首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rhinovirus (RV) infection is a major cause of asthma exacerbations which may be due to a deficient innate immune response in the bronchial epithelium. We hypothesized that the pleiotropic cytokine, TGF-β, influences interferon (IFN) production by primary bronchial epithelial cells (PBECs) following RV infection. Exogenous TGF-β(2) increased RV replication and decreased IFN protein secretion in response to RV or double-stranded RNA (dsRNA). Conversely, neutralizing TGF-β antibodies decreased RV replication and increased IFN expression in response to RV or dsRNA. Endogenous TGF-β(2) levels were higher in conditioned media of PBECs from asthmatic donors and the suppressive effect of anti-TGF-β on RV replication was significantly greater in these cells. Basal SMAD-2 activation was reduced when asthmatic PBECs were treated with anti-TGF-β and this was accompanied by suppression of SOCS-1 and SOCS-3 expression. Our results suggest that endogenous TGF-β contributes to a suppressed IFN response to RV infection possibly via SOCS-1 and SOCS-3.  相似文献   

3.
Human rhinoviruses (HRV) are the most common agent of upper respiratory infections and an important cause of lower respiratory tract symptoms. Our previous research with other viral pathogens has shown that virus-induced airway inflammation and hyperreactivity involve neurotrophic pathways that also affect tropism and severity of the infection. The goals of this study were to analyze systematically the expression of key neurotrophic factors and receptors during HRV-16 infection of human airway epithelial cells and to test the hypothesis that neurotrophins modulate HRV infection by controlling the expression of a major cellular receptor for this virus, the intercellular adhesion molecule 1 (ICAM-1). Neurotrophins and ICAM-1 expression were analyzed at the mRNA level by real-time PCR and at the protein level by flow cytometry and immunocytochemistry. A small inhibitory RNA (siRNA) or a specific blocking antibody was utilized to suppress nerve growth factor (NGF) expression and measure its effects on viral replication and virus-induced cell death. Nasal and bronchial epithelial cells were most susceptible to HRV-16 infection at 33°C and 37°C, respectively, and a significant positive relationship was noted between expression of NGF and tropomyosin-related kinase A (TrkA) and virus copy number. ICAM-1 expression was dose dependently upregulated by exogenous NGF and significantly downregulated by NGF inhibition with corresponding decrease in HRV-16 replication. NGF inhibition also increased apoptotic death of infected cells. Our results suggest that HRV upregulates the NGF-TrkA pathway in airway epithelial cells, which in turn amplifies viral replication by increasing HRV entry via ICAM-1 receptors and by limiting apoptosis.  相似文献   

4.
Infection of human epithelial cells with human rhinovirus (HRV)-16 induces rapid production of several proinflammatory cytokines, including IL-8, IL-6, and GM-CSF. We evaluated the role of NF-kappaB in HRV-16-induced IL-8 and IL-6 production by EMSA using oligonucleotides corresponding to the binding sites for NF-kappaB in the IL-6 and IL-8 gene promoters. Consistent with the rapid induction of mRNA for IL-8 and IL-6, maximal NF-kappaB binding to both oligonucleotides was detected at 30 min after infection. NF-kappaB complexes contained p65 and p50, but not c-Rel. The IL-8 oligonucleotide bound recombinant p50 with only about one-tenth the efficiency of the IL-6 oligonucleotide, even though epithelial cells produced more IL-8 protein than IL-6. Neither the potent glucocorticoid, budesonide (10-7 M), nor a NO donor inhibited NF-kappaB binding to either cytokine promoter or induction of mRNA for either IL-8 or IL-6. Sulfasalazine and calpain inhibitor I, inhibitors of NF-kappaB activation, blocked HRV-16-induced formation of NF-kappaB complexes with oligonucleotides from both cytokines, but did not inhibit mRNA induction for either cytokine. By contrast, sulfasalazine clearly inhibited HRV-16 induction of mRNA for GM-CSF in the same cells. Thus, HRV-16 induces epithelial expression of IL-8 and IL-6 by an NF-kappaB-independent pathway, whereas induction of GM-CSF is at least partially dependent upon NF-kappaB activation.  相似文献   

5.
Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.  相似文献   

6.
Virtually all in vitro studies of the effects of rhinovirus on human airway epithelium have used cells grown under conditions known to produce low levels of differentiation. The relevance of the results to native epithelium is questionable. Here we grew primary cultures of human tracheal or nasal epithelium under three conditions. One condition produced pseudostratified, mucociliary cells virtually indistinguishable from native epithelium. The other two conditions produced undifferentiated squamous cells lacking cilia. Cells were infected for 6 h with rhinovirus-16. After a 24-h incubation period, we determined levels of viral RNA in the cells, numbers of infectious viral particles released in the mucosal medium, expression of a variety of epithelial cytokines and other proteins, release of IL-6 and IL-8, and transepithelial electrical resistance and voltage. After infection, levels of viral RNA in the poorly differentiated cells were 30 or 130 times those in the differentiated. Furthermore, expression of mRNA for inflammatory cytokines, release of infectious particles, and release of IL-6 and IL-8 were closely correlated with the degree of viral infection. Thus well-differentiated cells are much more resistant to viral infection and its functional consequences than are poorly differentiated cells from the same source.  相似文献   

7.
8.
9.
Meconium aspiration syndrome (MAS) is common among newborn children but its mechanism is unclear. The syndrome is known to produce a strong inflammatory reaction in the lungs resulting in massive cell death. In this work we studied lung cell death by apoptosis after meconium aspiration in forty two-week-old rabbit pups. Analyzing lung samples by ISEL-DNA end labeling demonstrated the specific spread of apoptotic bodies throughout the lungs. These bodies were shrunken and smaller in size compared to normal cells and many of them were lacking cell membranes. About 70% of all apoptotic bodies were found among the airway epithelium cell eight hours after meconium instillation. In comparison, among lung alveolar cells, only about 20% cells were apoptotic in the same animals. In meconium-treated lungs and A549 cells, a significant increase of angiotensinogen mRNA and Caspase-3 expression were observed. The pretreatment of cells with Caspase-3 inhibitor ZVAD-fmk significantly inhibited meconium-induced lung cell death by apoptosis. These findings demonstrate the apoptotic process in meconium-instilled lungs or A549 cells in culture. Our results show lung airway epithelial and A549 cell apoptosis after meconium instillation. We suggest that studies of lung airway epithelial cell death are essential to understanding the pathophysiology of MAS and may present a key point in future therapeutic applications.  相似文献   

10.
Scavenger receptors and Toll-like receptors (TLRs) cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (ds)RNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.  相似文献   

11.
12.
13.
To determine the role of respiratory epithelial cells in the inflammatory response to inhaled endotoxin, we selectively inhibited NF-kappa B activation in the respiratory epithelium using a mutant I kappa B-alpha construct that functioned as a dominant negative inhibitor of NF-kappa B translocation (dnI kappa B-alpha). We developed two lines of transgenic mice in which expression of dnI kappa B-alpha was targeted to the distal airway epithelium using the human surfactant apoprotein C promoter. Transgene expression was localized to the epithelium of the terminal bronchioles and alveoli. After inhalation of LPS, nuclear translocation of NF-kappa B was evident in bronchiolar epithelium of nontransgenic but not of transgenic mice. This defect was associated with impaired neutrophilic lung inflammation 4 h after LPS challenge and diminished levels of TNF-alpha, IL-1 beta, macrophage inflammatory protein-2, and KC in lung homogenates. Expression of TNF-alpha within bronchiolar epithelial cells and of VCAM-1 within peribronchiolar endothelial cells was reduced in transgenic animals. Thus targeted inhibition of NF-kappa B activation in distal airway epithelial cells impaired the inflammatory response to inhaled LPS. These data provide causal evidence that distal airway epithelial cells and the signals they transduce play a physiological role in lung inflammation in vivo.  相似文献   

14.
15.
Evans JH  Sanderson MJ 《Cell calcium》1999,26(3-4):103-110
The effect of ATP-induced Ca2+ oscillations on ciliary activity was examined in airway epithelial cells by simultaneously measuring the ciliary beat frequency (CBF) and the intracellular Ca2+ concentration ([Ca2+]i) near the base of the cilia. Exposure to extracellular ATP (ATPo) induces a rapid and large increase in both [Ca2+]i and CBF, followed by oscillations in [Ca2+]i and a sustained elevation in CBF. After each Ca2+ oscillation, the [Ca2+]i returned to near basal values. By contrast, the CBF remained elevated during these Ca2+ oscillations, although each Ca2+ oscillation induced small variations in CBF. During Ca2+ oscillations, increases in CBF closely followed the rising phase of increases in [Ca2+]i, but declines in CBF lagged behind declines in [Ca2+]i. Higher frequency Ca2+ oscillations reduced variations in CBF, producing a stable and sustained elevation in CBF. The maximal CBF was induced by Ca2+ oscillations and was 15% greater than the CBF induced by the substantially larger initial [Ca2+]i increase. These data demonstrate that the rate of CBF is not directly dependent on the absolute [Ca2+]i, but is dependent on the differential changes in [Ca2+]i and suggest that CBF in airway epithelial cells is regulated by frequency-modulated Ca2+ signaling.  相似文献   

16.
Extracellular nucleotides regulate ion transport and mucociliary clearance in human airway epithelial cells (HAECs) via the activation of P2 receptors, especially P2Y(2). Therefore, P2Y(2) receptor agonists represent potential pharmacotherapeutic agents to treat cystic fibrosis (CF). Nucleotides also modulate inflammatory properties of immune cells like dendritic cells (DCs), which play an important role in mucosal immunity. Using DNA-microarray experiments, quantitative RT-PCR and cytokine measurements, we show here that UTP up-regulated approximately 2- to 3-fold the antimicrobial chemokine CCL20 expression and release in primary HAECs cultured on permeable supports at an air-liquid interface (ALI). Both P2Y(2) (ATPgammaS, UTP, INS365) and P2Y(6) (UDP, INS48823) agonists increased CCL20 release. UTP-induced CCL20 release was insensitive to NF-kappaB pathway inhibitors but sensitive to inhibitors of ERK1/2 and p38/MAPK pathways. Furthermore, UTP had no effect on interleukin-(IL)-8 release and reduced the release of both CCL20 and IL-8 induced by TNF-alpha and LPS. Accordingly, UTP reduced the capacity of basolateral supernatants of HAECs treated with TNF-alpha or LPS to induce the chemoattraction of both CD4(+) T lymphocytes and neutrophils. In addition, we show that, in monocyte-derived DCs, ATPgammaS, and UDP but not UTP/INS365-stimulated CCL20 release. Likewise, UDP but not ATPgammaS was also able to increase CCL20 release from monocytes. Pharmacological experiments suggested an involvement of P2Y(11) or P2Y(6) receptors through NF-kappaB, ERK1/2, and p38/MAPK pathways. Altogether, our data demonstrate that nucleotides may modulate chemokine release and leukocyte recruitment in inflamed airways by acting on both epithelial and immune cells. Our results could be relevant for further clinical investigations in CF.  相似文献   

17.
To initiate adaptative cytotoxic immune responses, proteolytic peptides derived from phagocytosed antigens are presented by dendritic cells (DCs) to CD8+ T lymphocytes through a process called antigen "crosspresentation." The partial degradation of antigens mediated by lysosomal proteases in an acidic environment must be tightly controlled to prevent destruction of potential peptides for T cell recognition. We now describe a specialization of the phagocytic pathway of DCs that allows a fine control of antigen processing. The NADPH oxidase NOX2 is recruited to the DC's early phagosomes and mediates the sustained production of low levels of reactive oxygen species, causing active and maintained alkalinization of the phagosomal lumen. DCs lacking NOX2 show enhanced phagosomal acidification and increased antigen degradation, resulting in impaired crosspresentation. Therefore, NOX2 plays a critical role in conferring DCs the ability to function as specialized phagocytes adapted to process antigens rather than kill pathogens.  相似文献   

18.
Reactive oxygen species (ROS) disrupt the barrier function of airway epithelial cells through a mechanism that appears to involve remodeling of the actin cytoskeleton. Similarly, keratinocyte growth factor (KGF) has been shown to protect against ROS-induced loss of barrier function through a mechanism that may also involve the actin cytoskeleton. To further determine the role of the actin cytoskeleton in ROS-induced barrier injury, we quantified the relative amount of total actin associated with the cytoskeleton following exposure to hydrogen peroxide (H(2)O(2)) and pretreatment with KGF. We also determined the role of the actin-myosin contractile mechanism in the process by quantifying the relative amount of myosin heavy chain (MHC) associated with the cytoskeleton. While the transepithelial resistance (TER) of a monolayer of airway epithelial cells (Calu-3) decreased after 2 h of continuous exposure to 0.5 mM H(2)O(2), actin and MHC, both dissociated from the cytoskeleton within 15 min of H(2)O(2) exposure. The TER of the monolayers remained depressed although both actin and myosin returned to the cytoskeleton by 4 h after the initiation of H(2)O(2) exposure. Filamentous actin (f-actin) staining suggested that the re-associating actin took the form of short fibers associated with cortical actin rather than long stress fibers. Furthermore, pretreatment with KGF prevented the loss of actin and MHC from the actin cytoskeleton but did not prevent the decrease in TER. These studies suggest that actin disassembly from the cytoskeleton is important in the loss of barrier function, but that it is not the overall amount of actin that is associated with the cytoskeleton that is important, rather it is the contribution this actin makes to the architectural cohesiveness of the cell that contributes to the barrier function.  相似文献   

19.
20.
Although Brucella frequently infects humans through inhalation, its interaction with pulmonary cells has been overlooked. We examined whether human lung epithelial cells produce proinflammatory mediators in response to Brucella infection. Infection with smooth or rough strains of Brucella abortus induced the secretion of IL-8 and GM-CSF by the bronchial epithelial cell lines Calu-6 and 16HBE14o-, but not by the alveolar epithelial cell line A549. Infected Calu-6 cells also produced low levels of MCP-1. Since monocyte-derived cytokines may induce chemokine secretion in epithelial cells, cocultures of human monocytes (THP-1 cell line) and respiratory epithelial cells were used to study such interaction. IL-8 and MCP-1 levels in B. abortus-infected THP-1:A549 and THP-1:Calu-6 cocultures, and MCP-1 levels in THP-1:16HBE14o- cocultures, were higher than those detected in infected epithelial monocultures. Conditioned medium from infected monocytes induced the secretion of IL-8 and/or MCP-1 by A549 and Calu-6 cells, and these effects were mainly mediated by IL-1 (in A549 cells) or TNF-α (in Calu-6 cells). Conversely, culture supernatants from Brucella-infected bronchial epithelial cells induced MCP-1 production by monocytes, an effect largely mediated by GM-CSF. This study shows that human lung epithelial cells mount a proinflammatory response to Brucella, either directly or after interaction with Brucella-infected monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号