首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The afferent arteriolar myogenic response contributes to the autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR), and plays an essential role in protecting the kidney against hypertensive injury. Systolic blood pressure (SBP) is most closely linked to renal injury, and a myogenic response coupled to this signal would facilitate renal protection, whereas mean blood pressure (MBP) influences RBF and GFR. The relative role of SBP vs. MBP as the primary determinant of myogenic tone is an area of current controversy. Here, we describe two mathematical models, Model-Avg and Model-Sys, that replicate the different delays and time constants of vasoconstrictor and vasodilator phases of the myogenic responses of the afferent arteriole. When oscillating pressures are applied, the MBP determines the magnitude of the myogenic response of Model-Avg, and the SBP determines the response of Model-Sys. Simulations evaluating the responses of both models to square-wave pressure oscillations and to narrow pressure pulses show decidedly better agreement between Model-Sys and afferent arteriolar responses observed in cortical nephrons in the in vitro hydronephrotic kidney model. Analysis showing that the difference in delay times of the vasoconstrictor and vasodilator phases determines the frequency range over which SBP triggers Model-Sys's response was confirmed with simulations using authentic blood pressure waveforms. These observations support the postulate that SBP is the primary determinant of the afferent arteriole's myogenic response and indicate that differences in the delays in initiation vs. termination of the response, rather than in time constants, are integral to this phenomenon.  相似文献   

2.
A mathematical model of the renal vascular and tubular systems was used to examine the possibility that synergistic interactions might occur between the tubuloglomerular feedback (TGF) and myogenic autoregulatory mechanisms in the kidney. To simulate the myogenic mechanism, the renal vasculature was modelled with a resistance network where the total preglomerular resistance varies with intravascular pressure. In addition, a steady-state model of glomerular filtration, proximal and Henle's loop reabsorption, and TGF-modulation of afferent arteriolar resistance was derived. The results show that, if TGF acts on the distal portion of the preglomerular vasculature, then any TGF-induced vasoconstriction should raise upstream intravascular pressure and, thereby, trigger a myogenic response in the more proximal vascular segments, a phenomenon referred to as an ascending myogenic (AMYO) response. The model further predicts that the magnitude of the AMYO response can be similar in magnitude to the TGF-induced increment in afferent resistance. Hence, the effects of TGF excitation on whole kidney hemodynamics may be much greater than pedicted from measurements in single nephrons. Moreover, a significant fraction of the intrinsic myogenic autoregulatory response to increased renal perfusion pressure may result from a synergistic interaction between the TGF and myogenic mechanisms.  相似文献   

3.
We have developed a model of tubuloglomerular feedback (TGF) and the myogenic mechanism in afferent arterioles to understand how the two mechanisms are coupled. This paper presents the model. The tubular model predicts pressure, flow, and NaCl concentration as functions of time and tubular length in a compliant tubule that reabsorbs NaCl and water; boundary conditions are glomerular filtration rate (GFR), a nonlinear outflow resistance, and initial NaCl concentration. The glomerular model calculates GFR from a change in protein concentration using estimates of capillary hydrostatic pressure, tubular hydrostatic pressure, and plasma flow rate. The arteriolar model predicts fraction of open K channels, intracellular Ca concentration (Ca(i)), potential difference, rate of actin-myosin cross bridge formation, force of contraction, and length of elastic elements, and was solved for two arteriolar segments, identical except for the strength of TGF input, with a third, fixed resistance segment representing prearteriolar vessels. The two arteriolar segments are electrically coupled. The arteriolar, glomerular, and tubular models are linked; TGF modulates arteriolar circumference, which determines vascular resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller vasomotor oscillation. There are nonlinear interactions between TGF and the myogenic mechanism, which include the modulation of the frequency and amplitude of the myogenic oscillation by TGF. The prediction of modulation is confirmed in a companion study (28).  相似文献   

4.
In order to reconcile the controversial concepts of myogenically and tubuloglomerular-feedback (TGF)-mediated control of renal vascular resistance, a hypothesis is advanced according to which both mechanisms interact hemodynamically because of their serial arrangement. Whereas the myogenic mechanism is suggested to be localized in the more upstream segments of the preglomerular resistance vessels, the TGF mechanism is assumed to control the pre- and/or postglomerular vascular segment(s), close to the glomerular vascular pole. The efferent vascular resistance, however, is assumed to function generally akin to a 'passive' flow resistor. These assumptions together with elementary hemodynamic considerations, allow formulation of a simple renal hemodynamic model whose quantitative predications regarding the characteristics of RBF, GFR and TGF control are remarkably consistent with the literature: (1) the magnitude of TGF response is mainly dependent upon the myogenic cooperative amplification and (2) although the TGF mechanism is not involved in the autoregulative control of RBF and GFR, changes of the TGF function may shift the autoregulation curve to higher or lower RBF and blood pressure levels.  相似文献   

5.
Connexins in renal arterioles affect autoregulation of arteriolar tonus and renal blood flow and are believed to be involved in the transmission of the tubuloglomerular feedback (TGF) response across the cells of the juxtaglomerular apparatus. Connexin40 (Cx40) also plays a significant role in the regulation of renin secretion. We investigated the effect of deleting the Cx40 gene on autoregulation of afferent arteriolar diameter in response to acute changes in renal perfusion pressure. The experiments were performed using the isolated blood perfused juxtamedullary nephron preparation in kidneys obtained from wild-type or Cx40 knockout mice. Renal perfusion pressure was increased in steps from 75 to 155 mmHg, and the response in afferent arteriolar diameter was measured. Hereafter, a papillectomy was performed to inhibit TGF, and the pressure steps were repeated. Conduction of intercellular Ca(2+) changes in response to local electrical stimulation was examined in isolated interlobular arteries and afferent arterioles from wild-type or Cx40 knockout mice. Cx40 knockout mice had an impaired autoregulatory response to acute changes in renal perfusion pressure compared with wild-type mice. Inhibition of TGF by papillectomy significantly reduced autoregulation of afferent arteriolar diameter in wild-type mice. In Cx40 knockout mice, papillectomy did not affect the autoregulatory response, indicating that these mice have no functional TGF. Also, Cx40 knockout mice showed no conduction of intercellular Ca(2+) changes in response to local electrical stimulation of interlobular arteries, whereas the Ca(2+) response to norepinephrine was unaffected. These results suggest that Cx40 plays a significant role in the renal autoregulatory response of preglomerular resistance vessels.  相似文献   

6.
Previous studies demonstrate a role for β epithelial Na(+) channel (βENaC) protein as a mediator of myogenic constriction in renal interlobar arteries. However, the importance of βENaC as a mediator of myogenic constriction in renal afferent arterioles, the primary site of development of renal vascular resistance, has not been determined. We colocalized βENaC with smooth muscle α-actin in vascular smooth muscle cells in renal arterioles using immunofluorescence. To determine the importance of βENaC in myogenic constriction in renal afferent arterioles, we used a mouse model of reduced βENaC (βENaC m/m) and examined pressure-induced constrictor responses in the isolated afferent arteriole-attached glomerulus preparation. We found that, in response to a step increase in perfusion pressure from 60 to 120 mmHg, the myogenic tone increased from 4.5 ± 3.7 to 27.3 ± 5.2% in +/+ mice. In contrast, myogenic tone failed to increase with the pressure step in m/m mice (3.9 ± 0.8 to 6.9 ± 1.4%). To determine the importance of βENaC in myogenic renal blood flow (RBF) regulation, we examined the rate of change in renal vascular resistance following a step increase in perfusion pressure in volume-expanded animals. We found that, following a step increase in pressure, the rate of myogenic correction of RBF is inhibited by 75% in βENaC m/m mice. These findings demonstrate that myogenic constriction in afferent arterioles is dependent on normal expression of βENaC.  相似文献   

7.
According to the "tubulocentric" hypothesis of the glomerular hyperfiltration of diabetes mellitus (DM), tubuloglomerular feedback (TGF) is the critical determinant of the related renal hemodynamic dysfunction. To examine the role of TGF in human type 1 DM, 12 salt-replete healthy (C) and 11 uncomplicated DM individuals underwent measurements of glomerular filtration rate (GFR), renal blood flow (RBF), and lithium-derived absolute "distal" sodium delivery (DDNa). Measurements were made during two 3-h infusions of 0.012 mmol·kg(-1)·min(-1) l-arginine (ARG) buffered with either equimolar HCl (ARG.HCl) or citric acid (ARG.CITR). Our hypothesis was that changes in TGF signaling would be directionally opposite ARG.HCl vs. ARG.CITR according to the effects of the ARG-buffering anion on DDNa. Similar changes in C and DM followed ARG.CITR, with declines in DDNa (-0.26 ± 0.07 mmol/min C vs. -0.31 ± 0.07 mmol/min DM) and increases in RBF (+299 ± 25 vs. +319 ± 29 ml·min(-1)·1.73 m(-2)) and GFR (+6.6 ± 0.8 vs. +11.6 ± 1.2 ml·min(-1)·1.73 m(-2)). In contrast, with ARG.HCl, DDNa rose in both groups (P = 0.001), but the response was 73% greater in DM (+1.50 ± 0.15 mmol/min C vs. +2.59 ± 0.22 mmol/min DM, P = 0.001). RBF also increased (P = 0.001, +219 ± 20 ml·min(-1)·1.73 m(-2) C, +105 ± 14 DM), but ΔRBF after ARG.HCl was lower vs. ARG.CITR in both groups (P = 0.001). After ARG.HCl, ΔRBF also was 50% lower in DM vs. C (P = 0.001) and GFR, unchanged in C, declined in DM (-7.4 ± 0.9 ml·min(-1)·1.73 m(-2), P = 0.02 vs. C). After ARG.HCl, unlike ARG.CITR, DDNa increased in C and DM, associated with less ΔRBF and ΔGFR vs. ARG.CITR. This suggests that the renal hemodynamic response to ARG is influenced substantially by the opposite actions of HCl vs. CITR on DDNa and TGF. In DM, the association of ARG.HCl-induced exaggerated ΔDDNa, blunted ΔRBF, and the decline in GFR vs. C shows an enhanced TGF dependence of renal vasodilatation to ARG, in agreement with a critical role of TGF in DM-related renal hemodynamic dysfunction.  相似文献   

8.
Glomerular filtration rate (GFR) and renal blood flow (RBF) are normally kept constant via renal autoregulation. However, early diabetes results in increased GFR and the potential mechanisms are debated. Tubuloglomerular feedback (TGF) inactivation, with concomitantly increased RBF, is proposed but challenged by the finding of glomerular hyperfiltration in diabetic adenosine A(1) receptor-deficient mice, which lack TGF. Furthermore, we consistently find elevated GFR in diabetes with only minor changes in RBF. This may relate to the use of a lower streptozotocin dose, which produces a degree of hyperglycemia, which is manageable without supplemental suboptimal insulin administration, as has been used by other investigators. Therefore, we examined the relationship between RBF and GFR in diabetic rats with (diabetes + insulin) and without suboptimal insulin administration (untreated diabetes). As insulin can affect nitric oxide (NO) release, the role of NO was also investigated. GFR, RBF, and glomerular filtration pressures were measured. Dynamic RBF autoregulation was examined by transfer function analysis between arterial pressure and RBF. Both diabetic groups had increased GFR (+60-67%) and RBF (+20-23%) compared with controls. However, only the diabetes + insulin group displayed a correlation between GFR and RBF (R(2) = 0.81, P < 0.0001). Net filtration pressure was increased in untreated diabetes compared with both other groups. The difference between untreated and insulin-treated diabetic rats disappeared after administering N(ω)-nitro-l-arginine methyl ester to inhibit NO synthase and subsequent NO release. In conclusion, mechanisms causing diabetes-induced glomerular hyperfiltration are animal model-dependent. Supplemental insulin administration results in a RBF-dependent mechanism, whereas elevated GFR in untreated diabetes is mediated primarily by a tubular event. Insulin-induced NO release partially contributes to these differences.  相似文献   

9.
Autoregulation of renal blood flow (RBF) is caused by the myogenic response (MR), tubuloglomerular feedback (TGF), and a third regulatory mechanism that is independent of TGF but slower than MR. The underlying cause of the third regulatory mechanism remains unclear; possibilities include ATP, ANG II, or a slow component of MR. Other mechanisms, which, however, exert their action through modulation of MR and TGF are pressure-dependent change of proximal tubular reabsorption, resetting of RBF and TGF, as well as modulating influences of ANG II and nitric oxide (NO). MR requires < 10 s for completion in the kidney and normally follows first-order kinetics without rate-sensitive components. TGF takes 30-60 s and shows spontaneous oscillations at 0.025-0.033 Hz. The third regulatory component requires 30-60 s; changes in proximal tubular reabsorption develop over 5 min and more slowly for up to 30 min, while RBF and TGF resetting stretch out over 20-60 min. Due to these kinetic differences, the relative contribution of the autoregulatory mechanisms determines the amount and spectrum of pressure fluctuations reaching glomerular and postglomerular capillaries and thereby potentially impinge on filtration, reabsorption, medullary perfusion, and hypertensive renal damage. Under resting conditions, MR contributes approximately 50% to overall RBF autoregulation, TGF 35-50%, and the third mechanism < 15%. NO attenuates the strength, speed, and contribution of MR, whereas ANG II does not modify the balance of the autoregulatory mechanisms.  相似文献   

10.
The tubuloglomerular feedback mechanism (TGF) plays an important role in regulating single-nephron glomerular filtration rate (GFR) by coupling distal tubular flow to arteriolar tone. It is not known whether TGF is active in the developing kidney or whether it can regulate renal vascular tone and thus GFR during intrauterine life. TGF characteristics were examined in late-gestation ovine fetuses and lambs under normovolemic and volume-expanded (VE) conditions. Lambs and pregnant ewes were anesthetized and the fetuses were delivered via a caesarean incision into a heated water bath, with the umbilical cord intact. Under normovolemic conditions, mean arterial pressure of the fetuses was lower than lambs (51 ± 1 vs. 64 ± 3 mmHg). The maximum TGF response (ΔP(SFmax)) was found to be lower in fetuses than lambs when tubular perfusion was increased from 0 to 40 nl/min (5.4 ± 0.7 vs. 10.6 ± 0.4 mmHg). Furthermore, the flow rate eliciting half-maximal response [turning point (TP)] was 15.7 ± 0.9 nl/min in fetuses compared with 19.3 ± 1.0 nl/min in lambs, indicating a greater TGF sensitivity of the prenatal kidney. VE decreased ΔP(SFmax) (4.2 ± 0.4 mmHg) and increased TP to 23.7 ± 1.3 nl/min in lambs. In fetuses, VE increased stop-flow pressure from 26.6 ± 1.5 to 30.3 ± 0.8 mmHg, and reset TGF sensitivity so that TP increased to 21.3 ± 0.7 nl/min, but it had no effect on ΔP(SFmax). This study provides direct evidence that the TGF mechanism is active during fetal life and responds to physiological stimuli. Moreover, reductions in TGF sensitivity may contribute to the increase in GFR at birth.  相似文献   

11.
To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.  相似文献   

12.
We investigated dynamic characteristics of renal blood flow (RBF) autoregulation and relative contribution of underlying mechanisms within the autoregulatory pressure range in rats. Renal arterial pressure (RAP) was reduced by suprarenal aortic constriction for 60 s and then rapidly released. Changes in renal vascular resistance (RVR) were assessed following rapid step reduction and RAP rise. In response to rise, RVR initially fell 5-10% and subsequently increased approximately 20%, reflecting 93% autoregulatory efficiency (AE). Within the initial 7-9 s, RVR rose to 55% of total response providing 37% AE, reaching maximum speed at 2.2 s. A secondary RVR increase began at 7-9 s and reached maximum speed at 10-15 s. Response times suggest that the initial RVR reflects the myogenic response and the secondary tubuloglomerular feedback (TGF). During TGF inhibition by furosemide, AE was 64%. The initial RVR rise was accelerated and enhanced, providing 49% AE, but it represented only 88% of total. The remaining 12% indicates a third regulatory component. The latter contributed up to 50% when the RAP increase began below the autoregulatory range. TGF augmentation by acetazolamide affected neither AE nor relative myogenic contribution. Diltiazem infusion markedly inhibited AE and the primary and secondary RVR increases but left a slow component. In response to RAP reduction, initial vasodilation constituted 73% of total response but was not affected by furosemide. The third component's contribution was 9%. Therefore, RBF autoregulation is primarily due to myogenic response and TGF, contributing 55% and 33-45% in response to RAP rise and 73% and 18-27% to RAP reduction. The data imply interaction between TGF and myogenic response affecting strength and speed of myogenic response during RAP rises. The data suggest a third regulatory system contributing <12% normally but up to 50% at low RAP; its nature awaits further investigation.  相似文献   

13.
Interstitial fluid balance is severely altered in microgravity, but the mechanisms underlying the fluid shift from lower to upper body are still partially unclear. A lumped parameter model of the arterial tree with active and non linear modulation of peripheral resistances and capillary fluid exchange was adopted to simulate the response of microcirculation to pulsatility and edema. Results suggest that myogenic regulation not only impinges on arteriolar radius, but it also indirectly affects interstitial fluid balance. Non linear dynamics of blood pressure (BP) and flow in capillary beds are influenced by systemic pulsatility, hinting that local activity is involved in the response to peripheral edema as well.  相似文献   

14.
The glomerular filtration rate (GFR) normally increases during glycine infusion, which is a test of "renal reserve." Renal reserve is absent in diabetes mellitus. GFR increases after protein feeding because of increased tubular reabsorption, which reduces the signal for tubuloglomerular feedback (TGF). Dietary protein restriction normalizes some aspects of glomerular function in diabetes. Renal micropuncture was performed in rats 4-5 wk after diabetes was induced by streptozotocin to determine whether renal reserve is lost as a result of altered tubular function and activation of TGF, whether 10 days of dietary protein restriction could restore renal reserve, and whether this results from effects of glycine on the tubule. TGF activation was determined by locating single-nephron GFR (SNGFR) in the early distal tubule along the TGF curve. The TGF signal was determined from the ionic content of the early distal tubule. In nondiabetic rats, SNGFR in the early distal tubule increased during glycine infusion because of primary vasodilation augmented by increased tubular reabsorption, which stabilized the TGF signal. In diabetic rats, glycine reduced reabsorption, thereby activating TGF, which was largely responsible for the lack of renal reserve. In protein-restricted diabetic rats, the tubular response to glycine remained abnormal, but renal reserve was restored by a vascular mechanism. Glycine affects GFR directly and via the tubule. In diabetes, reduced tubular reabsorption dominates. In low-protein diabetes, the vascular effect is enhanced and overrides the effect of reduced tubular reabsorption.  相似文献   

15.
The mechanisms responsible for the impairment of renal blood flow (RBF) autoregulation in cyclosporine nephrotoxicity were investigated with clearance and micropuncture studies in anesthetized rats. Early chronic cyclosporine nephrotoxicity (CCN) was induced in male rats by daily intramuscular injection of 10 mg/kg/day cyclosporine-A in olive oil for 7 days; control (CON) rats received vehicle injections. Glomerular filtration rate and RBF were both reduced by 33% in CCN when compared to CON rats. RBF autoregulation was also significantly impaired in CCN, with an autoregulation index (AI) of 0.53 +/- 0.03 vs. 0.16 +/- 0.01 in CON rats. Micropuncture studies showed that the tubuloglomerular feedback (TGF) system is not impaired in CCN. Rather, in CCN there was a slight resetting such that the maximum TGF response was greater and the onset occurred at lower rates of perfusion than in CON. In contrast, further micropuncture studies demonstrated that TGF-independent autoregulation of glomerular capillary pressure was significantly impaired in CCN, with an AI of 0.86 +/- 0.09 vs. 0.57 +/- 0.06 in CON. These results indicate that the loss of autoregulatory ability in rats with CCN results from substantial impairment of the myogenic autoregulatory mechanism that is an intrinsic property of the preglomerular vasculature of the kidney.  相似文献   

16.
Renal hemodynamic and natriuretic effects of atrial natriuretic factor   总被引:1,自引:0,他引:1  
In this article we review the renal hemodynamic and excretory actions of atrial natriuretic factor (ANF) and consider some of the mechanisms of its vascular and natriuretic effects. ANF leads to a marked, sustained, and parallel increase in whole-organ and superficial single-nephron glomerular filtration rate (GFR) while mean blood pressure is decreased and renal blood flow (RBF) is unchanged or even decreased. The increase in GFR is caused by an efferent arteriolar vasoconstriction or by a combination of afferent vasodilation and efferent vasoconstriction. ANF also leads to a decrease in the hypertonicity of the innermedullary interstitium. Together with the increase in GFR, this phenomenon accounts wholly or in great part for the ANF-induced natriuresis. The overall renal vascular effects of ANF are complex and may tentatively be conceptualized as a behavior of a functional partial agonist: slight vasoconstriction in vasodilated kidneys, no sustained effects on the vascular resistance in normal kidneys, and vasodilation in vasoconstricted kidneys. The vasoconstrictor effect of ANF may be direct or indirect and depends on extracellular calcium whereas the antagonist effect likely results from alterations in intracellular calcium homeostasis. The data raise the perspective that ANF is not only a powerful natriuretic substance but has the potential of being an important modulator of GFR and RBF in intact animals.  相似文献   

17.
With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation of the myogenic oscillation by TGF. Analysis by wavelet transforms of single-nephron blood flow confirms that both amplitude and frequency of the myogenic oscillation are modulated by TGF. We developed a double-wavelet transform technique to estimate modulation frequency. Median value of the ratio of modulation frequency to TGF frequency in measurements from 10 rats was 0.95 for amplitude modulation and 0.97 for frequency modulation, a result consistent with TGF as the modulating signal. The simulation predicted that the modulation was regular, while the experimental data showed much greater variability from one TGF cycle to the next. We used a blood pressure signal recorded by telemetry from a conscious rat as the input to the model. Blood pressure fluctuations induced variability in the modulation records similar to those found in the nephron blood flow results. Frequency and amplitude modulation can provide robust communication between TGF and the myogenic mechanism.  相似文献   

18.
Previous experiments from our laboratory showed that longer-lasting reductions in renal perfusion pressure (RPP) are associated with a gradual decrease in renal blood flow (RBF) that can be abolished by clamping plasma ANG II concentration ([ANG II]). The aim of the present study was to investigate the mechanisms behind the RBF downregulation in halothane-anesthetized Sprague-Dawley rats during a 30-min reduction in RPP to 88 mmHg. During the 30 min of reduced RPP we also measured glomerular filtration rate (GFR), proximal tubular pressure (P(prox)), and proximal tubular flow rate (Q(LP)). Early distal tubular fluid conductivity was measured as an estimate of early distal [NaCl] ([NaCl](ED)), and changes in plasma renin concentration (PRC) over time were measured. During 30 min of reduced RPP, RBF decreased gradually from 6.5 +/- 0.3 to 6.0 +/- 0.3 ml/min after 5 min (NS) to 5.2 +/- 0.2 ml/min after 30 min (P < 0.05). This decrease occurred in parallel with a gradual increase in PRC from 38.2 +/- 11.0 x 10(-5) to 87.1 +/- 25.1 x 10(-5) Goldblatt units (GU)/ml after 5 min (P < 0.05) to 158.5 +/- 42.9 x 10(-5) GU/ml after 30 min (P < 0.01). GFR, P(prox), and [NaCl](ED) all decreased significantly after 5 min and remained low. Estimates of pre- and postglomerular resistances showed that the autoregulatory mechanisms initially dilated preglomerular vessels to maintain RBF and GFR. However, after 30 min of reduced RPP, both pre- and postglomerular resistance had increased. We conclude that the decrease in RBF over time is caused by increases in both pre- and postglomerular resistance due to rising plasma renin and ANG II concentrations.  相似文献   

19.
Nonselective inhibition of nitric oxide (NO) synthase (NOS) augments myogenic autoregulation, an action that implies enhancement of pressure-induced constriction and dilatation. This pattern is not explained solely by interaction with a vasoconstrictor pathway. To test involvement of the Rho-Rho kinase pathway in modulation of autoregulation by NO, the selective Rho kinase inhibitor Y-27632 and/or the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) were infused into the left renal artery of anesthetized rats. Y-27632 and l-NAME were also infused into isolated, perfused hydronephrotic kidneys to assess myogenic autoregulation over a wide range of perfusion pressure. In vivo, l-NAME reduced renal vascular conductance and augmented myogenic autoregulation, as shown by increased slope of gain reduction and associated phase peak in the pressure-flow transfer function. Y-27632 (10 mumol/l) strongly dilated the renal vasculature and profoundly inhibited autoregulation in the absence or presence of l-NAME in vivo and in vitro. Afferent arteriolar constriction induced by 30 mmol/l KCl was reversed (-92 +/- 3%) by Y-27632. Phenylephrine caused strong renal vasoconstriction but did not affect autoregulation. Inhibition of neuronal NOS by N(5)-(1-imino-3-butenyl)-l-ornithine (l-VNIO) did not cause significant vasoconstriction but did augment myogenic autoregulation. Thus vasoconstriction is neither necessary (l-VNIO) nor sufficient (phenylephrine) to explain the augmented myogenic autoregulation induced by l-NAME. The effect of l-VNIO implicates tubuloglomerular feedback (TGF) and neuronal NOS at the macula densa in regulation of the myogenic mechanism. This conclusion was confirmed by the demonstration that systemic furosemide removed the TGF signature from the pressure-flow transfer function and significantly inhibited myogenic autoregulation. In the presence of furosemide, augmentation of myogenic autoregulation by l-NAME was significantly reduced. These results provide a potential mechanism to explain interaction between myogenic and TGF-mediated autoregulation.  相似文献   

20.
A close relationship between changes in renal interstitial fluid (RIF) ATP concentrations and renal autoregulatory or tubuloglomerular feedback (TGF)-dependent changes in renal vascular resistance (RVR) has been demonstrated, but it has not been determined whether the changes in RIF ATP are a consequence or the cause of the changes in RVR. The present study was performed in anesthetized dogs to assess the changes in RIF ATP following changes in renal arterial pressure (RAP) or stimulation of the TGF mechanism under conditions where changes in RVR were prevented by nifedipine, a calcium channel blocker. RIF ATP levels were measured by using microdialysis probes. Intra-arterial infusion of nifedipine (0.36 microg x kg(-1) x min(-1)) increased renal blood flow (RBF: from 4.49 +/- 0.27 to 5.34 +/- 0.39 ml x min(-1) x g(-1)) and glomerular filtration rate (GFR: from 0.84 +/- 0.07 to 1.09 +/- 0.11 ml x min(-1) x g(-1)). Under conditions of nifedipine infusion, autoregulatory adjustments in RBF, GFR, and RVR were not observed during stepwise reductions in RAP within the autoregulatory range (from 135 +/- 7 to 76 +/- 1 mmHg, n = 7). Furthermore, stimulation of the TGF mechanism with intra-arterial infusion of acetazolamide (100 microg x kg(-1) x min(-1)) did not alter RBF, GFR, and RVR (n = 7). During treatment with nifedipine, RIF ATP levels were significantly decreased in response to reductions in RAP (10.7 +/- 0.7, 5.8 +/- 0.7 and 2.8 +/- 0.3 nmol/l at 135 +/- 7, 101 +/- 4, and 76 +/- 1 mmHg, n = 7) and increased by acetazolamide infusion (from 8.8 +/- 0.8 to 17.0 +/- 1.8 nmol/l, n = 7). These results are similar to those that occurred in dogs not treated with nifedipine and thus demonstrate that the changes in RIF ATP can occur in the absence of autoregulatory or TGF-mediated changes in RVR. The data provide further support to the hypothesis that RIF ATP contributes to adjustments in RVR associated with renal autoregulation and changes in activity of the TGF mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号