首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study possible role and regulation of apoptosis occurred in primate endometrium, the expression of apoptosis-related molecules, Fas, FasL, B cell lymphoma/leukaemia-2 (Bcl-2), and Bax were analyzed in relation to occurrence of apoptosis and proliferation in the cycling endometrium of the rhesus monkey using immunohistochemistry and Western blot. The cell apoptosis and proliferation were evaluated by means of in situ 3'-end labeling and Ki67 immunostaining, respectively. The results showed that the expressions of Fas, Fas ligand (FasL), Bcl-2, and Bax were co-localized predominantly in the epithelial cells of the endometrium. Modest Fas staining with no obvious change was detected throughout the menstrual cycle, while the levels of FasL and Bax protein in the epithelial cells increased in the secretory phase when apoptosis was most prevalent. In contrast, epithelial immunostaining for Bcl-2 was maximal during the proliferative phase and decreased in the secretory phase. Bcl-2 immunoreactivity was also detected in some immunocytes. The coordinated expression of Fas, FasL, Bcl-2, and Bax in the cycling endometrium of the rhesus monkey suggests that the cyclic changes in endometrial growth and regression may be regulated by the balance of these factors under the action of ovary steroids.  相似文献   

2.
Phase-dependent apoptotic changes in the human endometrium during an ovarian cycle imply a potential role of steroids in the regulation of apoptosis. The present study was undertaken to determine the direct role of hormones in endometrial apoptosis in marmosets (Callithrix jacchus), a primate species which shows similarity to humans in terms of the cycle length and pattern. Endometrial apoptosis was detected by 3'-end labeling (TUNEL) in various phases of ovarian cycle in naturally cycling healthy marmosets (n=14) and also in ovariectomized marmosets (n=13) treated with either estradiol alone (E) or progesterone alone (P) or estradiol followed by progesterone (E+P). Expressions of apoptosis associated genes such as Bcl-2 family members (Bax and Bcl-2), proliferating cell nuclear antigen (PCNA)--a proliferation marker and steroid receptors, ERalpha and PR A were analysed by immunohistochemical methods. Apoptosis was intense in the glandular epithelial cells of endometrium during the mid-luteal phase as compared to other phases in naturally cycling animals; in the E+P group as compared to other groups of ovariectomized animals (P<0.05). Pronounced apoptosis in the mid-luteal phase was accompanied by the increased expression of Bax in glandular epithelial cells; while Bcl-2 immunoreactivity remained unchanged. PCNA expression was higher in the naturally cycling animals in the follicular phase and in the E group of the ovariectomized animals as compared those in the other groups. Immunoreactive ERalpha and PR A in glandular epithelial cells were most abundant during early follicular phase in naturally cycling animals and in both E and E+P groups among the ovariectomized animals. The present study highlights the importance of apoptosis in endometrial remodeling during the ovarian cycle and secondly, the role of both estradiol and progesterone in the regulation of apoptosis.  相似文献   

3.
All-trans retinoic acid (ATRA) can down regulate the anti-apoptotic protein Bcl-2 and the cell cycle proteins cyclin D1 and cdk2 in estrogen receptor-positive breast cancer cells. We show here that retinoids can also reduce expression of the inhibitor of apoptosis protein, survivin. Here we have compared the regulation of these proteins in MCF-7 and ZR-75 breast cancer cells by natural and synthetic retinoids selective for the RA receptors (RARs) alpha, beta, and gamma then correlated these with growth inhibition, induction of apoptosis and chemosensitization to Taxol. In both cell lines ATRA and 9-cis RA induced the most profound decreases in cyclin D1 and cdk2 expression and also mediated the largest growth inhibition. The RARalpha agonist, Ro 40-6055 also strongly downregulated these proteins although did not produce an equivalent decrease in S-phase cells. Only ATRA induced RARbeta expression. ATRA, 9-cis RA and 4-HPR initiated the highest level of apoptosis as determined by mitochondrial Bax translocation, while only ATRA and 9-cis RA strongly reduced Bcl-2 and survivin protein expression. Enumeration of dead cells over 96 h correlated well with downregulation of both survivin and Bcl-2. Simultaneous retinoid-mediated reduction of both these proteins also predicted optimal Taxol sensitization. 4-HPR was much weaker than the natural retinoids with respect to Taxol sensitization, consistent with the proposed requirement for reduced Bcl-2 in this synergy. Neither the extent of cell cycle protein regulation nor AP-1 inhibition fully predicted the antiproliferative effect of the synthetic retinoids suggesting that growth inhibition requires regulation of a spectrum of RAR-regulated gene products in addition even to pivotal cell cycle proteins.  相似文献   

4.
Previous results of ours have demonstrated that the same clonotype can express both a sensitive and a resistant phenotype to Dex-mediated PCD induction depending on its cell cycle phase. In particular, we demonstrated that human T lymphocytes, arrested in the G0/G1 phase of the cell cycle, are susceptible, while proliferating T cells are resistant to Dex-mediated apoptosis. In this paper, we have further characterized the sensitive and resistant phenotypes and investigated whether a different expression of the apoptotic genes Fas, FasL, Bcl-2, Bcl-x and Bax is involved in the regulation of Dex-mediated apoptosis. The results show that the amount of Bcl-2 expression, that changes during cell cycle phases, determines susceptibility or resistance to apoptosis induced by Dex. In fact, undetectable expression of Bcl-2 in sensitive cells favors Dex-mediated apoptosis while high expression of Bcl-2 in proliferating cells counterbalances apoptosis induction. Moreover, the addition of exogenous IL-2, in the presence of Dex, fails to up-regulate Bcl-2 expression and to revert Dex-mediated apoptotic phenomena.  相似文献   

5.
Epidemiological studies suggest that exposure to power frequency magnetic fields may be a risk factor for breast cancer in humans. To study the relationship between exposure to 60-Hz magnetic fields (MFs) and breast cancer, cell cycle distribution, apoptosis, and the expression of related proteins (p21, Bax, and Bcl-2) were determined in MCF-7 cells following exposure to magnetic fields (60 Hz, 5 mT) alone or in combination with X rays. It was found that exposure of MCF-7 cells to 60-Hz MFs for 4, 8, and 24 h had no effect on cell cycle distribution. Furthermore, 60-Hz MFs failed to affect cell growth arrest and p21 expression induced by X rays (4 Gy). Similarly, 60-Hz MFs did not induce apoptosis or the expression of Bax and Bcl-2, two proteins related to apoptosis. However, exposure of cells to 60-Hz MFs for 24 h after irradiation by X rays (12 Gy) significantly decreased apoptosis and Bax expression but increased Bcl-2 expression. The effects of exposure to 60-Hz MFs on X-ray-induced apoptosis and Bax and Bcl-2 expressions were not observed at 72 h. These data suggest that exposure to 60-Hz MFs has no effects on the growth of MCF-7 cells, but it might transiently suppress X-ray-induced apoptosis through increasing the Bcl-2/Bax ratio.  相似文献   

6.
7.
The endometrium acquires the ability to implant a hatched blastocyst only within a specific time termed the receptive phase. Ovarian steroid hormones are essential for structural and functional changes that prepare the endometrium to be receptive. Pinopodes have been suggested to be markers of uterine receptivity. The aim of this study was to compare the pinopode expression and serum levels of ovarian steroid hormones in the mid-luteal phase of the natural cycle and in a "mock" cycle in the same subject. Sequentional endometrial biopsies within 48 hours were obtained from women in the mid-luteal phase (ovulation +5, ovulation +7) of the natural cycle and in the "mock" cycle (progesterone supplementation +5 and +7). Biopsies were examined under a scanning electron microscope for pinopode detection. The expression of pinopodes was similar in both cycles, where pinopodes covered about 5 % of the endometrial surface. The developmental stages were also similar with a slight increase of fully developed pinopodes in both samples in the "mock" cycles. Our findings suggest that hormonal preparation of the endometrium do not change the timing of pinopode expression.  相似文献   

8.
The present study aimed to examine the effect of FTY720, a new immunosuppressive agent, on the proliferation and apoptosis of glomerular mesangial cells (GMC), and investigate the underlying mechanisms. Cultured rat GMC were treated by FTY720, and the cell viability, apoptosis and cell cycle progression were examined. Furthermore, cell cycle related gene expression profile was analyzed by cDNA microarray, and the protein expression of cell cycle related genes as well as Bax and Bcl-2 were examined by Western blot. The results showed that FTY720 inhibited GMC proliferation and induced apoptosis of GMC in a dose- and time-dependent manner, and induced G(1) phase cell cycle arrest in GMC in a dose-dependent manner as well. cDNA microarray analysis revealed that FTY720 regulated the expression of cell cycle-related gene. Western blot analysis showed that FTY720 induced the downregulation of cyclin D1, cyclin E, CDK2, CDK4, Bcl-2 and E2F1 and the upregulation of Kip1/p27, Cip1/p21, Bax and Rb in GMC in a dose-dependent manner. These results demonstrated that FTY720 could inhibit the proliferation of GMC through inducing cell cycle arrest and apoptosis, probably via the regulation of the expression of cell cycle-related genes and Bax/Bcl-2.  相似文献   

9.
L Yan  A Wang  L Chen  W Shang  M Li  Y Zhao 《Gene》2012,506(2):350-354
The present study investigated the expression of the apoptosis-related genes fas-associated via death domain (FADD) and Bcl-2 in the endometrium during the window of implantation in polycystic ovary syndrome (PCOS) patients. The aim was to explore the role of cell apoptosis in endometrial receptivity during this period. The subjects were divided into experimental and control group. The experimental group comprised 12 infertile women with PCOS, and the control group comprised 12 women who were infertile because of tubal pathological factors but had normal menstrual cycles. Endometria were collected by biopsy 7d after ovulation. Six samples from each group were randomly selected and subjected to gene chip analyses. The expression of endometrial FADD and Bcl-2 was determined by immunohistochemistry, and cell apoptosis was detected by the TUNEL method. Compared with the control group, 194 differentially expressed genes were found in the PCOS group, 102 of which were upregulated and 92 were downregulated. The differentially expressed genes were divided into 15 types according to function. Among the nine genes related to cell apoptosis, five (including Bcl-2) were upregulated and four were downregulated (including FADD). Bcl-2 expression during the window of implantation in the PCOS group increased compared with the control group, showing a significant difference (P<0.05). FADD expression in the PCOS group notably decreased compared with that in the control group, which also showed a significant difference (P<0.05). Cell apoptosis analysis showed a significant difference between the average apoptotic indices in the PCOS and control groups (P<0.05). Significant differences were observed between the endometrial gene expression in the PCOS and control groups. The decrease in cell apoptosis during the window of implantation in PCOS patients may be one of the causes of the reduced endometrial receptivity.  相似文献   

10.
目的:通过检测重要的细胞凋亡调节因子Bax和Bcl-2的表达,探讨恒河猴胎盘细胞凋亡与药物流产的关系。方法:利用RT-PCR和原位杂交的方法检测恒河猴对照组和药物流产组(RU-486与AG诱导)胎盘中Bax和Bcl-2mRNA的表达。结果:Bax mRNA在流产胎盘中的表达量明显高于对照组胎盘。在胎盘绒毛滋养层细胞可见明显表达,基底层蜕膜细胞也有表达。Bcl-2mRNA在流产胎盘中的表达量明显低于对照组胎盘,表达部位与Bax类似。结论:RU-486和AG可能通过上调Bax mRNA和下调Bcl-2mRNA的表达,导致胎盘组织凋亡细胞的数量明显增加,从而影响胎盘的正常结构和功能,增加了流产的危险性。  相似文献   

11.
Molecular markers enabling the prediction of sensitivity/resistance to rapamycin may facilitate further clinical development of rapamycin and its derivatives as anticancer agents. In this study, several human ovarian cancer cell lines (IGROV1, OVCAR-3, A2780, SK-OV-3) were evaluated for susceptibility to rapamycin-mediated growth inhibition. The differential expression profiles of genes coding for proteins known to be involved in the mTOR signaling pathway, cell cycle control and apoptosis were studied before and after drug exposure by RT-PCR. In cells exposed to rapamycin, we observed a dose-dependent downregulation of CCND1 (cyclin D1) and CDK4 gene expression and late G1 cell cycle arrest. Among these cell lines, SK-OV-3 cells resistant to both rapamycin and RAD001 were the sole to show the expression of the anti-apoptotic gene Bcl-2. Bcl-2/bclxL-specific antisense oligonucleotides restored the sensitivity of SK-OV-3 cells to apoptosis induction by rapamycin and RAD001. These results indicate that baseline Bcl-2 expression and therapy-induced downexpression of CCND1 and CDK4 may be regarded as molecular markers enabling the prediction and follow-up of the cellular effects on cell cycle and apoptosis induction of rapamycin in ovarian cancer. Furthermore, strategies to down regulate Bcl-2 in ovarian cancer may prove useful in combination with rapamycin or RAD001 for ovarian cancer.  相似文献   

12.
Tissues with the highest rates of proliferation typically exhibit the highest frequencies of apoptosis, but the mechanisms that coordinate these processes are largely unknown. The homeodomain protein Gax is down-regulated when quiescent cells are stimulated to proliferate, and constitutive Gax expression inhibits cell proliferation in a p21(WAF/CIP)-dependent manner. To understand how mitogen-induced proliferation influences the apoptotic process, we investigated the effects of deregulated Gax expression on cell viability. Forced Gax expression induced apoptosis in mitogen-activated cultures, but quiescent cultures were resistant to cell death. Though mitogen activation was required for apoptosis, neither the cdk inhibitor p21(WAF/CIP) nor the tumor suppressor p53 was required for Gax-induced cell death. Arrest in G1 or S phases of the cell cycle with chemical inhibitors also did not affect apoptosis, further suggesting that Gax-mediated cell death is independent of cell cycle activity. Forced Gax expression led to Bcl-2 down-regulation and Bax up-regulation in mitogen-activated, but not quiescent cultures. Mouse embryonic fibroblasts homozygous null for the Bax gene were refractive to Gax-induced apoptosis, demonstrating the functional significance of this regulation. These data suggest that the homeostatic balance between cell growth and death can be controlled by mitogen-dependent pathways that circumvent the cell cycle to alter Bcl-2 family protein expression.  相似文献   

13.
Griseofulvin (GF), an oral antifungal agent, has been shown to exert antitumorigenesis effect through G2/M cell cycle arrest in colon cancer cells. But the underlying mechanisms remained obscure. The purpose of this study is to test the cytotoxic effect of GF on HL-60 and HT-29 cells and elucidate its underlying molecular pathways. Dose-dependent and time-course studies by flow cytometry demonstrated that 30 to 60 microM GF significantly induced G2/M arrest and to a less extend, apoptosis, in HL-60 cells. In contrast, only G2/M arrest was observed in HT-29 cells under similar condition. Pretreatment of 30 microM TPCK, a serine protease inhibitor, completely reversed GF-induced G2/M cell cycle arrest and apoptosis in HL-60 cells but not in HT-29 cells. The GF-induced G2/M arrest in HL-60 cells is reversible. Using EMSA and super-shift analysis, we demonstrated that GF stimulated NF-kappaB binding activity in HL-60 cells, which was completely inhibited by pretreatment of TPCK. Treatment of HL-60 with 30 microM GF activated JNK but not ERK or p38 MAPK and subsequently resulted in phosphorylation of Bcl-2. Pretreatment of TPCK to HL-60 cells blocked the GF-induced Bcl-2 phosphorylation but not JNK activation. Time course study demonstrated that activation of cdc-2 kinase activity by GF correlated with Bcl-2 phosphorylation. Taken together, our results suggest that activation of NF-kappaB pathway with cdc-2 activation and phosphorylation of Bcl-2 might be involved in G2/M cell cycle arrest in HL-60 cells.  相似文献   

14.
p21, a potent cyclin-dependent kinase inhibitor, has been known to induce cell cycle arrest in response to DNA-damaging agents. Although p21 has been reported to play an important role in the regulation of apoptosis, the postulated role for p21 in apoptosis is still controversial. Previously, we reported that p21 was induced in a p53-independent manner during ceramide-induced apoptosis in human hepatocarcinoma cell lines. In the present study, we investigated the precise role of p21 in ceramide-induced apoptosis in human hepatocarcinoma cells by using a tetracycline-inducible expression system. Overexpression of p21 by itself did not induce apoptosis in p53-deficient Hep3B cells. However, Hep3B/p21 cells were more sensitive to ceramide-induced apoptosis. In these cells, p21 overexpression did not result in G1 arrest. The expression level of Bax was increased in Hep3B/p21 cells treated with ceramide and its expression was more accelerated under the p21-overexpressed condition compared to that of the p21-repressed condition. Overexpression of Bax induced apoptosis in Hep3B cells. On the other hand, the levels of p21 and Bax protein were increased by ceramide in another hepatocarcinoma cell line, SK-Hep-1, while the Bcl-2 protein level was not changed. Overexpression of Bcl-2 not only suppressed apoptosis but also completely prevented induction of p21 and Bax caused by ceramide in SK-Hep-1 cells. Furthermore, overexpression of p21 antagonized the death-protective function of Bcl-2 and upregulated expression of Bax protein. These results suggest that p21 promotes ceramide-induced apoptosis by enhancing the expression of Bax, thereby modulating the molecular ratio of Bcl-2:Bax in human hepatocarcinoma cells.  相似文献   

15.
The effects of Bcl-2 overexpression on several of its multifunctional characteristics, which include anti-apoptotic properties, impeding of cell proliferation, and telomerase activity, were examined in four Jurkat T cell clones overexpressing different levels of Bcl-2. When treated with anti-Fas or staurosporine, only three of the four clones showed resistance to apoptosis that correlated with the level of Bcl-2 expression. Surprisingly, the clone having no anti-apoptotic characteristic expressed the highest level of Bcl-2. When all the clones were treated with anti-Fas the processing of caspase-2, -3, and -7 but not -8 was inhibited in the resistant clones to a similar extent by the differential overexpression of Bcl-2. However, with staurosporine treatment the processing of all the caspases examined was inhibited to a similar degree by the different levels of Bcl-2 expression in the resistant clones. These results suggest that Bcl-2 blocked Fas-mediated cell death by acting downstream of caspase-8, which is in contrast to staurosporine-induced apoptosis where Bcl-2 is acting upstream of caspase-8. When the anti-proliferative effect of Bcl-2 was examined, a direct correlation between a decrease in cell proliferation and the level of Bcl-2 overexpressed in the clones was observed. The clone overexpressing the greatest amount of Bcl-2 protein, which had no resistance to apoptosis, had the slowest proliferative rate. This suggests that the anti-apoptotic effect of Bcl-2 can be separated from its anti-proliferative effect. The possible effect of overexpression of Bcl-2 on telomerase activity, which is known to control the proliferative capacity of normal cells and cellular senescence, was also determined. Our results suggest that Bcl-2 had no effect on telomerase activity or telomere length in the clones. In summary, our results further suggest that some properties of Bcl-2, such as anti-apoptotic and inhibition of cell proliferation, are individual features of a multifaceted protein.  相似文献   

16.

Background  

During the estrous cycle, the rat uterine endometrium undergoes many changes such as cell proliferation and apoptosis. If implantation occurs, stromal cells differentiate into decidual cells and near the end of pregnancy, a second wave of apoptosis occurs. This process called decidual regression, is tightly regulated as is it crucial for successful pregnancy. We have previously shown that TGF-beta1, TGF-beta2 and TGF-beta3 are expressed in the endometrium during decidual basalis regression, but although we had demonstrated that TGF- beta1 was involved in the regulation of apoptosis in decidual cells, the ability of TGF- beta2 and TGF-beta3 isoforms to trigger apoptotic mechanisms in these cells remains unknown. Moreover, we hypothesized that the TGF-betas were also present and regulated in the non-pregnant endometrium during the estrous cycle. The aim of the present study was to determine and compare the specific effect of each TGF-β isoform in the regulation of apoptosis in sensitized endometrial stromal cells in vitro, and to investigate the regulation of TGF-beta isoforms in the endometrium during the estrous cycle in vivo.  相似文献   

17.
Bcl-2 blocks p53-dependent apoptosis.   总被引:36,自引:5,他引:31       下载免费PDF全文
Adenovirus E1A expression recruits primary rodent cells into proliferation but fails to transform them because of the induction of programmed cell death (apoptosis). The adenovirus E1B 19,000-molecular-weight protein (19K protein), the E1B 55K protein, and the human Bcl-2 protein each cause high-frequency transformation when coexpressed with E1A by inhibiting apoptosis. Thus, transformation of primary rodent cells by E1A requires deregulation of cell growth to be coupled to suppression of apoptosis. The product of the p53 tumor suppressor gene induces apoptosis in transformed cells and is required for induction of apoptosis by E1A. The ability of Bcl-2 to suppress apoptosis induced by E1A suggested that Bcl-2 may function by inhibition of p53. Rodent cells transformed with E1A plus the p53(Val-135) temperature-sensitive mutant are transformed at the restrictive temperature and undergo rapid and complete apoptosis at the permissive temperature when p53 adopts the wild-type conformation. Human Bcl-2 expression completely prevented p53-mediated apoptosis at the permissive temperature and caused cells to remain in a predominantly growth-arrested state. Growth arrest was leaky, occurred at multiple points in the cell cycle, and was reversible. Bcl-2 did not affect the ability of p53 to localize to the nucleus, nor were the levels of the p53 protein altered. Thus, Bcl-2 diverts the activity of p53 from induction of apoptosis to induction of growth arrest, and it is thereby identified as a modifier of p53 function. The ability of Bcl-2 to bypass induction of apoptosis by p53 may contribute to its oncogenic and antiapoptotic activity.  相似文献   

18.
E1A+ras-transformed rodent fibroblasts are unable to be arrested in the cell cycle and die by apoptosis in response to cytostatics, ionizing radiation (IR), or serum withdrawal. Overexpression of the human antiapoptotic gene bcl-2 suppresses apoptosis and induces reversible cell cycle arrest after IR or serum withdrawal and cell senescence after adriamycin treatment. Bcl-2-sustained adriamycin-induced cell senescence requires p38 MAPK, since the knockout of p38 MAPK abrogated anti-apoptotic and senescence-inducing effects of Bcl-2 in adriamycin-treated cells. Moreover, resistance to apoptosis and cell cycle arrest were not observed in p38 -/- E1A+ras+bcl-2-transformants following IR or serum deprivation. However, the pro-apoptotic effect of nocodazole in E1A+ras-transformed cells can not be prevented by Bcl-2 overexpression independently of the presence of p38 MAPK. These results allow us to conclude that p38 is necessary for Bcl-2-induced inhibition of apoptosis, induction of cell cycle arrest and accelerated senescence after DNA damage and serum starvation, but not after nocodazole treatment.  相似文献   

19.
The Bcl-2 family includes a growing number of proteins that play an essential role in regulating apoptosis or programmed cell death. Members of this family display diverse biological functions and can either inhibit or promote cell death signals. Abnormal gene expression of some Bcl-2 family members such as Bcl-2 that inhibits apoptosis is found in a wide variety of human cancers and contributes to the resistance of tumor cells to conventional therapies through interfering with the cell death signals triggered by chemotherapeutic agents. As such, elucidating the structure-function and mechanism of the Bcl-2 family is important for understanding some of the fundamental principles underling the death and survival of cells and of practical value for developing potential therapeutics to control apoptosis in pathological processes. Synthetic peptides derived from homologous or heterogeneous domains in Bcl-2 family proteins that might mediate different biological activities provide simplified and experimentally more tractable models as compared to their full-length counterparts to dissect and analyze the complex functional roles of these proteins. Non-peptidic molecules identified from random screening of natural products or designed by rational structure-based techniques can mimic the effect of synthetic peptides by targeting similar active sites on a Bcl-2 family member protein. In this article, we review recent progress in using these synthetic peptides and non-peptidic mimic molecules to obtain information about the structure and function of Bcl-2 family proteins and discuss their application in modulating and studying intracellular apoptotic signaling.  相似文献   

20.
Bcl-2 is widely expressed in a variety of cell types and is known to block apoptosis through a conserved pathway. However, recent reports have demonstrated that Bcl-2 regulates cell behavior independent of its control of apoptosis. Chondrocytes express a unique set of matrix proteins, including the proteoglycan aggrecan, and have been widely used to study the relationship between trophic factors and apoptosis. In this article, we report that Bcl-2 affects the morphology and regulates the expression of aggrecan in a rat chondrocyte cell line (IRC). Endogenous Bcl-2 and aggrecan mRNA were both down-regulated in response to serum withdrawal in parental IRC cells, while constitutive expression of Bcl-2 maintained aggrecan levels under conditions of serum withdrawal. In addition, expression of anti-sense Bcl-2 resulted in decreased aggrecan mRNA and produced a fibroblastic morphology compared with parental cells. The caspase inhibitor ZVAD-fmk effectively blocked full apoptosis of IRC cells in response to serum withdrawal or anti-sense Bcl-2 but did not prevent the down-regulation of aggrecan expression from either signal. These results suggest a novel role for Bcl-2 in regulating the differentiated phenotype of chondrocytes and the expression of a differentiation-specific gene independent of its control of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号