首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decylubiquinone treatment in vitro has demonstrated a potent inhibitor effect on reactive oxidative species production. However, the effectin vivo has not been demonstrated yet. Thus, rats SHRSP male were divided in two groups: treated and controls (n=6, each). The treated group received 10 mg/Kg(-)/body weight of decylubiquinone diluted in coconut oil by oral gavage during four weeks. Control rats just received the vehicle. Body weight, diuresis, food and water intake, systolic blood pressure, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, blood glucose levels and malondialdehyde were determined. There were a significant (p<0.05) reduction on systolic blood pressure, plasma malondialdehyde, total cholesterol and LDL-cholesterol in the treated group. Additionally, HDL-cholesterol also increased significantly. However, body weight, diuresis, food and water intake, blood glucose levels and triglycerides did not alter after treatment. Thus, decylubiquinone can be a new antihypertensive, hypolipidemic and antioxidant agent on the prevention and treatment of diseases linked to oxidative stress.  相似文献   

2.
Coenzyme Q10 (CoQ10) is a promising agent for neuroprotection in neurodegenerative diseases. We tested the effects of various doses of two formulations of CoQ10 in food and found that administration in the diet resulted in significant protection against loss of dopamine (DA), which was accompanied by a marked increase in plasma concentrations of CoQ10. We further investigated the neuroprotective effects of CoQ10, reduced CoQ10 (ubiquinol), and CoQ10 emulsions in the (MPTP) model of Parkinson's disease (PD). We found neuroprotection against MPTP induced loss of DA using both CoQ10, and reduced CoQ10, which produced the largest increases in plasma concentrations. Lastly, we administered CoQ10 in the diet to test its effects in a chronic MPTP model induced by administration of MPTP by Alzet pump for 1 month. We found neuroprotective effects against DA depletion, loss of tyrosine hydroxylase neurons and induction of alpha-synuclein inclusions in the substantia nigra pars compacta. The finding that CoQ10 is effective in a chronic dosing model of MPTP toxicity, is of particular interest, as this may be more relevant to PD. These results provide further evidence that administration of CoQ10 is a promising therapeutic strategy for the treatment of PD.  相似文献   

3.
This review describes recent advances in our understanding of the uptake and distribution of coenzyme Q10 (CoQ10) in cells, animals, and humans. These advances have provided evidence of important pharmacokinetic factors, such as non-linear absorption and enterohepatic recirculation, and may facilitate the development of new CoQ10 formulations. Studies providing data which support the claim of tissue uptake of exogenous CoQ10 are also discussed. Improved CoQ10 dosing and drug level monitoring guidelines are suggested for adult and pediatric patient populations. Future CoQ10 research should consider uptake and distribution factors to determine cost-benefit relationships.  相似文献   

4.
Radioactive coenzyme Q(10) ([(3)H]CoQ) was synthesized in a way that the metabolites produced retained the radioactivity. Administration of the lipid to rats intraperitoneally resulted in an efficient uptake into the circulation, with high concentrations found in spleen, liver, and white blood cells; lower concentrations in adrenals, ovaries, thymus, and heart; and practically no uptake in kidney, muscle, and brain. In liver homogenate most [(3)H]CoQ appeared in the organelles, but it was also present in the cytosol and transport vesicles. Mitochondria, purified on a metrizamide gradient, had a very low concentration of [(3)H]CoQ, which was mainly present in the lysosomes. All organs that took up the labeled lipid also contained water-soluble metabolites. The majority of metabolites excreted through the kidney and appeared in the urine. Some metabolites were also present in the feces, which further contained nonmetabolized [(3)H]CoQ, excreted through the bile. The major metabolites were purified from the urine, and the mass spectrometric fragmentation showed that these compounds, containing the ring with a short side chain, are phosphorylated. Thus, the results demonstrate that CoQ is metabolized in all tissues, the metabolites are phosphorylated in the cells, transported in the blood to the kidney, and excreted into the urine.  相似文献   

5.
The effect of coenzyme Q10 prepared as an oil solution and a water-soluble suspension (the Kudesan preparation) on the resistance of myocardium of Wistar rats to ischemic and reperfusional injuries and the redox state of the components of the cardiac mitochondrial respiratory chain during postischemic reperfusion was studied. Animals received the oil solution of Q10 with food and the Kudesan preparation, with water. It was shown that the drugs, which produce a substantial protective action on the working heart muscle during ischemia and reperfusion, cause a shift of the redox equilibrium between the semireduced forms of ubiquinone and flavine coenzymes to a higher output of ubisemiquinone. With equal doses of the drugs, Kudesan produced a more pronounced effect.  相似文献   

6.
Plasma coenzyme Q10 (CoQ10) response to oral ingestion of various CoQ10 formulations was examined. Both total plasma CoQ10 and net increase over baseline CoQ10 concentrations show a gradual increase with increasing doses of CoQ10. Plasma CoQ10 concentrations plateau at a dose of 2400 mg using one specific chewable tablet formulation. The efficiency of absorption decreases as the dose increases. About 95% of circulating CoQ10 occurs as ubiquinol, with no appreciable change in the ratio following CoQ10 ingestion. Higher plasma CoQ10 concentrations are necessary to facilitate uptake by peripheral tissues and also the brain. Solubilized formulations of CoQ10 (both ubiquinone and ubiquinol) have superior bioavailability as evidenced by their enhanced plasma CoQ10 responses.  相似文献   

7.
Life-long low-dosage supplementation of coenzyme Q(10) (CoQ(10)) is studied in relation to the antioxidant status and DNA damage. Thirty-two male rats were assigned into two experimental groups differing in the supplementation or not with 0.7 mg/kg/day of CoQ(10). Eight rats per group were killed at 6 and 24 months. Plasma retinol, alpha-tocopherol, coenzyme Q, total antioxidant capacity and fatty acids were analysed. DNA strand breaks were studied in peripheral blood lymphocytes. Aging and supplementation led to significantly higher values for CoQ homologues, retinol and alpha-tocopherol. No difference in total antioxidant capacity was detected at 6 months but significantly lower values were found in aged control animals. Similar DNA strand breaks levels were found at 6 months. Aging led to significantly higher DNA strand breaks levels in both groups but animals supplemented with CoQ(10) led to a significantly lower increase in that marker. Aged rats showed significantly higher polyunsaturated fatty acids. This study demonstrates that lifelong intake of a low dosage of CoQ(10) enhances plasma levels of CoQ(9), CoQ(10), alpha-tocopherol and retinol. In addition, CoQ(10) supplementation attenuates the age-related fall in total antioxidant capacity of plasma and the increase in DNA damage in peripheral blood lymphocytes.  相似文献   

8.
9.
Administration of coenzyme Q10 to humans and animals has a beneficial effect on a number of cardiac diseases. The purpose of the present study was to determine if coenzyme Q10 treatment could ameliorate cardiac abnormalities associated with the carbohydrate × copper interaction in rats. Weanling male rats were provided with a copper-deficient diet (0.6 μg Cu/g) containing either 62.7% starch (S−Cu) or fructose (F−Cu) for 5 wk. Half of the rats provided with the F−Cu diet were given daily oral supplements of 300 mg coenzyme Q10/kg body weight (F−Cu+Q). Heart hypertrophy, liver enlargement, or pancreatic atrophy were not affected by, nor was body growth or anemia improved by, supplementation with coenzyme Q10 when compared to rats fed only the F−Cu diet. Hearts from rats fed the F−Cu diet had severe inflammation, degeneration, fibrosis, and giant mitochondria with abnormal cristae. Hearts from F−Cu+Q rats had similar mitochondrial changes as the F−Cu rat hearts but without any apparent degenerative changes. None of the F−Cu+Q rats, but 30% of the F−Cu rats, died during the study as a result of heart rupture. These observations show that whereas coenzyme Q10 treatment did not prevent the cardiac hypertrophy of the carbohydrate × copper interaction, it did play a role in maintaining the integrity of the heart. This work was presented in part at the 2nd International Symposium on Metal Ions in Biology and Medicine, Loutraki, Greece, May 15–22, 1992 (Metal Ions (1992), J. Anastassopoulou, P. Collery, J.C. Etienne, T. Theophanides, eds., John Libbey Eurotext, Montrouge, France, pp. 402–407).  相似文献   

10.
In this study, the effect of long-term supplementation of coenzyme Q10 (CoQ10) on the responses of swim-trained rat aorta was investigated. Twenty-four adult male Wistar rats were divided into four groups: untrained, trained, untrained+CoQ10, and trained+CoQ10 group. In the trained groups rats swam for 60 min/day, five days/week for six weeks. The CoQ10 supplements were administered by intraperitoneal injection at a daily dose of 10 mg·kg-1 of body weight five days/week for six weeks. Swimming of the rats was performed in a container containing tap water. Rats were sacrificed and thoracic aortas were removed for ex vivo analysis after the last swimming session. The aortas were cut into rings 2.5 mm in length. Concentration-response curves for phenylephrine (PHE, 10-9-3×10-4 M) and potassium chloride (KCl, 5-100 mM) were isometrically recorded. The sensitivity and maximal responses to PHE and KCl of aortic rings obtained from trained rats were lower than those of untrained rats. CoQ10 supplementation decreased the responses to both vasoconstrictors in untrained and especially in trained groups. Although neither CoQ10 nor training did affect malondialdehyde (MDA) and protein carbonyl (PC) levels, creatine kinase (CK) activity decreased and superoxide dismutase (SOD) activity increased only with exercise training. Glutathione (GSH) levels increased in CoQ10 supplemented-untrained rats. In conclusion, our results suggest that CoQ10 supplementation may have beneficial effects during exercise.  相似文献   

11.
Cardiovascular benefits of ubiquinone have been previously demonstrated, and we administered it as a novel therapy in an experimental model of type 2 diabetic nephropathy. db/db and dbH mice were followed for 10 weeks, after randomization to receive either vehicle or ubiquinone (CoQ10; 10mg/kg/day) orally. db/db mice had elevated urinary albumin excretion rates and albumin:creatinine ratio, not seen in db/db CoQ10-treated mice. Renal cortices from db/db mice had lower total and oxidized CoQ10 content, compared with dbH mice. Mitochondria from db/db mice also contained less oxidized CoQ10(ubiquinone) compared with dbH mice. Diabetes-induced increases in total renal collagen but not glomerulosclerosis were significantly decreased with CoQ10 therapy. Mitochondrial superoxide and ATP production via complex II in the renal cortex were increased in db/db mice, with ATP normalized by CoQ10. However, excess renal mitochondrial hydrogen peroxide production and increased mitochondrial membrane potential seen in db/db mice were attenuated with CoQ10. Renal superoxide dismutase activity was also lower in db/db mice compared with dbH mice. Our results suggest that a deficiency in mitochondrial oxidized CoQ10 (ubiquinone) may be a likely precipitating factor for diabetic nephropathy. Therefore CoQ10 supplementation may be renoprotective in type 2 diabetes, via preservation of mitochondrial function.  相似文献   

12.
13.
In this paper, we report results obtained from a continuing clinical trial on the effect of coenzyme Q 10 (CoQ 10 ) administration on human vastus lateralis (quadriceps) skeletal muscle. Muscle samples, obtained from aged individuals receiving placebo or CoQ 10 supplementation (300 mg per day for four weeks prior to hip replacement surgery) were analysed for changes in gene and protein expression and in muscle fibre type composition. Microarray analysis (Affymetrix U95A human oligonucleotide array) using a change in gene expression of 1.8-fold or greater as a cutoff point, demonstrated that a total of 115 genes were differentially expressed in six subject comparisons. In the CoQ 10 -treated subjects, 47 genes were up-regulated and 68 down-regulated in comparison with placebo-treated subjects. Restriction fragment differential display analysis showed that over 600 fragments were differentially expressed using a 2.0-fold or greater change in expression as a cutoff point. Proteome analysis revealed that, of the high abundance muscle proteins detected (2086 ±115), the expression of 174 proteins was induced by CoQ 10 while 77 proteins were repressed by CoQ 10 supplementation. Muscle fibre types were also affected by CoQ 10 treatment; CoQ 10 -treated individuals showed a lower proportion of type I (slow twitch) fibres and a higher proportion of type IIb (fast twitch) fibres, compared to age-matched placebo-treated subjects. The data suggests that CoQ 10 treatment can act to influence the fibre type composition towards the fibre type profile generally found in younger individuals. Our results led us to the conclusion that coenzyme Q 10 is a gene regulator and consequently has wide-ranging effects on over-all tissue metabolism. We develop a comprehensive hypothesis that CoQ 10 plays a major role in the determination of membrane potential of many, if not all, sub-cellular membrane systems and that H 2 O 2 arising from the activities of CoQ 10 acts as a second messenger for the modulation of gene expression and cellular metabolism.  相似文献   

14.
A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid, direct measurement of coenzyme Q10 (CoQ10) in different pharmaceutical products. Conventional KBr spectra were compared for the best determination of active substance in drug preparations. Lambert-Beer's law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were used in data processing.  相似文献   

15.
16.
Coenzyme Q10 (CoQ(10)) levels in human saliva were measured by HPLC with a highly sensitive electrochemical detector (ECD) and a special concentration column. This HPLC system showed satisfactory analytical results within the standard range of 0.78-50 ng/ml. We also found a significant correlation between CoQ(10) levels in plasma and in saliva from parotid glands, while this correlation was lacking between plasma CoQ10 and CoQ10 in whole saliva. Unlike in plasma, there are some fluctuations of saliva CoQ(10) levels throughout the day. A good correlation was obtained by collecting parotid gland saliva at times between meals. The mean saliva CoQ(10) level for 55 healthy volunteers was 17.0 ng/ml (S.D. 6.8 ng/ml); approximately one fiftieth of that in plasma. Regarding the influence of oral supplementation, CoQ(10) was analyzed in plasma and parotid gland saliva from 20 healthy volunteers supplemented daily with 100 mg of CoQ(10) for the first week and 200 mg for the second. The plasma CoQ(10) levels of all volunteers increased to different extents in accordance with the CoQ(10) daily intake and the corresponding change in saliva showed almost the same trend.  相似文献   

17.
A new method of determining coenzyme Q10 in human plasma was developed based on column-switching high performance liquid chromatography (HPLC). CoQ10 was quantitatively extracted into 1-propanol with a fast one-step extraction procedure, after centrifugation, the supernatant was cleaned on an octadecyl-bonded silica column and then transferred to reversed-phase column by a column-switching valve. Determination of CoQ10 was performed on a reversed-phase analytical column with ultraviolet detection at 275 nm and the mobile phase containing 10% (v/v) isopropanol in methanol at a flow-rate of 1.5 ml/min. The sensitivity of this method allows the detection of 0.1 microg/ml CoQ10 in plasma (S/N=3). The linearity between the concentration and peak height is from 0.05 to 20 mg/l. The reproducibility (R.S.D.%) of the method is less than 2% (within day) and less than 3% (between day), the average recovery is 100.9 + 2.1%, it takes only 30 min to complete an analysis procedure, suitable for the determination of CoQ10 in human plasma especially for batch analysis in clinical laboratories. Finally, the method was applied to determine the plasma CoQ10 levels in healthy subjects, hyperthyroid and hypothyroid patients.  相似文献   

18.
Assay of coenzyme Q(10) in plasma by a single dilution step   总被引:2,自引:0,他引:2  
A new method is described for determining coenzyme Q(10) (CoQ(10)) in plasma. The method is based on oxidation of CoQ(10) in the sample by treating it with para-benzoquinone followed by extraction with 1-propanol and direct injection into the HPLC apparatus. This method achieves a linear detector response for peak area measurements over the concentration range of 0.05-3.47 microM. Diode array analysis of the peak was consistent with CoQ(10) spectrum. Supplementation of the samples with known amounts of CoQ(10) yielded a quantitative recovery of 96-98.5%; the method showed a level of quantitation of 1.23 nmol per HPLC injection (200 microl of propanol extract containing 33.3 microl of plasma). A correlation of r = 0.99 (P < 0.0001) was found with a reference electrochemical detection method. Within run precision showed a CV% of 1.6 for samples approaching normal values (1.02 microM). Day-to-day precision was also close to 2%.  相似文献   

19.
目的:观察CoQ10补充对青少年运动员肝线粒体功能和有氧运动能力的影响。方法:18名进行耐力训练的男性青少年游泳运动员单盲随机分为Q组及P组,分别补充CoQ10 100mg/d或安慰剂28d。结果:①补充后Q组血浆CoQ10浓度显著增高,且显著高于P组;②补充后Q组安静状态的血浆MDA水平无显著改变,且显著低于P组;③首次恒定负荷运动后总体血浆CoQ10浓度较安静状态显著降低;④总体血浆CoQ10基础浓度与首次递增负荷运动中测定的VO2max显著正相关;⑤补充前后在1h耐力运动中动脉血酮体比的改变程度Q组与P组无组间差异;⑥Q组与P组VO2 max、个体乳酸阈和运动节省化的改变程度无组间差异。结论:尽管急性耐力运动中机体对CoQ10的需求增加,CoQ10补充也可降低血浆脂质过氧化水平,外源性CoQ10不能改善青少年运动员的肝线粒体功能和有氧运动能力。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号