首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D-3-Phosphoglycerate dehydrogenase (PGDH) from Escherichia coli is allosterically inhibited by L-serine, the end product of its metabolic pathway. Previous results have shown that inhibition by serine has a large effect on Vmax and only a small or negligible effect on Km. PGDH is thus classified as a V-type allosteric enzyme. In this study, the active site of PGDH has been studied by site-directed mutagenesis to assess the role of certain residues in substrate binding and catalysis. These consist of a group of cationic residues (Arg-240, Arg-60, Arg-62, Lys-39, and Lys-141') that potentially form an electrostatic environment for the binding of the negatively charged substrate, as well as the only tryptophan residue found in PGDH and which fits into a hydrophobic pocket immediately adjacent to the active site histidine residue. Interestingly, Trp-139' and Lys-141' are part of the polypeptide chain of the subunit that is adjacent to the active site. The results of mutating these residues show that Arg-240, Arg-60, Arg-62, and Lys-141' play distinct roles in the binding of the substrate to the active site. Mutants of Trp-139' show that this residue may play a role in stabilizing the catalytic center of the enzyme. Furthermore, these mutants appear to have a significant effect on the cooperativity of serine inhibition and suggest a possible role for Trp-139' in the cooperative interactions between subunits.  相似文献   

2.
Escherichia coli d-3-phosphoglycerate dehydrogenase (PGDH) is a homotetrameric enzyme whose activity is allosterically regulated by l-serine, the end-product of its metabolic pathway. Previous studies have shown that PGDH displays two modes of cooperative interaction. One is between the l-serine binding sites and the other is between the l-serine binding sites and the active sites. Tryptophan 139 participates in an intersubunit contact near the active site catalytic residues. Site-specific mutagenesis of tryptophan 139 to glycine results in the dissociation of the tetramer to a pair of dimers and in the loss of cooperativity in serine binding and between serine binding and inhibition. The results suggest that the magnitude of inhibition of activity at a particular active site is primarily dependent on serine binding to that subunit but that activity can be modulated in a cooperative manner by interaction with adjacent subunits. The disruption of the nucleotide domain interface in PGDH by mutating Trp-139 suggests the potential for a critical role of this interface in the cooperative allosteric processes in the native tetrameric enzyme.  相似文献   

3.
Grant GA  Hu Z  Xu XL 《Biochemistry》2005,44(51):16844-16852
L-Serine inhibits the catalytic activity of Escherichia coli D-3-phosphoglycerate dehydrogenase (PGDH) by binding to its regulatory domain. This domain is a member of the ACT domain family of regulatory domains that are modulated by small molecules. A comparison of the phi and psi torsional angle differences between the crystal structures of PGDH solved in the presence and in the absence of L-serine demonstrated a clustering of significant angle deviations in the regulatory domain. A similar clustering was not observed in either of the other two structural domains of PGDH. In addition, significant differences were also observed at the active site and in the Trp-139 loop. To determine if these residues were functionally significant and not just due to other factors such as crystal packing, mutagenic analysis of these residues was performed. Not unexpectedly, this analysis showed that residues that affected the kcat/Km were grouped around the active site and those that affected the serine sensitivity were grouped in the regulatory domain. However, more significantly, residues that affected the cooperativity of inhibition of activity were identified at both locations. These latter residues represent structural elements that participate in both the initial and the ultimate events of the transfer of cooperative behavior from the regulatory domain to the active site. As such, their identification will assist in the elucidation of the pathway of cooperative interaction in this enzyme as well as in the elucidation of the regulatory mechanism of the ACT domain in general.  相似文献   

4.
Li Y  Chen GK  Tong XW  Zhang HT  Liu XG  Liu YH  Lu FP 《Biotechnology letters》2012,34(8):1525-1530
L-Serine is usually produced from glycine. We have genetically engineered Escherichia coli to produce L-serine from glucose intracellularly. D-3-Phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) in E. coli catalyzes the first committed step in L-serine formation but is inhibited by L-serine. To overcome this feedback inhibition, both the His(344) and Asn(346) residues of PGDH were converted to alanine and the mutated PGDH (PGDH(dr)) became insensitive to L-serine. However, overexpression of PGDH(dr) gave no significant increase of L-serine accumulation but, when L-serine deaminase genes (sdaA, sdaB and tdcG) were deleted, serine accumulated: (1) deletion of sdaA gave up to 0.03 mmol L-serine/g; (2) deletion of both sdaA and sdaB accumulated L-serine up to 0.09 mmol/g; and (3) deletion of sdaA, sdaB and tdcG gave up to 0.13 mmol L-serine/g cell dry wt.  相似文献   

5.
D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) from Escherichia coli contains two Gly-Gly sequences that have been shown previously to have the characteristics of hinge regions. One of these, Gly(336)-Gly(337), is found in the loop between the substrate binding domain and the regulatory domain. Changing these glycine residues to valine affected the sensitivity of the enzyme to inhibition by L-serine but not the extent of inhibition. The decrease in sensitivity was caused primarily by a decrease in the affinity of the enzyme for L-serine. These mutations also affected the domain rotation of the subunits in response to L-serine binding. A major conclusion of this study was that it defines a minimal limit on the necessary conformational changes leading to inhibition of enzyme activity. That is, some of the conformational differences seen in the native enzyme upon L-serine binding are not critical for inhibition, whereas others are maintained and may play important roles in inhibition and cooperativity. The structure of G336V demonstrates that the minimal effect of L-serine binding leading to inhibition of enzyme activity requires a domain rotation of approximately only 6 degrees in just two of the four subunits of the enzyme that are oriented diagonally across from each other in the tetramer. Moreover the structures show that both pairs of Asn190 to Asn190 hydrogen bonds across the subunit interfaces are necessary for activity. These observations are consistent with the half-the-sites activity, flip-flop mechanism proposed for this and other similar enzymes and suggest that the Asn190 hydrogen bonds may function in the conformational transition between alternate half-the-site active forms of the enzyme.  相似文献   

6.
Escherichia coli 3-phosphoglycerate dehydrogenase (PGDH) catalyzes the first step in serine biosynthesis, and is allosterically inhibited by serine. Structural studies revealed a homotetramer in which the quaternary arrangement of subunits formed an elongated ellipsoid. Each subunit consisted of three domains: nucleotide, substrate and regulatory. In PGDH, extensive interactions are formed between nucleotide binding domains. A second subunit-subunit interaction occurs between regulatory domains creating an extended beta sheet. The serine-binding sites overlap this interface. In these studies, the nucleotide and substrate domains (NSDs) were subcloned to identify changes in both catalytic and physical properties upon removal of a subunit-subunit interface. The NSDs did not vary significantly from PGDH with respect to kinetic parameters with the exception that serine no longer had an effect on catalysis. Temperature dependent dynamic light scattering (DLS) revealed the NSDs aggregated > 5 degrees C before PGDH, indicating decreased stability. DLS and gel filtration studies showed that the truncated enzyme formed a tetramer. This result negated the hypothesis that the removal of the regulatory domain would create an enzyme mimic of the unregulated, closely related dimeric enzymes. Expression of the regulatory domain, to study conformational changes induced by serine binding, yielded a product that by CD spectra contained stable secondary structure. DLS and pulsed field gradient NMR studies of the regulatory domain showed the presence of higher oligomers instead of the predicted dimer. We have concluded that the removal of the regulatory domain is sufficient to eliminate serine inhibition but does not have the expected effect on the quaternary structure.  相似文献   

7.
Grant GA  Xu XL  Hu Z  Purvis AR 《Biochemistry》1999,38(50):16548-16552
The binding of L-serine to phosphoglycerate dehydrogenase from E. coli displays elements of both positive and negative cooperativity. In addition, the inhibition of enzymatic activity by L-serine is also cooperative with Hill coefficients greater than 1. However, phosphate buffer significantly reduces the cooperative effects in serine binding without affecting the cooperativity of inhibition of activity. The maximal degree of inhibition and fluorescence quenching in Tris buffer occurs when an average of two serine binding sites out of four are occupied. This value increases to three out of the four sites at maximal levels of inhibition and quenching in phosphate buffer. The increase from two to three sites appears to be due to the ability of phosphate to reduce the site to site cooperative effects and render each ligand binding site less dependent on each other. The correlation between the level of inhibition and the fractional site occupancy indicates that in Tris buffer, one serine is bound to each interface at maximal effect. In the presence of phosphate, the order of binding appears to change so that both sites at one interface fill before the first site at the opposite interface is occupied. In each case, there is a good correlation between serine binding, conformational change at the regulatory site interfaces, and inhibition of enzyme activity. The observation that phosphate does not appear to have a similar effect on the cooperativity of inhibition of enzymatic activity suggests that there are two distinct cooperative pathways at work: one path between the four serine binding sites, and one path between the serine binding sites and the active sites.  相似文献   

8.
The crystal structure of d-3-phosphoglycerate dehydrogenase reveals a limited number of contacts between the regulatory and substrate binding domains of each subunit in the tetrameric enzyme. These occur between the side chains of Arg-339, Arg-405, and Arg-407 in the regulatory domain and main chain carbonyls in the substrate binding domain. In addition, Arg-339 participates in a hydrogen bonding network within the regulatory domain involving Arg-338 and Tyr-410, the C-terminal residue of the enzyme subunit. Mutagenic analysis of these residues produce profound effects on the enzyme's sensitivity to serine, the cooperativity of serine inhibition, and in some cases, the apparent overall conformation of the enzyme. Mutations of Arg-405 and Arg-407, which span the interface where the two domains come together, reduce the cooperativity of inhibition and increase the sensitivity of the enzyme to serine concentration. Serine binding studies with Arg-407 converted to Ala demonstrate that cooperativity of serine binding is also significantly reduced in a manner similar to the reduction in the cooperativity of inhibition. Mutations of Tyr-410 and Arg-338 decrease the sensitivity to serine without an appreciable effect on the cooperativity of inhibition. In the case of Tyr-410, a deletion mutant demonstrates that this effect is due to the loss of the C-terminal carboxyl group rather than the tyrosine side chain. All mutations of Arg-339, with the exception of its conversion to Lys, had profound effects on the stability of the enzyme. In general, those mutants that decrease sensitivity to serine are those that participate mainly in intradomain interactions and may also directly affect the serine binding sites themselves. Those mutants that decrease cooperativity are those that participate in interdomain interaction within the subunit. The observation that the mutants that decrease cooperativity also increase sensitivity to serine suggests a potential separation of pathways between how the simple act of serine binding results in noncooperative active site inhibition in the first place and how serine binding also leads to cooperativity between sites in the native enzyme.  相似文献   

9.
A putative phosphoglycerate dehydrogenase (PGDH), which catalyzes the oxidation of d-phosphoglycerate to 3-phosphohydroxypyruvate in the so-called phosphorylated serine metabolic pathway, from the enteric protozoan parasite Entamoeba histolytica was characterized. The E. histolytica PGDH gene (EhPGDH) encodes a protein of 299 amino acids with a calculated molecular mass of 33.5 kDa and an isoelectric point of 8.11. EhPGDH showed high homology to PGDH from bacteroides and another enteric protozoan ciliate, Entodinium caudatum. EhPGDH lacks both the carboxyl-terminal serine binding domain and the 13-14 amino acid regions containing the conserved Trp139 (of Escherichia coli PGDH) in the nucleotide binding domain shown to be crucial for tetramerization, which are present in other organisms including higher eukaryotes. EhPGDH catalyzed reduction of phosphohydroxypyruvate to phosphoglycerate utilizing NADH and, less efficiently, NADPH; EhPGDH did not utilize 2-oxoglutarate. Kinetic parameters of EhPGDH were similar to those of mammalian PGDH, for example the preference of NADH cofactor, substrate specificities and salt-reversible substrate inhibition. In contrast to PGDH from bacteria, plants and mammals, the EhPGDH protein is present as a homodimer as demonstrated by gel filtration chromatography. The E. histolytica lysate contained PGDH activity of 26 nmol NADH utilized per min per mg of lysate protein in the reverse direction, which consisted 0.2-0.4% of a total soluble protein. Altogether, this parasite represents a unique unicellular protist that possesses both phosphorylated and nonphosphorylated serine metabolic pathways, reinforcing the biological importance of serine metabolism in this organism. Amino acid sequence comparison and phylogenetic analysis of various PGDH sequences showed that E. histolytica forms a highly supported monophyletic group with another enteric protozoa, cilliate E. caudatum, and bacteroides.  相似文献   

10.
A structural database search has revealed that the same fold found in the allosteric substrate binding (ASB) domain of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase (PGDH) is found in l-serine dehydratase from Legionella pneumophila. The M. tuberculosis PGDH ASB domain functions in the control of catalytic activity. Bacterial l-serine dehydratases are 4Fe-4S proteins that convert l-serine to pyruvate and ammonia. Sequence homology reveals two types depending on whether their α and β domains are on the same (Type 2) or separate (Type 1) polypeptides. The α domains contain the catalytic iron-sulfur center while the β domains do not yet have a described function, but the structural homology with PGDH suggests a regulatory role. Type 1 β domains also contain additional sequence homologous to PGDH ACT domains. A continuous assay for l-serine dehydratase is used to demonstrate homotropic cooperativity, a broad pH range, and essential irreversibility. Product inhibition analysis reveals a Uni-Bi ordered mechanism with ammonia dissociating before pyruvate. l-Threonine is a poor substrate and l-cysteine and d-serine are competitive inhibitors with K(i) values that differ by almost 10-fold from those reported for Escherichia colil-serine dehydratase. Mutagenesis identifies the three cysteine residues at the active site that anchor the iron-sulfur complex.  相似文献   

11.
The activity of the enzyme tryptophan synthase from Escherichia coli was tested as a function of the concentration of L-serine which serves as a substrate in the indole to tryptophan reaction as well as for the L-serine deaminase activity. L-Serine binding was found to follow the pattern of negative cooperativity both by kinetic and by equilibrium methods. The enzyme kinetic data support the view that a rapid equilibration model for the enzyme . substrates complex formation is not strictly obeyed.  相似文献   

12.
Serine hydroxymethyltransferase has a conserved histidine residue (His-228) next to the lysine residue (Lys-229) which forms the internal aldimine with pyridoxal 5'-phosphate. This histidine residue is also conserved at the equivalent position in all amino acid decarboxylases and tryptophan synthase. Two mutant forms of Escherichia coli serine hydroxymethyltransferase, H228N and H228D, were constructed, expressed, and purified. The properties of the wild type and mutant enzymes were studied with substrates and substrate analogs by differential scanning calorimetry, circular dichroism, steady state kinetics, and rapid reaction kinetics. The conclusions of these studies were that His-228 plays an important role in the binding and reactivity of the hydroxymethyl group of serine in the one-carbon-binding site. The mutant enzymes utilize substrates and substrate analogs more effectively for a variety of alternate non-physiological reactions compared to the wild type enzyme. As one example, the mutant enzymes cleave L-serine to glycine and formaldehyde when tetrahydropyteroylglutamate is replaced by 5-formyltetrahydropteroylglutamate. The released formaldehyde inactivates these mutant enzymes. The loss of integrity of the one-carbon-binding site with L-serine in the two mutant forms of the enzyme may be the result of these enzymes not undergoing a conformational change to a closed form of the active site when serine forms the external aldimine complex.  相似文献   

13.
d-3-Phosphoglycerate dehydrogenase from Escherichia coli contains two Gly-Gly sequences that occur at junctions between domains. A previous study (Grant, G. A., Xu, X. L., and Hu, Z. (2000) Biochemistry 39, 7316-7319) determined that the Gly-Gly sequence at the junction between the regulatory and substrate binding domain functions as a hinge between the domains. Mutations in this area significantly decrease the ability of serine to inhibit activity but have little effect on the K(m) and k(cat). Conversely, the present study shows that mutations to the Gly-Gly sequence at the junction of the substrate and nucleotide binding domains, which form the active site cleft, have a significant effect on the k(cat) of the enzyme without substantially altering the enzyme's sensitivity to serine. In addition, mutation of Gly-294, but not Gly-295, has a profound effect on the cooperativity of serine inhibition. Interestingly, even though cooperativity of inhibition can be reduced significantly, there is little apparent effect on the cooperativity of serine binding itself. An additional mutant, G336V,G337V, also reduces the cooperativity of inhibition, but in this case serine binding also is reduced to the point at which it cannot be measured by equilibrium dialysis. The double mutant G294V,G336V demonstrates that strain imposed by mutation at one hinge can be relieved partially by mutation at the other hinge, demonstrating linkage between the two hinge regions. These data show that the two cooperative processes, serine binding and catalytic inhibition, can be uncoupled. Consideration of the allowable torsional angles for the side chains introduced by the mutations yields a range of values for these angles that the glycine residues likely occupy in the native enzyme. A comparison of these values with the torsional angles found for the inhibited enzyme from crystal coordinates provides potential beginning and ending orientations for the transition from active to inhibited enzyme, which will allow modeling of the dynamics of domain movement.  相似文献   

14.
D-3-phosphoglycerate dehydrogenase (PGDH) from Escherichia coli catalyzes the first critical step in serine biosynthesis, and can be allosterically inhibited by serine. In a previous study, we developed a computational method for allosteric site prediction using a coarse-grained two-state Gō Model and perturbation. Two potential allosteric sites were predicted for E. coli PGDH, one close to the active site and the nucleotide binding site (Site I) and the other near the regulatory domain (Site II). In the present study, we discovered allosteric inhibitors and activators based on site I, using a high-throughput virtual screen, and followed by using surface plasmon resonance (SPR) to eliminate false positives. Compounds 1 and 2 demonstrated a low-concentration activation and high-concentration inhibition phenomenon, with IC50 values of 34.8 and 58.0 µM in enzymatic bioassays, respectively, comparable to that of the endogenous allosteric effector, L-serine. For its activation activity, compound 2 exhibited an AC50 value of 34.7 nM. The novel allosteric site discovered in PGDH was L-serine- and substrate-independent. Enzyme kinetics studies showed that these compounds influenced Km, kcat, and kcat/Km. We have also performed structure-activity relationship studies to discover high potency allosteric effectors. Compound 2-2, an analog of compound 2, showed the best in vitro activity with an IC50 of 22.3 µM. Compounds targeting this site can be used as new chemical probes to study metabolic regulation in E. coli. Our study not only identified a novel allosteric site and effectors for PGDH, but also provided a general strategy for designing new regulators for metabolic enzymes.  相似文献   

15.
Bell JK  Grant GA  Banaszak LJ 《Biochemistry》2004,43(12):3450-3458
Phosphoglycerate dehydrogenase (PGDH) catalyzes the first step in the serine biosynthetic pathway. In lower plants and bacteria, the PGDH reaction is regulated by the end-product of the pathway, serine. The regulation occurs through a V(max) mechanism with serine binding and inhibition occurring in a cooperative manner. The three-dimensional structure of the serine inhibited enzyme, determined by previous work, showed a tetrameric enzyme with 222 symmetry and an unusual overall toroidal appearance. To characterize the allosteric, cooperative effects of serine, we identified W139G PGDH as an enzymatically active mutant responsive to serine but not in a cooperative manner. The position of W139 near a subunit interface and the active site cleft suggested that this residue is a key player in relaying allosteric effects. The 2.09 A crystal structure of W139G-PGDH, determined in the absence of serine, revealed major quaternary and tertiary structural changes. Contrary to the wildtype enzyme where residues encompassing residue 139 formed extensive intersubunit contacts, the corresponding residues in the mutant were conformationally flexible. Within each of the three-domain subunits, one domain has rotated approximately 42 degrees relative to the other two. The resulting quaternary structure is now in a novel conformation creating new subunit-to-subunit contacts and illustrates the unusual flexibility in this V(max) regulated enzyme. Although changes at the regulatory domain interface have implications in other enzymes containing a similar regulatory or ACT domain, the serine binding site in W139G PGDH is essentially unchanged from the wildtype enzyme. The structural and previous biochemical characterization of W139G PGDH suggests that the allosteric regulation of PGDH is mediated not only by changes occurring at the ACT domain interface but also by conformational changes at the interface encompassing residue W139.  相似文献   

16.
The binding of L-serine to phosphoglycerate dehydrogenase from Escherichia coli displays elements of both positive and negative cooperativity. At pH 7.5, approximately 2 mol of serine are bound per mole of tetrameric enzyme. A substantial degree of positive cooperativity is seen for the binding of the second ligand, but the binding of the third and fourth ligand display substantial negative cooperativity. The data indicate a state of approximately 50% inhibition when only one serine is bound and approximately 80-90% inhibition when two serines are bound. This is consistent with the tethered domain hypothesis that has been presented previously. Comparison of the data derived directly from binding stoichiometry to the binding constants determined from the best fit to the Adair equation, produce a close agreement, and reinforce the general validity of the derived binding constants. The data also support the conclusion that the positive cooperativity between the binding to the first and second site involves binding sites at opposite interfaces over 110 A apart. Thus, an order of binding can be envisioned where the binding of the first ligand initiates a conformational transition that allows the second ligand to bind with much higher affinity at the opposite interface. This is followed by the third ligand, which binds with lesser affinity to one of the two already occupied interfaces, and in so doing, completes a global conformational transition that produces maximum inhibition of activity and an even lower affinity for the fourth ligand, excluding it completely. Thus, maximal inhibition is accomplished with less than maximal occupancy of effector sites through a mechanism that displays strong elements of both positive and negative cooperativity.  相似文献   

17.
Short-chain dehydrogenase/reductase homologues from Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C) show high sequence similarity to serine dehydrogenase from Agrobacterium tumefaciens. We cloned each gene encoding YdfG and YMR226C into E. coli JM109 and purified them to homogeneity from the E. coli clones. YdfG and YMR226C consist of four identical subunits with a molecular mass of 27 and 29 kDa, respectively. Both enzymes require NADP(+) as a coenzyme and use L-serine as a substrate. Both enzymes show maximum activity at about pH 8.5 for the oxidation of L-serine. They also catalyze the oxidation of D-serine, L-allo-threonine, D-threonine, 3-hydroxyisobutyrate, and 3-hydroxybutyrate. The k(cat)/K(m) values of YdfG for L-serine, D-serine, L-allo-threonine, D-threonine, L-3-hydroxyisobutyrate, and D-3-hydroxyisobutyrate are 105, 29, 199, 109, 67, and 62 M(-1) s(-1), and those of YMR226C are 116, 110, 14600, 7540, 558, and 151 M(-1) s(-1), respectively. Thus, YdfG and YMR226C are NADP(+)-dependent dehydrogenases acting on 3-hydroxy acids with a three- or four-carbon chain, and L-allo-threonine is the best substrate for both enzymes.  相似文献   

18.
D-3-Phosphoglycerate dehydrogenases (PGDH) exist with at least three different structural motifs and the enzymes from different species display distinctly different mechanisms. In many species, particularly bacteria, the catalytic activity is regulated allosterically through binding of l-serine to a distinct structural domain, termed the ACT domain. Some species, such as Mycobacterium tuberculosis, contain an additional domain, called the "allosteric substrate binding" or ASB domain, that functions as a co-domain in the regulation of catalytic activity. That is, both substrate and effector function synergistically in the regulation of activity to give the enzyme some interesting properties that may have physiological relevance for the persistent state of tuberculosis. Both enzymes function through a V-type regulatory mechanism and, in the Escherichia coli enzyme, it has been demonstrated that this results from a dead-end complex that decreases the concentration of active species rather than a decrease in the velocity of the active species. This review compares and contrasts what we know about these enzymes and provides additional insight into their mechanism of allosteric regulation.  相似文献   

19.
D-aspartate is present at high concentrations in the tissues of Scapharca broughtonii, and its production depends on aspartate racemase. This enzyme is the first aspartate racemase purified from animal tissues and unique in its pyridoxal 5'-phosphate (PLP)-dependence in contrast to microbial aspartate racemases thus far characterized. The enzyme activity is markedly increased in the presence of AMP and decreased in the presence of ATP. To analyze the structure-function relationship of the enzyme further, we cloned the cDNA of aspartate racemase, and then purified and characterized the recombinant enzyme expressed in Escherichia coli. The cDNA included an open reading frame of 1,017 bp encoding a protein of 338 amino acids, and the deduced amino acid sequence contained a PLP-binding motif. The sequence exhibits the highest identity (43-44%) to mammalian serine racemase, followed mainly by threonine dehydratase. These relationships are fully supported by phylogenetic analyses of the enzymes. The active recombinant aspartate racemase found in the Escherichia coli extract represented about 10% of total bacterial protein and was purified to display essentially identical physicochemical and catalytic properties with those of the native enzyme. In addition, the enzyme showed a dehydratase activity toward L-threo-3-hydroxyaspartate, similar to the mammalian serine racemase that produces pyruvate from D- and L-serine.  相似文献   

20.
Borgaro JG  Chang A  Machutta CA  Zhang X  Tonge PJ 《Biochemistry》2011,50(49):10678-10686
β-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a β-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号