首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
J P Card  R P Meade  L G Davis 《Neuron》1988,1(9):835-846
Two rabbit polyclonal antibodies generated against different portions of the amyloid precursor protein were used to localize this protein in normal rat brain. Light and electron microscopic immunohistochemical localizations demonstrate that the protein is widely distributed throughout the neuraxis, with the highest concentrations of immunoreactive neurons occurring in the olfactory bulb, cerebral cortex, septum-diagonal band, globus pallidus, cerebellum, and hippocampus. Immunoreactive astrocytes are also present in the cerebral cortex in relation to both neurons and capillaries. However, immunoreactivity was not observed within the endothelium of the cerebral vasculature. These data demonstrate that the beta-amyloid precursor is widely distributed in the CNS and provide further insight into the cellular elements that may be involved in the neuropathological changes associated with Alzheimer's disease.  相似文献   

7.
Histidine decarboxylase from fetal rat liver was purified to near-homogeneity. The purified enzyme has a molecular weight of 210,000, and appears to contain two subunits with molecular weights of 145,000 and 66,000, respectively. The enzyme is inhibited by heavy metals such as Hg2+ and Zn2+ and sulfhydryl-reactive compounds such as 5,5'-dithiobis-2-nitrobenzoic acid. The enzyme is partially dependent on exogenous pyridoxal phosphate. Extensive dialysis results in 50% loss of enzyme activity which can be fully recovered by adding pyridoxal phosphate. Affinity of pyridoxal phosphate for the apoenzyme is 0.1 microM at pH 6.8. Antibody against purified histidine decarboxylase was raised in rabbits. The antibody has been employed in immunohistochemical studies to visualize histidine decarboxylase containing cells and neuronal processes in rat stomach and brain, respectively. Immunologic studies indicate that histidine decarboxylase from brain, gastric mucosa, and fetal rat liver share common antigenic properties.  相似文献   

8.
9.
The beta-amyloid peptide precursor (beta-APP) exists in brain tissue as a membrane-associated protein extractable with 1% Triton X-100. beta-APP has been purified to near homogeneity by the following procedure: 1) anion exchange chromatography, 2) affinity chromatography on heparin agarose, and 3) immunoaffinity adsorption on matrix-bound antibodies directed to a synthetic peptide corresponding to the last 24 amino acids of the cDNA derived amino acid sequence of beta-APP. Conditions were chosen to minimize denaturation of the protein. The identity of the protein was confirmed by its immunoreactivity with antisera directed to five subsequences derived from the cDNA sequence. The amino-terminal sequence of beta-APP was found to be Leu-Glu-Val-Pro-Thr-Asp-Gly-Asn-Ala-Gly-Leu-Leu-Ala-Glu-Pro, which commences at residue 18 of the cDNA-derived primary structure. The procedure resulted in a 2000-fold purification of beta-APP. The purified protein migrated on polyacrylamide gels as a doublet of apparent molecular mass 100-120 kDa, although the predicted molecular mass of its constituent amino acids is 76 kDa. beta-APP clearly behaves anomalously in gel electrophoresis. The beta-APP content of rat brain amounted to 46 micrograms/g tissue. The half-life of the protein was calculated to be about 10 h, which is 30 times as long as that observed by others in transfected PC-12 cells. We conclude that transfected cell systems may not be adequate models for beta-APP processing.  相似文献   

10.
11.
—The properties and subcellular localization of type I (nitrophenyl) and type II (nitrocatechol) arylsulphatases were investigated in brain tissue of the rat, and optimal assay conditions were established. Sulphate, phosphate and sulphite ions inhibited the nitrocatechol sulphatases; nitrophenyl sulphatase was inhibited only by sulphite. The presence of latent enzyme activity was demonstrated for the nitrocatechol sulphatases, beta-glucuronidase, and beta-glycerophosphatase in rat and mouse brain homogenates. These hydrolases were highly sensitive to mechanical and osmotic damage; and Triton X-100 was very effective in releasing their latent (bound) activities, a finding suggestive of a lysosomal localization. Activity of nitrophenyl sulphatase was unaffected by osmotic changes or Triton X-100, characteristics suggesting a membranous association for this enzyme. Total activity of nitrophenyl sulphatase was approximately twice as great in canine gray matter as in canine white matter; the converse obtained for beta-glucuronidase activity. Values for total enzymic activity of the nitrocatechol sulphatases in canine white and gray matter were similar. Fractionation of homogenates from rat brain by differential centrifugations and separation of crude mitochondrial fractions by sucrose density gradient centrifugations revealed the following: (1) most of the nitrocatechol sulphatase activity (93 per cent) and all of the nitrophenyl sulphatase activity were sedimentable; (2) crude mitochondrial fractions exhibited the highest relative specific activity (RSA = 1·38) for the nitrocatechol sulphatases, whereas microsomal fractions displayed the highest RSA for nitrophenyl sulphatase (1·89); (3) the lightest fraction (A + B) and the densest fraction (E) from the sucrose density gradient contained most of the activity for both the type I and type II arylsulphatases, whereas the RSA of cytochrome oxidase was greatest in the intermediate density regions (fractions C and D); (4) the highest RSA for beta-glucuronidase and beta-glycerophosphatase occurred in gradient fraction C; (5) appreciable activity of beta-glycerophosphatase was found in a nerve ending fraction (M3). It is suggested that the hydrolases in heterogeneous tissue like brain might be associated with lysosomal particles of differing enzyme compositions and varying populations, and that the data on distribution lend credence to the concept of bimodal and possible trimodal particle affinity for the hydrolases of brain tissues.  相似文献   

12.
13.
The distribution of glial cells (microglia and astrocytes) in different regions of normal adult rat brain was studied using immunohistochemical techniques and computer analysis. Antibodies against lipocortin 1 (LC1) and phosphotyrosine (PT), as well as an isolectin, GSA B4 (GSA), were used for identification of microglial units, while antibodies against protein S100β allowed us to identify astrocytes. If LC1 was used as a marker, more microglial cells were detected than with the use of PT or GSA. The highest density of LC1-positive microglial cells (on average, 130±5 cells/mm2 of the brain section area) was found in the neostriatum, while the lowest density (51±4 cells/mm2) was observed in the medulla oblongata. In general, the density of an LC1-positive microglial population was higher in the forebrain and lower in the midbrain, and the smallest number of these cells was detected in the brainstem and cerebellum. The number of astrocytes was, on average, 2–3 times as large as the number of microglial cells. High density of astrocytes, was found in the hypothalamus and hippocampus (more than 260 cells/mm2); they were more, numerous in the white matter than in the gray matter. Lower densities of this type cells were observed in the cerebral cortex, neostriatum, midbrain, medulla oblongata, and cerebellum (less than 200 cells/mm2).  相似文献   

14.
15.
Song M  Xiong JX  Wang YY  Tang J  Zhang B  Bai Y 《PloS one》2012,7(2):e29790
Vasoactive intestinal peptide (VIP) is a multifunctional neuropeptide with demonstrated immunosuppressive and neuroprotective activities. It has been shown to inhibit Amyloid beta (Aβ)-induced neurodegeneration by indirectly suppressing the production and release of a variety of inflammatory and neurotoxic factors by activated microglia. We demonstrated that VIP markedly increased microglial phagocytosis of fibrillar Aβ42 and that this enhanced phagocytotic activity depended on activation of the Protein kinase C (PKC) signaling pathway. In addition, VIP suppressed the release of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) from microglia activated by combined treatment with fibrillar Aβ42 and low dose interferon-γ (IFN-γ). We utilized an adenovirus-mediated gene delivery method to overexpress VIP constitutively in the hippocampus of APPswPS1 transgenic mice. The Aβ load was significantly reduced in the hippocampus of this animal model of Alzheimer's disease, possibly due to the accumulation and activation of cd11b-immunoactive microglial cells. The modulation of microglial activation, phagocytosis, and secretion by VIP is a promising therapeutic option for the treatment of Alzheimer's disease (AD).  相似文献   

16.
Molluscan cardioexcitatory neuropeptide or FMRFamide is present in the invertebrate central nervous system (CNS) and FMRFamide like peptide has been demonstrated in the mammalian CNS. In this study, the distribution of FMRFamide immunoreactivity was studied in rat brain using the indirect immunofluorescent method. The highest number of FMRFamide staining cell bodies was found in the nucleus (n) arcuatus. N. paraventricularis, n. hypothalamus, n. ventromedialis, n. dorsomedialis and n. tractus solitarii also contained high numbers. FMRFamide positive nerve fibers and terminals were widely distributed. The septal complex contained high densities, especially in n. interstitialis striae terminalis. N. paraventricularis hypothalami, n. paraventricularis, n. hypothalamicus, n. ventromedialis and n. dorsomedialis showed a high to very high degree of immunoreactivity. In myelencephalon, n. tractus solitarii had the densest innervation. Spinal cord had a dense band of FMRFamide positive fibers in lamina I and II of the dorsal horn. The present findings support a neurotransmitter role for a FMRFamide like peptide in the mammalian brain, possibly related to endocrine and autonomic regulation as well as pain modulation.  相似文献   

17.
Reactions of microglia and astrocytes in the sensorimotor cortex of the rat resulting from a cortex tissue lesion made by a free-electron laser were studied with immunohistochemical techniques. Lipocortin-1 (LC1) was used as a microglia marker, while S100-β glycoprotein was used to identify astrocytes. Three days after laser exposure, the quantity of LC1-positive microglial cells observed in the cortex along the edge of the laser lesion was 30% larger than that in the control. There was no reaction of S100-β-positive astrocytes observed within this time interval. Six days after laser exposure, the density of LC1-positive activated microglia along the edge of the laser lesion further increased (210% of the above index), and the density of S100-β-positive astrocytes also slightly increased (by 30%, compared with the control). The data provide evidence that LC1-positive microglia react to a laser-made cortex injury more rapidly and intensively than astrocytes. It can be supposed that namely LC1 plays the role of an anti-inflammatory messenger in cortex microglial cells after laser exposure. In general, the pattern of microglia and astrocyte reactions is indicative of comparatively mild traumatization of the cortex tissue after laser irradiation.  相似文献   

18.
19.
The nature of phagocytes appearing in lesions of the central nervous system is strongly debated with a tendency to assess an exclusively hematogenous origin. We studied the origin of phagocytes appearing in a stab wound in the rat brain. Histochemical stains for acid phosphatase and peroxidase, and silver impregnation techniques were used for our study. The results obtained showed the existence of two macrophage types: endogenous microgliocytes and exogenous monocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号