T) and normal C to uracil (U) in single-stranded DNA substrates. In comparison, the related enzyme APOBEC3G (A3G) has undetectable MeC to T activity and 10-fold less C to U activity. Upon 100-fold induction of endogenous A3A by interferon, the MeC status of bulk chromosomal DNA is unaltered, whereas both MeC and C nucleobases in transfected plasmid DNA substrates are highly susceptible to editing. Knockdown experiments show that endogenous A3A is the source of both of these cellular DNA deaminase activities. This is the first evidence for nonchromosomal DNA MeC to T editing in human cells. These biochemical and cellular data combine to suggest a model in which the expanded substrate versatility of A3A may be an evolutionary adaptation that occurred to fortify its innate immune function in foreign DNA clearance by myeloid lineage cell types.  相似文献   

10.
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrow N(-1) in duplex DNA. Here we study the effects of abasic lesions at individual positions of the scissile and nonscissile strands on the rate of single-turnover DNA transesterification and the cleavage-religation equilibrium. The rate of DNA incision was reduced by factors of 350, 250, 60, and 10 when abasic sites replaced the -1N, +1T, +2T, and +4C bases of the scissile strand, but abasic lesions at +5C and +3C had little or no effect. Abasic lesions in the nonscissile strand in lieu of +4G, +3G, +2A, and +1A reduced the rate of cleavage by factors of 130, 150, 10, and 5, whereas abasic lesions at +5G and -1N had no effect. The striking positional asymmetry of abasic interference on the scissile and nonscissile strands highlights the importance of individual bases, not base pairs, in promoting DNA cleavage. The rate of single-turnover DNA religation by the covalent topoisomerase-DNA complex was insensitive to abasic sites within the CCCTT sequence of the scissile strand, but an abasic lesion at the 5'-OH nucleoside (-1N) of the attacking DNA strand slowed the rate of religation by a factor of 600. Nonscissile strand abasic lesions at +1A and -1N slowed the rate of religation by factors of approximately 140 and 20, respectively, and strongly skewed the cleavage-religation equilibrium toward the covalent complex. Thus, abasic lesions immediately flanking the cleavage site act as topoisomerase poisons.  相似文献   

11.
Selective strand scission by intercalating drugs at DNA bulges   总被引:4,自引:0,他引:4  
A bulge is an extra, unpaired nucleotide on one strand of a DNA double helix. This paper describes bulge-specific strand scission by the DNA intercalating/cleaving drugs neocarzinostatin chromophore (NCS-C), bleomycin (BLM), and methidiumpropyl-EDTA (MPE). For this study we have constructed a series of 5'-32P end labeled oligonucleotide duplexes that are identical except for the location of a bulge. In each successive duplex of the series, a bulge has been shifted stepwise up (from 5' to 3') one strand of the duplex. Similarly, in each successive duplex of the series, sites of bulge-specific scission and protection were observed to shift in a stepwise manner. The results show that throughout the series of bulged duplexes NCS-C causes specific scission at a site near a bulge, BLM causes specific scission at a site near a bulge, and MPE-Fe(II) causes specific scission centered around the bulge. In some sequences, NCS-C and BLM each cause bulge-specific scission at second sites. Further, bulged DNA shows sites of protection from NCS-C and BLM scission. The results are consistent with a model of bulged DNA with (1) a high-stability intercalation site at the bulge, (2) in some sequences, a second high-stability intercalation site adjacent to the first site, and (3) two sites of relatively unstable intercalation that flank the two stable intercalation sites. On the basis of our results, we propose a new model of the BLM/DNA complex with the site of intercalation on the 3' side (not in the center) of the dinucleotide that determines BLM binding specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Alkylation of guanine at the O6 atom is a highly mutagenic DNA lesion because it alters the coding specificity of the base causing G:C to A:T transversion mutations. Specific DNA repair enzymes, e.g. O6‐alkylguanin‐DNA‐Transferases (AGT), recognize and repair such damage after looping out the damaged base to transfer it into the enzyme active site. The exact mechanism how the repair enzyme identifies a damaged site within a large surplus of undamaged DNA is not fully understood. The O6‐alkylation of guanine may change the deformability of DNA which may facilitate the initial binding of a repair enzyme at the damaged site. In order to characterize the effect of O6‐methyl‐guanine (O6‐MeG) containing base pairs on the DNA deformability extensive comparative molecular dynamics (MD) simulations on duplex DNA with central G:C, O6‐MeG:C or O6‐MeG:T base pairs were performed. The simulations indicate significant differences in the helical deformability due to the presence of O6‐MeG compared to regular undamaged DNA. This includes enhanced base pair opening, shear and stagger motions and alterations in the backbone fine structure caused in part by transient rupture of the base pairing at the damaged site and transient insertion of water molecules. It is likely that the increased opening motions of O6‐MeG:C or O6‐MeG:T base pairs play a decisive role for the induced fit recognition or for the looping out of the damaged base by repair enzymes. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 23–32, 2015.  相似文献   

13.
Extracts of two human glioma cell lines (lacking O6-methylguanine DNA-methyltransferase) (i.e., A1235 and its alkylation-resistant derivative A1235-MR4) were examined for their ability to execute strand incision at different base mismatches in model (45-bp) DNA. These heteroduplex substrates were of the same sequence except for the presence, at the same site, of one of three mispairs: G:T, O6-methylguanine:T (m6G:T), and G:U. The parental (A1235) extract, when supplemented with ATP and human thymine DNA glycosylase (TDG), acted proficiently on all three substrates, incising immediately 5' to the mismatched thymine or uracil residue. In contrast, the derivative extract, under the same conditions, recognized only the G:U substrate. The activity of the A1235 extract toward the G:T (or m6G:T) substrate was markedly reduced in the absence of ATP, whereas the G:U substrate was incised rapidly by both extracts irrespective of the addition of ATP. These combined data confirm and extend our earlier findings demonstrating that human cells possess two G:T incision activities, one efficient and ATP-dependent and the other inefficient and ATP-independent. The derivative extract lacks the former activity but retains the latter activity. In substrate competition assays, the G:U substrate inhibited the ATP-dependent G:T incision activity to a greater extent than did the G:T substrate itself. Given the well-known substrate preference of TDG for G:U as compared to G:T, this unexpected result implies that TDG may be an integral component of the ATP-dependent G:T incision machinery in human cells. Finally, the base 5' to the mismatched G in the G:T mispair conferred sequence preference on the A1235 extract in the presence of ATP and TDG, with a pyrimidine (especially cytosine) being much favored over a purine. This latter observation suggests that the ATP-dependent G:T incision activity is designed to repair deaminated 5-methycytosine lesions in CpG islands, the methylation of which is linked to control of gene expression.  相似文献   

14.
We have examined the DNA damage produced by reaction of peroxyl radicals with human fibroblast DNA. DNA damage consisted of both strand breaks and base modifications. The extent of strand breaks and base modifications induced as a function of peroxyl radical concentration was determined by quantitation of fragment size distributions using denaturing glyoxal-agarose gel electrophoresis. Both strand breaks and base modifications increased in a log linear fashion with respect to peroxyl radical concentration. Oxidative base modifications were observed to occur to a greater extent than strand breaks at every concentration measured. The sequence-specific distribution of peroxyl radical induced base damage was mapped for 803 nucleotide positions using the method of ligation mediated PCR. A total of 87% of all guanine positions in the examined sequences was found to be significantly oxidized. The order of reactivity of DNA bases toward oxidation by peroxyl radicals was found to be G > C > T. Adenine is essentially unreactive. The yield of oxidative base modifications at guanines and cytosines by peroxyl radicals depends on the exact specification of 5' and 3' flanking bases in a polarity dependent manner. Every guanine in the 5'XGC3' motif was found to be oxidized, where X is any 5' neighbor. In contrast, 5' and 3' purine flanks drastically reduced the extent of peroxyl radical G oxidation. The pattern of base modification and the influence of nearest neighbors differs substantially from that previously reported for hydrogen peroxide damage mediated by low valent transition metal ions for the identical DNA sequences.  相似文献   

15.
Lari SU  Famulski K  Al-Khodairy F 《Biochemistry》2004,43(21):6691-6697
Cell extract from the HT29 human colon carcinoma cell line (lacking mutator phenotype) was used to study the ATP-dependent G:T mismatch repair. We found that when a 45-bp (model) DNA with a single CpG/TpG mispair was incubated with the cell extract and ATP, it was incised immediately 5' and 3' to the mismatched T, and we noted that the actual 5'- and 3'-labeled fragments were similar to the cleaved products of thymine DNA glycosylase (TDG). This TDG-like cleavage product was enhanced (5-fold) with stimulation of several novel fragments, as inferred from the effect on incision at CpG/TpG site of the addition of G:U competitor DNA and ATP to the HT29 extract. The novel fragments were compatible with a strand incision on both sides of the mismatch (the third phosphodiester bond 5' and the second phosphodiester bond 3' to the mismatched T) and an incision 3' to the mismatched T, respectively. This suggests that while the ATP-dependent (TDG-like) incision activity, contrary to expectation, shows a lack of substrate competition, its catalytic property is likely modified by an interaction with G:U mispair. These multiple ATP-dependent incision events were not detected when extracts of the mismatch repair (MMR) defective HCT15 or HCT116 cell line were augmented with ATP and G:U. We postulate that these multiple ATP-dependent incision events possibly require the same MMR factors, and together they constitute a modified single ATP-dependent G:T incision activity. This activity toward the CpG/TpG was competitively inhibited by a 45-bp DNA with an ApG/TpT mispair; incision at a single site 5' to the latter mismatch compares with one of the multiple sites incised 5' to the former mismatch. These results suggest that one of several mismatch-incision factors is required by the human ATP-dependent G:T incision activity, in addition to MMR factors and ATP.  相似文献   

16.
Gu F  Xi Z  Goldberg IH 《Biochemistry》2000,39(16):4881-4891
Bulge structures in nucleic acids are of general biological significance and are potential targets for therapeutic drugs. It has been shown in a previous study that thiol-activated neocarzinostatin chromophore is able to cleave duplex DNA selectively at a position opposite a single unpaired cytosine or thymine base on the 3' side. In this work, we studied in greater detail the nature of this type of cleavage and the basis for the selectivity of the bulge site cleavage over the usual strand cleavage at a T site in the duplex region by using duplexes containing an internal control and a bulge, which is composed of different types and number of bases. Experimental results indicated that the bulge-induced cleavage is initiated by 5' hydrogen abstraction and is greatly affected by the base composition of the bulge. A single-base bulge, especially when containing a purine, yields higher efficiency and greater selectivity for the bulge-induced cleavage. In particular, a single adenine base gives rise to the highest cleavage yield and provides over 20 times greater selectivity for cleavage at the bulge site compared with the internal control site in duplexes. The binding dissociation constants of postactivated drug for a stem-loop structure containing a one- or two-base bulge in the stem, measured by fluorescence quenching, show that the binding is about 3-4 times stronger for bulge-containing duplexes than for perfect hairpin duplexes. For RNA.DNA hybrid duplexes, where the DNA is the target strand and the RNA is the bulge-containing strand, bulge-induced cleavage was observed, although at low yield. On the other hand, when RNA is the nonbulge strand, no bulge-induced cleavage was found. When the reaction is performed in the absence of oxygen, the major product is a covalent adduct, and it is at the same location as the cleavage site under aerobic conditions.  相似文献   

17.
The response of mammalian cells to Sn1 DNA methylators depends on functional MutSalpha and MutLalpha. Cells deficient in either of these activities are resistant to the cytotoxic effects of this class of chemotherapeutic drug. Because killing by Sn1 methylators has been attributed to O6-methylguanine (MeG), we have constructed nicked circular heteroduplexes that contain a single MeG-T mispair, and we have examined processing of these molecules by mismatch repair in nuclear extracts of human cells. Excision provoked by MeG-T is restricted to the incised heteroduplex strand, leading to removal of the MeG when it resides on this strand. However, when the MeG is located on the continuous strand, the heteroduplex is irreparable. MeG-T-dependent repair DNA synthesis is observed on both reparable and irreparable 3' and 5' heteroduplexes as judged by [32P]dAMP incorporation. Labeling with [alpha-32P]dATP followed by a cold dATP chase has demonstrated that newly synthesized DNA on irreparable molecules is subject to re-excision in a reaction that is MutLalpha-dependent, an effect attributable to the presence of MeG on the template strand. Processing of the irreparable 3' heteroduplex is also associated with incision of the discontinuous strand of a few percent of molecules near the thymidylate of the MeG-T base pair. These results provide the first direct evidence for mismatch repair-mediated iterative processing of DNA methylator damage, an effect that may be relevant to damage signaling events triggered by this class of chemotherapeutic agent.  相似文献   

18.
The avian retroviral pol gene-encoded DNA endonuclease (pol-endo) has been shown to selectively cleave the viral long terminal repeat sequences (LTRs) in single-stranded DNA substrates in a region known to be joined to host DNA during integration (G. Duyk, J. Leis, M. Longiaru, and A.M. Skalka, Proc. Natl. Acad. Sci. USA 80:6745-6749, 1983). The preferred sites of cleavage were mapped to the unique U5/U3 junctions found only in covalently closed circular DNA molecules containing two tandem LTRs. The cuts occurred three nucleotides 5' to the axis of symmetry of the 12-of-15-base-pair nearly perfect inverted repeat which marks the LTR junction. Experiments with double-stranded supercoiled DNA substrates revealed a similar specificity for nicking. Also, the endonuclease associated with the pol cleavage product, pp32, has the same specificity as the alpha beta form. The limits of sequence required for site-selective cleavage near the U5/U3 junction were established with single-stranded DNA substrates. A domain no larger than 44 base pairs allowed site-selective cleavage in each strand in vitro. Recognition of either strand appeared to be independent of the other, and in each case, the critical sequence was asymmetrically distributed with respect to the U5/U3 junction. The predominant contribution was from the U5 domain; this is consistent with its conservation in the LTR sequences of a number of avian sarcoma and leukosis viruses.  相似文献   

19.
Triple helix formation requires a polypurine- polypyrimidine sequence in the target DNA. Recent works have shown that this constraint can be circumvented by using alternate strand triplex-forming oligonucleotides. We have previously demonstrated that (T,G)-containing triplex- forming oligonucleotides may adopt a parallel or an antiparallel orientation with respect to an oligopurine target, depending upon the sequence and, in particular, upon the number of 5'-GpT-3' and 5'-TpG-3' steps [Sun et al. (1991) C.R. Acad. Sci. Paris Ser III, 313, 585-590]. A single (T,G)-containing oligonucleotide can therefore interact with two oligopurine stretches which alternate on the two strands of the target DNA. The (T,G) switch oligonucleotide contains a 5'-part targeted to one of the oligopurine sequences in a parallel orientation followed by a 3'-part that adopts an antiparallel orientation with respect to the second oligopurine sequence. We show that a limitation to the stability of such a triplex may arise from the instability of the antiparallel part, composed of reverse-Hoogsteen C.GxG and T.AxT base triplets. Using DNase I footprinting and ultraviolet absorption experiments, we report that a benzo[e]pyridoindole derivative [(3-methoxy- 7H-8-methyl-11-[(3'-amino-propyl) amino] benzo[e]pyrido [4,3-b]indole (BePI)], a drug interacting more tightly with a triplex than with a duplex DNA, strongly stabilizes triplexes with reverse-Hoogsteen C.GxG and T.AxT triplets thus allowing a stabilization of the triplex-forming switch (T,G) oligonucleotide on alternating oligopurine- oligopyrimidine 5'-(Pu)14(Py)14-3' duplex sequences. These results lead to an extension of the range of oligonucleotide sequences for alternate strand recognition of duplex DNA.  相似文献   

20.
G:T mispairs in DNA originate spontaneously via deamination of 5-methylcytosine. Such mispairs are restored to normal G:C pairs by both E. coli K strains and human cells. In this study we have analyzed the repair by human cell extracts of G:T mismatches in various DNA contexts. We performed two sets of experiments. In the first, repair was sequence specific in that G:T mispairs at CpG sites at four different CpG sites were repaired, but a G:T mismatch at a GpG site was not. Cytosine hemimethylation did not block repair of a substrate containing a CpG/GpT mismatch. In the second set of experiments, substrates with a G:T mismatch at a fixed position were constructed with an A, T, G, or C 5' to the mismatched G, and alterations in the complementary strand to allow otherwise perfect Watson-Crick pairing. All were incised just 5' to the mismatched T and competed for repair incision with a G:T substrate in which a C was 5' to the mismatched G. Thus human G:T mismatch activity shows sequence specificity, incising G:T mismatched pairs at some DNA sites, but not at others. At an incisable site, however, incision is little influenced by the base 5' to the mismatched G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号