首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The active centers of the hairpin and VS ribozymes are both generated by the interaction of two internal loops, and both ribozymes use guanine and adenine nucleobases to accelerate cleavage and ligation reactions. The centers are topologically equivalent and the relative positioning of key elements the same. There is good evidence that the cleavage reaction of the VS ribozyme is catalyzed by the guanine (G638) acting as general base and the adenine (A756) as general acid. We now critically evaluate the experimental mechanistic evidence for the hairpin ribozyme. We conclude that all the available data are fully consistent with a major contribution to catalysis by general acid-base catalysis involving the adenine (A38) and guanine (G8). It appears that the two ribozymes are mechanistically equivalent.  相似文献   

2.
A novel chemo-genetic approach for the analysis of general acid-base catalysis by nucleobases in ribozymes is reviewed. This involves substitution of a C-nucleoside with imidazole in place of a natural nucleobase. The Varkud satellite ribozyme in which the nucleobase at the critical 756 position has been replaced by imidazole is active in both cleavage and ligation reactions. Similarly, a modified hairpin ribozyme with the nucleobase at position 8 substituted by imidazole is active in cleavage and ligation reactions. Although the rates are lower than those of the natural ribozymes, they are significantly greater than other variants at these positions. The dependence of the hairpin ribozyme reaction rates on pH has been studied. Both cleavage and ligation reactions display a bell-shaped pH dependence, consistent with general acid-base catalysis involving the nucleotide at position 8.  相似文献   

3.
The hairpin ribozyme is a small catalytic RNA with reversible phosphodiester cleavage activity. Biochemical and structural studies exclude a requirement for divalent metal cation cofactors and implicate one active site nucleobase in particular, G8, in the catalytic mechanism. Our previous work demonstrated that the cleavage activity that is lost when G8 is replaced by an abasic residue is restored when certain nucleobases are provided in solution. The specificity and pH dependence of exogenous nucleobase rescue were consistent with several models of the rescue mechanism, including general acid base catalysis, electrostatic stabilization of negative charge in the transition state or a requirement for protonation to facilitate exogenous nucleobase binding. Detailed analyses of exogenous nucleobase rescue for both cleavage and ligation reactions now allow us to refine models of the rescue mechanism. Activity increased with increasing pH for both unmodified ribozyme reactions and unrescued reactions of abasic variants lacking G8. This similarity in pH dependence argues against a role for G8 as a general base catalyst, because G8 deprotonation could not be responsible for the pH-dependent transition in the abasic variant. Exogenous nucleobase rescue of both cleavage and ligation activity increased with decreasing pH, arguing against a role for rescuing nucleobases in general acid catalysis, because a nucleobase that contributes general acid catalysis in the cleavage pathway should provide general base catalysis in ligation. Analysis of the concentration dependence of cytosine rescue at high and low pH demonstrated that protonation promotes catalysis within the nucleobase-bound ribozyme complex but does not stabilize nucleobase binding in the ground state. These results support an electrostatic stabilization mechanism in which exogenous nucleobase binding counters negative charge that develops in the transition state.  相似文献   

4.
The hairpin ribozyme   总被引:4,自引:0,他引:4  
The hairpin ribozyme is a member of a family of small RNA endonucleases, which includes hammer-head, human hepatitis delta virus, Neurospora VS, and the lead-dependent catalytic RNAs. All these catalytic RNAs reversibly cleave the phosphodiester bond of substrate RNA to generate 5'-hydroxyl and 2',3'-cyclic phosphate termini. Whereas the reaction products from family members are similar, large structural and mechanistic differences exist. Structurally the hairpin ribozyme has two principal domains that interact to facilitate catalysis. The hairpin ribozyme uses a catalytic mechanism that does not require metals for cleavage or ligation of substrate RNA. In this regard it is presently unique among RNA catalysts. Targeting rules for cleavage of substrate have been determined and required bases for catalysis have been identified. The hairpin ribozyme has been developed and used for gene therapy and was the first ribozyme to be approved for human clinical trials.  相似文献   

5.
The hairpin ribozyme   总被引:1,自引:0,他引:1  
The hairpin ribozyme is a naturally occurring RNA that catalyzes sequence-specific cleavage and ligation of RNA. It has been the subject of extensive biochemical and structural studies, perhaps the most detailed for any catalytic RNA to date. Comparison of the structures of its constituent domains free and fully assembled demonstrates that the RNA undergoes extensive structural rearrangement. This rearrangement results in a distortion of the substrate RNA that primes it for cleavage. This ribozyme is known to achieve catalysis employing exclusively RNA functional groups. Metal ions or other catalytic cofactors are not used. Current experimental evidence points to a combination of at least four mechanistic strategies by this RNA: (1) precise substrate orientation, (2) preferential transition state binding, (3) electrostatic catalysis, and (4) general acid base catalysis.  相似文献   

6.
The three-dimensional architecture of the class I ligase ribozyme   总被引:2,自引:0,他引:2  
The class I ligase ribozyme catalyzes a Mg(++)-dependent RNA-ligation reaction that is chemically analogous to a single step of RNA polymerization. Indeed, this ribozyme constitutes the catalytic domain of an accurate and general RNA polymerase ribozyme. The ligation reaction is also very rapid in both single- and multiple-turnover contexts and thus is informative for the study of RNA catalysis as well as RNA self-replication. Here we report the initial characterization of the three-dimensional architecture of the ligase. When the ligase folds, several segments become protected from hydroxyl-radical cleavage, indicating that the RNA adopts a compact tertiary structure. Ribozyme folding was largely, though not completely, Mg(++) dependent, with a K(1/2[Mg]) < 1 mM, and was observed over a broad temperature range (20 degrees C -50 degrees C). The hydroxyl-radical mapping, together with comparative sequence analyses and analogy to a region within 23S ribosomal RNA, were used to generate a three-dimensional model of the ribozyme. The predictive value of the model was tested and supported by a photo-cross-linking experiment.  相似文献   

7.
The less abundant polarity of the satellite RNA of tobacco ringspot virus, designated sTobRV(-)RNA, contains a ribozyme and its substrate. We demonstrate that the ribozyme can catalyze the ligation of substrate cleavage products and that oligoribonucleotides, termed 'mini-monomers' and containing little more than covalently attached ribozyme and substrate cleavage products, circularized spontaneously, efficiently and reversibly. The kinetics of ligation and cleavage of one such mini-monomer was consistent with a simple unimolecular reaction at some temperatures. Evidence suggests that the circular ligation product includes a 5 bp stem that is connected to a 4 bp stem by a bulge loop. Reduction of the bulge loop to one nt is expected to place the 4 and 5 bp helices in a nearly coaxial, rather than an angled or parallel, orientation. Such molecules did not circularize in a unimolecular reaction but did when incubated with second, trans-acting oligoribonucleotides that had either the original or a substituted 4 bp helix. These results suggest that a bulge loop that is too small prevents formation of geometry essential for unimolecular ligation. We suggest the term 'paperclip' to represent the arrangement of RNA strands in the region of sTobRV(-)RNA that participates in the cleavage and ligation reactions.  相似文献   

8.
A guanine (G638) within the substrate loop of the VS ribozyme plays a critical role in the cleavage reaction. Replacement by any other nucleotide results in severe impairment of cleavage, yet folding of the substrate is not perturbed, and the variant substrates bind the ribozyme with similar affinity, acting as competitive inhibitors. Functional group substitution shows that the imino proton on the N1 is critical, suggesting a possible role in general acid-base catalysis, and this in accord with the pH dependence of the reaction rate for the natural and modified substrates. We propose a chemical mechanism for the ribozyme that involves general acid-base catalysis by the combination of the nucleobases of guanine 638 and adenine 756. This is closely similar to the probable mechanism of the hairpin ribozyme, and the active site arrangements for the two ribozymes appear topologically equivalent. This has probably arisen by convergent evolution.  相似文献   

9.
Bergman NH  Johnston WK  Bartel DP 《Biochemistry》2000,39(11):3115-3123
The class I RNA ligase ribozyme, isolated previously from random sequences, performs an efficient RNA ligation reaction. It ligates two substrate RNAs, promoting the attack of the 3'-hydroxyl of one substrate upon the 5'-triphosphate of the other substrate with release of pyrophosphate. This ligation reaction has similarities to the reaction catalyzed by RNA polymerases. Using data from steady-state kinetic measurements and pulse-chase/pH-jump experiments, we have constructed minimal kinetic frameworks for two versions of the class I ligase, named 207t and 210t. For both ligases, as well as for the self-ligating parent ribozyme, the rate constant for the chemical step (k(c)) is log-linear with pH in the range 5.7-8.0. At physiological pH, the k(c) is 100 min(-1), a value similar to those reported for the fastest naturally occurring ribozymes. At higher pH, product release is limiting for both 207t and 210t. The 210t ribozyme, with its faster product release, attains multiple-turnover rates (k(cat) = 360 min(-1), pH 9.0) exceeding those of 207t and other reported ribozyme reactions. The kinetic framework for the 210t ribozyme describes the limits of this catalysis and suggests how key steps can be targeted for improvement using design or combinatorial approaches.  相似文献   

10.
The relationship between hairpin ribozyme structure, and cleavage and ligation kinetics, and equilibria has been characterized extensively under a variety of reaction conditions in vitro. We developed a quantitative assay of hairpin ribozyme cleavage activity in yeast to learn how structure-function relationships defined for RNA enzymes in vitro relate to RNA-mediated reactions in cells. Here, we report the effects of variation in the stability of an essential secondary structure element, H1, on intracellular cleavage kinetics. H1 is the base-paired helix formed between ribozyme and 3' cleavage product RNAs. H1 sequences with fewer than three base-pairs fail to support full activity in vitro or in vivo, arguing against any significant difference in the stability of short RNA helices under in vitro and intracellular conditions. Under standard conditions in vitro that include 10 mM MgCl(2), the internal equilibrium between cleavage and ligation of ribozyme-bound products favors ligation. Consequently, ribozymes with stable H1 sequences display sharply reduced self-cleavage rates, because cleavage is reversed by rapid re-ligation of bound products. In contrast, ribozymes with as many as 26 base-pairs in H1 continue to self-cleave at maximum rates in vivo. The failure of large products to inhibit cleavage could be explained if intracellular conditions promote rapid product dissociation or shift the internal equilibrium to favor cleavage. Model experiments in vitro suggest that the internal equilibrium between cleavage and ligation of bound products is likely to favor cleavage under intracellular ionic conditions.  相似文献   

11.
The hairpin ribozyme reversibly cleaves phosphodiesters of RNA substrates to generate products with 5' hydroxyl and 2',3'-cyclic phosphate termini. We previously found that the rate constant for ligation is tenfold faster than the rate constant for cleavage under standard conditions. The hammerhead ribozyme catalyzes the same reactions but is reported to favor cleavage relative to ligation by more than 100-fold under the same conditions. To explore the basis for this difference, we examined the influence of temperature, ions and pH on the hairpin ribozyme internal equilibrium. Under the same conditions, the loss of entropy associated with ligation is less for the hairpin than for the hammerhead ribozyme, consistent with the notion that a more rigid hairpin structure undergoes a smaller decrease in dynamics upon ligation than the more flexible hammerhead structure. Increased salt and reduced temperature shift the equilibrium toward ligation while pH has little effect, suggesting that conditions that stabilize RNA structure tend to promote ligation. The hairpin ribozyme appears to take up at least one tri- or divalent cation or two monovalent cations upon ligation. The efficiency with which different cations promote ligation depends strongly on valence and, less strongly, on ionic radius or electronegativity. This pattern of cation selectivity suggests that cations promote ligation through delocalized electrostatic shielding, perhaps interacting with a region of especially high charge density in the ligated ribozyme. Changes in ionic conditions produce large but compensating changes in enthalpy and entropy for cleavage and ligation. Thus, in addition to any increase in ribozyme dynamics associated with cleavage, re-organization of associated cations contributes significantly to hairpin ribozyme thermodynamics.  相似文献   

12.
The hairpin ribozyme acts as a reversible, site-specific endoribonuclease that ligates much more rapidly than it cleaves cognate substrate. While the reaction pathway for ligation is the reversal of cleavage, little is known about the atomic and electrostatic details of the two processes. Here, we report the functional consequences of molecular substitutions of A9 and A10, two highly conserved nucleobases located adjacent to the hairpin ribozyme active site, using G, C, U, 2-aminopurine, 2,6-diaminopurine, purine, and inosine. Cleavage and ligation kinetics were analyzed, tertiary folding was monitored by hydroxyl radical footprinting, and interdomain docking was studied by native gel electrophoresis. We determined that nucleobase substitutions that exhibit significant levels of interference with tertiary folding and interdomain docking have relatively large inhibitory effects on ligation rates while showing little inhibition of cleavage. Indeed, one variant, A10G, showed a fivefold enhancement of cleavage rate and no detectable ligation, and we suggest that this property may be uniquely well suited to intracellular targeted RNA cleavage applications. Results support a model in which formation of a kinetically stable tertiary structure is essential for ligation of the hairpin ribozyme, but is not necessary for cleavage.  相似文献   

13.
Shih Ih  Been MD 《The EMBO journal》2001,20(17):4884-4891
Hepatitis delta virus (HDV) ribozymes employ multiple catalytic strategies to achieve overall rate enhancement of RNA cleavage. These strategies include general acid-base catalysis by a cytosine side chain and involvement of divalent metal ions. Here we used a trans-acting form of the antigenomic ribozyme to examine the contribution of the 5' sequence in the substrate to HDV ribozyme catalysis. The cleavage rate constants increased for substrates with 5' sequence alterations that reduced ground-state binding to the ribozyme. Quantitatively, a plot of activation free energy of chemical conversion versus Gibb's free energy of substrate binding revealed a linear relationship with a slope of -1. This relationship is consistent with a model in which components of the substrate immediately 5' to the cleavage site in the HDV ribozyme-substrate complex destabilize ground-state binding. The intrinsic binding energy derived from the ground-state destabilization could contribute up to 2 kcal/mol toward the total 8.5 kcal/mol reduction in activation free energy for RNA cleavage catalyzed by the HDV ribozyme.  相似文献   

14.
15.
Ribozymes correctly cleave a model substrate and endogenous RNA in vivo   总被引:22,自引:0,他引:22  
The alpha-sarcin domain of 28 S RNA in Xenopus oocytes is attacked by several catalytic toxins (e.g. alpha-sarcin and ricin) that abolish protein synthesis. We synthesized 6 ribozymes targeted to the alpha-sarcin domain and to an oligoribonucleotide (34-mer) that mimics this domain. Sarcin ribozyme 5 (SR5) efficiently cleaved after the CUC site in the synthetic 34-mer in vitro at 50 degrees C. SR5 also cut the same site when both substrate and ribozyme were coinjected or injected separately into oocytes at 18 degrees C. Correct cleavage in vivo was shown by isolating and sequencing the large cleavage fragment. The cleavage reaction appeared to function equally well in the oocyte nucleus and cytoplasm. SR5 also correctly cleaved endogenous 28 S RNA in oocytes, although cutting was much less efficient than with alpha-sarcin. We therefore demonstrated that a ribozyme specifically cuts both a model substrate and a cellular RNA in vivo. Earlier work showed that certain injected deoxyoligonucleotides complementary to the alpha-sarcin region abolish protein synthesis. Oocyte protein synthesis was also abolished by an SR5 containing a single G----U substitution that inactivates RNA catalysis, indicating that SR5's translational suppression was perhaps due to antisense function rather than ribozyme cleavage.  相似文献   

16.
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.  相似文献   

17.
Because of the ability to cleave RNA substrates in trans, the hairpin ribozyme has great potential for therapeutic application. Activity of a three-stranded version of the minimal truncated form is enhanced by the presence of the polyamine spermine. Since spermine is the most abundant polyamine in eucariots, improved prospects for the hairpin ribozyme as therapeutic agent were predicted. We have found that not all hairpin ribozyme variants accept spermine equally well as counter-ion. Particularly the two-stranded versions commonly used for therapeutic studies show rather decreased activity when spermine is present. We have investigated a number of hairpin ribozyme derivatives regarding their ability to carry out spermine supported catalysis. Among the studied structures a two-stranded reverse-joined hairpin ribozyme displayed the highest cleavage rates in a synergistic mixture of magnesium ions and spermine. The specific features of this ribozyme along with its potential for in vivo application are discussed.  相似文献   

18.
Mg2+-independent hairpin ribozyme catalysis in hydrated RNA films   总被引:1,自引:1,他引:0       下载免费PDF全文
The hairpin ribozyme catalyzes RNA cleavage in partially hydrated RNA films in the absence of added divalent cations. This reaction exhibits the characteristics associated with the RNA cleavage reaction observed under standard conditions in solution. Catalysis is a site-specific intramolecular transesterification reaction, requires the 2'-hydroxyl group of substrate nucleotide A(-1), and generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. Mutations in both ribozyme and substrate abolish catalysis in hydrated films. The reaction is accelerated by cations that may enhance binding, conformational stability, and catalytic activity, and is inhibited by Tb3+. The reaction has an apparent temperature optimum of 4 degrees C. At this temperature, cleavage is slow (k(obs): 2 d(-1)) and progressive, with accumulation of cleavage products to an extent of 40%. The use of synthetic RNAs, chelators, and analysis of all reaction components by inductively coupled plasma-optical spectrophotometry (ICPOES) effectively rules out the possibility of contaminating divalent metals in the reactions. Catalysis is minimal under conditions of extreme dehydration, indicating that the reaction requires hydration of RNA by atmospheric water. Our results provide a further caution for those studying the biochemical activity of ribozymes in vitro and in cells, as unanticipated catalysis could occur during RNA manipulation and lead to misinterpretation of data.  相似文献   

19.
Canny MD  Jucker FM  Pardi A 《Biochemistry》2007,46(12):3826-3834
The hammerhead ribozyme from Schistosoma mansoni is the best characterized of the natural hammerhead ribozymes. Biophysical, biochemical, and structural studies have shown that the formation of the loop-loop tertiary interaction between stems I and II alters the global folding, cleavage kinetics, and conformation of the catalytic core of this hammerhead, leading to a ribozyme that is readily cleaved under physiological conditions. This study investigates the ligation kinetics and the internal equilibrium between cleavage and ligation for the Schistosoma hammerhead. Single turnover kinetic studies on a construct where the ribozyme cleaves and ligates substrate(s) in trans showed up to 23% ligation when starting from fully cleaved products. This was achieved by an approximately 2000-fold increase in the rate of ligation compared to a minimal hammerhead without the loop-loop tertiary interaction, yielding an internal equilibrium that ranges from 2 to 3 at physiological Mg2+ ion concentrations (0.1-1 mM). Thus, the natural Schistosoma hammerhead ribozyme is almost as efficient at ligation as it is at cleavage. The results here are consistent with a model where formation of the loop-loop tertiary interaction leads to a higher population of catalytically active molecules and where formation of this tertiary interaction has a much larger effect on the ligation than the cleavage activity of the Schistosoma hammerhead ribozyme.  相似文献   

20.
Guo F  Gooding AR  Cech TR 《Molecular cell》2004,16(3):351-362
The Tetrahymena intron is an RNA catalyst, or ribozyme. As part of its self-splicing reaction, this ribozyme catalyzes phosphoryl transfer between guanosine and a substrate RNA strand. Here we report the refined crystal structure of an active Tetrahymena ribozyme in the absence of its RNA substrate at 3.8 A resolution. The 3'-terminal guanosine (omegaG), which serves as the attacking group for RNA cleavage, forms a coplanar base triple with the G264-C311 base pair, and this base triple is sandwiched by three other base triples. In addition, a metal ion is present in the active site, contacting or positioned close to the ribose of the omegaG and five phosphates. All of these phosphates have been shown to be important for catalysis. Therefore, we provide a picture of how the ribozyme active site positions both a catalytic metal ion and the nucleophilic guanosine for catalysis prior to binding its RNA substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号