首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following chronic CdCl2 administration to rats, more than 98% of the metal in liver supernatant is bound to the low molecular weight binding protein, metallothionein. Simultaneous administration of high doses of Cd and copper salts result in an increase in toxicity which is accompanied by a failure of Cd sequestration by metallothionein in vivo. This may be due to an aggregation of metallothionein which has been observed in the presence of copper in vitro.  相似文献   

2.
Pyridoxal kinase displays high catalytic activity in the presence of metallothionein. The apoprotein of metallothionein as well as the peptide LYS-CYS-THR-CYS-CYS-ALA exert a strong inhibitory effect upon pyridoxal kinase by sequestering free Zn ions. Several steps intervene in the process of pyridoxal kinase activation, i.e. binding of Zn ions by ATP and interaction of Zn-ATP with the enzyme; but direct interaction between metallothionein and pyridoxal kinase (protein association) could not be detected by emission anisotropy measurements. Since the concentration of free Zn++ in mammalian tissues is lower than 10(-9)M, it is postulated that the concentration of metallothionein regulates the catalytic activity of pyridoxal kinase. The mechanism of reconstitution of the metalloenzyme yeast aldolase in the presence of metallothionein was also investigated.  相似文献   

3.
Divalent cadmium and mercury ions are capable in vitro of displacement of zinc from metallothionein. This process has now been studied in vivo and ex vivo, using the isolated perfused rat liver system, in order to determine if this process can occur in the intact cell. Rats with normal and elevated (via preinduction with zinc) levels of hepatic zinc thionein were studied. Cd(II) completely displaces zinc from normal levels of metallothionein and on a one-to-one basis from elevated levels of metallothionein, both in vivo and ex vivo. Hg(II) displaces zinc from metallothionein (normal or elevated) rather poorly, as compared with Cd(II), in vivo, probably due to the kidneys preference for absorbing this metal. Ex vivo Hg(II) displaces zinc from metallothionein (normal or elevated) on a one-to-one basis, with considerably more mercury being incorporated into the protein than in vivo. The results of double-label ex vivo experiments using metal and [35S]cysteine (+/- cycloheximide) were consistent with the above experiments, indicating that de novo thionein synthesis was not required for short term incorporation of cadmium and mercury into metallothionein. These data are supportive of the hypothesis that cadmium and mercury incorporation into rat hepatic metallothionein during the first few hours after exposure to these metals can occur primarily by displacement of zinc from preexisting zinc thionein by a process which does not require new protein synthesis.  相似文献   

4.
5.
Dexamethasone or Zn++ increase the rate of synthesis of the metal-binding protein metallothionein in hepatocyte cultures. Dexamethasone induction of the capacity to synthesize metallothionein is not blocked by cycloheximide. In contrast, the dexamethasone stimulated increase in Zn++ uptake is inhibited by cycloheximide. Like Zn++, dexamethasone is a “primary inducer” of metallothionein. The glucocorticoid induction of metallothionein in primary cultures of rat hepatocytes is not mediated through elevation of Zn++ uptake.  相似文献   

6.
Administration of ethanol induces the synthesis of hepatic metallothionein and metallothionein mRNA in the liver but not in the brain. Furthermore, ethyl alcohol, methyl alcohol and isopropyl alcohol enhance the synthesis of metallothionein in Chang cells but not in neuroblastoma IMR-32 cells in culture. The results of this study are interpreted to suggest that the mechanisms of synthesis of metallothionein and the utilization of essential metal nutrients in the brain and peripheral tissues are not identical.  相似文献   

7.
8.
The effects of all-zinc metallothionein (Zn-metallothionein) and predominantly cadmium metallothionein (Cd/Zn-metallothionein) on free radical lipid peroxidation have been investigated, using erythrocyte ghosts as the test system. When treated with xanthine and xanthine oxidase, Zn-metallothionein and Cd/Zn-metallothionein underwent thiolate group oxidation and metal ion release that was catalase-inhibitable, but superoxide dismutase-non-inhibitable. Similar treatment in the presence of ghosts and added Fe(III) resulted in metallothioneen oxidation that was significantly inhibited by superoxide dismutase. Ghosts incubated with xanthine/xanthine oxidase/Fe(III) underwent H2O2- and O2-dependent lipid peroxidation, as measured by thiobarbituric acid reactivity. Neither type of metallothionein had any effect on xanthine oxidase activity, but both strongly inhibited lipid peroxidation when added to the membranes concurrently with xanthine/xanthine oxidase/iron. This inhibition was far greater and more sustained than that caused by dithiothreitol at a concentration equivalent to that of metallothionein thiolate. Significant protection was also afforded when ghosts plus Cd/Zn-metallothionein or Zn/metallothionein were preincubated with H2O2 and Fe(III), and then subjected to vigorous peroxidation by the addition of xanthine and xanthine oxidase. These results could be mimicked by using Cd(II) or Zn(II) alone. Previous studies suggested that Zn(II) inhibits xanthine/xanthine oxidase/iron-driven lipid peroxidation in ghosts by interfering with iron binding and redox cycling. Therefore, the primary determinant of metallothionein proteciion appears to be metal release and subsequent uptake by the membranes. These results have important implications concerning the antioxidant role of metallothionein, a protein known to be induced by various prooxidant conditions.  相似文献   

9.
Cadmium is a toxic metal that induces the expression of metallothionein genes in many tissues and that binds avidly to metallothionein, a soluble transition metal binding protein. The present study examined the temporal pattern and magnitude of accumulation of metallothionein mRNA in liver of C57BL/6J mice of various ages treated with cadmium. In adult female mice, accumulation was dependent on the dosage level of cadmium and related to the concentration of this metal in liver. The accumulation of metallothionein mRNA in liver depended on age at exposure to cadmium. Intraperitoneal administration of 2 mg of cadmium per kg provoked small increases (two- to threefold) in levels of metallothionein mRNA in livers of 7- and 14-day-old mice. In contrast, cadmium treatment of 28- and 56-day-old mice resulted in 12- to 19-fold increases in levels of metallothionein mRNA in liver with maximum increases occurring 3 to 4 hr after treatment. Because similar patterns for the accumulation of cadmium of liver were found in 7-, 28-, and 56-day-old mice, observed age-dependent differences in induction of metallothionein mRNA in liver were probably not due to differences in the accumulation of cadmium in this organ. Taken together, these data suggest that tissue-specific factors controlling the expression of metallothionein genes may account for developmental variation in the inducibility of these genes by cadmium. Ontogenic variation in accumulation of metallothionein mRNA after cadmium treatment may be a factor in developmental variation in the acute lethality of cadmium in C57BL/6J mice.  相似文献   

10.
11.
A study was carried out on the uptake of copper, zinc, or cadmium ions and their induction of metallothionein synthesis in Menkes' and normal lymphoblastoid cells. The main difference between Menkes' and normal cells in the uptake of these metal ions was an increased uptake of copper ions in Menkes' cells at a low concentration of CuCl2 (2.1 microM). The CuCl2 concentration necessary to induce metallothionein synthesis in Menkes' cells was 50 microM, whereas that in normal cells was about 200 microM. The levels of zinc or cadmium ions needed to induce metallothionein in Menkes' cells were similar to those in normal cells. At least four isomers of metallothionein were induced by copper, zinc, and cadmium ions in both types of cells. Metallothionein synthesis in Menkes' and normal cells was induced when the amounts of intracellular copper reached a threshold level of approximately 0.2 nmol/10(6) cells, and the rate of metallothionein synthesis in these cells was increased as a function of the amounts of intracellular copper (0.2-1.7 nmol/10(6) cells). These results indicate that the induction of metallothionein synthesis in lymphoblastoid cells is controlled by the level of intracellular copper, suggesting that the major defect in Menkes' cells is not due to the abnormal regulation of metallothionein synthesis but to an alteration of the copper metabolism in cells by which the levels of intracellular copper become larger than those in normal cells and just lower than the threshold level for induction of metallothionein synthesis.  相似文献   

12.
13.
Yoshida N  Kato T  Yoshida T  Ogawa K  Yamashita M  Murooka Y 《BioTechniques》2002,32(3):551-2, 554, 556 passim
We investigated the potential utility of a recombinant E. coli that expresses the human metallothionein II gene as a fusion protein with beta-galactosidase as a heavy metal biosorbent. E. coli cells expressing the metallothionein fusion demonstrated enhanced binding of Cd2+ compared to cells that lack the metallothionein. It was shown that the metallothionein fusion was capable of efficiently removing Cd2+ from solutions. Approximately 40% of the Cd2+ accumulated by the recombinant cells free in suspension was associated with the outer cell membrane, and 60% of that was present in the cytoplasm.  相似文献   

14.
Protection by metallothionein against cadmium toxicity   总被引:1,自引:0,他引:1  
1. The protective effect against Cd toxicity of prior exposure to Cd or Zn solutions at low concentration was studied. 2. Carp were bred in tap water (A), 1 ppm Cd solution (B) and 5 ppm Zn solution (C) for 14 days and then transferred into 15 ppm Cd solution. The survival ratio of carp decreased in the order: (C):(B):(A). 3. Binding capacity of Cd to high molecular and metallothionein fractions in the cytoplasmic solutions of the hepato-pancreas was studied and the binding capacity to the metallothionein fraction was stronger than that to the high molecular fraction. The authors recognized that Zn in the metallothionein fraction is substituted by Cd.  相似文献   

15.
Toxic properties of several metals may be modified, since they are bound to metallothionein in vivo. Such modulation is particularly well known for cadmium (Cd), whose acute effects are prevented by metallothionein induction, whereas chronic effects on the kidney are partly explained on the basis of transport of cadmium-metallothionein (CdMt) into the kidney. Although intracellular Mt synthesis is induced by Cd, offering partial protection, nephrotoxicity may occur at times when such protection is insufficient. Pertubations in renal calcium metabolism may be an important basis for membrane dysfunction leading to proteinuria.  相似文献   

16.
The induction of liver metallothionein by dexamethasone in adrenalectomized rats was augmented by zinc administration. Metallothionein synthesis was increased in an additive manner with both zinc and dexamethasone compared with either treatment alone. Translational activity of polyribosomal metallothionein mRNA was also greater in zinc + dexamethasone-treated rats. Northern-blot analyses showed that dexamethasone increased these mRNA contents to a greater extent at the lower zinc dose, suggesting that the induction may be maximal at the higher zinc dose when combined with dexamethasone.  相似文献   

17.
Endotoxin induces a decrease in zinc concentration in the serum and an increase in zinc levels in the liver. We have studied whether metallothionein (MT), which is a heavy metal-binding protein, is associated with this phenomenon in vitro. When MT of liver cells is induced by a factor secreted by endotoxin-stimulated macrophages, the cells accumulate zinc from the medium. The temporal accumulation of zinc is correlated with the induction of MT, and the accumulated zinc binds to MT. These results suggest that zinc accumulation by liver cells is mediated by metallothionein produced in response to a macrophage factor, which is elicited by endotoxin.  相似文献   

18.
The induction capacity of dexamethasone, a synthetic glucocorticoid, for the synthesis of metallothionein was about the same as that of 3-aminobenzamide, which is an inhibitor of ADP-ribosylation of chromosomal proteins, in cultured mouse mammary tumor cells. Both inductions of metallothionein were temporally correlated with a decrease in the amount of endogenous poly (ADP-ribose) on nonhistone high-mobility-group 14 and 17 proteins. In contrast, the extent of cadmium-induced metallothionein synthesis was 2-3-times that of dexamethasone or 3-aminobenzamide. However, cadmium had essentially no effect on de-ADP-ribosylation of these proteins.  相似文献   

19.
The interaction of injected zinc and cadmium with metallothionein was investigated in newborn rats. Tissues of 5-day-old rats were removed 24 h after a single injection (Sc) of saline or zinc (20 mg/kg, body wt.) or cadmium (1 mg/kg, body wt.) with 2.5 μCi of 65Zn or 109Cd or 5 μCi of [35S]cysteine. Injection of zinc resulted in a 75% increase in the hepatic zinc concentration with a concomitant elevation of metallothionein (P < 0.001), zinc in metallothionein increased by 45% (P < 0.05); [35S]cysteine incorporation indicated the induced synthesis of metallothionein. Injection of cadmium did not alter either metallothionein or zinc levels in liver, but cadmium in cytosol was preferentially bound to metallothionein. Neither treatment altered hepatic copper metabolism and copper in metallothionein, nor renal zinc and metallothionein levels. These data indicate that zinc injection can elevate hepatic zinc levels and induce metallothionein synthesis in newborn rats despite high basal levels; cadmium injection does not induce metallothionein synthesis, though cadmium is avidly sequestered by pre-existing metallothionein. The differences in the induction of metallothionein by these divalent cations can be explained by the differences in their binding affinities for thiol groups in intracellular metallothionein.  相似文献   

20.
The effects of HgCl2 on urinary excretion of Zn, Cu and metallothionein at different time intervals were observed in male Wistar rats. The rats were given a daily intraperitoneal injection of203HgCl2 (0.5 or 1.0 mg Hg kg–1) for 2 days.203Hg, Zn, Cu and metallothionein in urine, kidney and liver were analyzed. Significant increases in urinary Zn and Cu concentrations were found in HgCl2-dosed groups. Elevated urinary Zn and Cu concentrations were accompanied by an increased metallothionein excretion in urine at different time periods. Zn concentration in urine remained elevated during the entire observation period of 7 days. There were also increased concentrations of Cu and Zn in the renal cortex in one of the two exposed groups. The results indicate that urinary Cu and Zn are related to the manifestation of renal toxicity and/or the synthesis of metallothionein in kidney induced by mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号