首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of DNA adducts mediated by cytochrome P450 (CYP). We investigated the ability of CYP enzymes in rat, rabbit and human hepatic microsomes to oxidize ellipticine and evaluated suitable animal models mimicking its oxidation in humans. Ellipticine is oxidized by microsomes of all species to 7-hydroxy-, 9-hydroxy-, 12-hydroxy-, 13-hydroxyellipticine and ellipticine N(2)-oxide. However, only rat microsomes generated the pattern of ellipticine metabolites reproducing that formed by human microsomes. While rabbit microsomes favored the production of ellipticine N(2)-oxide, human and rat microsomes predominantly formed 13-hydroxyellipticine. The species difference in expression and catalytic activities of individual CYPs in livers are the cause of these metabolic differences. Formation of 7-hydroxy- and 9-hydroxyellipticine was attributable to CYP1A in microsomes of all species. However, production of 13-hydroxy-, 12-hydroxyellipticine and ellipticine N(2)-oxide, the metabolites generating DNA adducts, was attributable to the orthologous CYPs only in rats and humans. CYP3A predominantly generates these metabolites in rat and human microsomes, while CYP2C3 activity prevails in microsomes of rabbits. The results underline the suitability of rat species as a model to evaluate human susceptibility to ellipticine.  相似文献   

2.
Ellipticine is a potent antineoplastic agent exhibiting the multimodal mechanism of its action. This article reviews the mechanisms of predominant pharmacological and cytotoxic effects of ellipticine and shows the results of our laboratories indicating a novel mechanism of its action. The prevalent mechanisms of ellipticine antitumor, mutagenic and cytotoxic activities were suggested to be intercalation into DNA and inhibition of DNA topoisomerase II activity. We demonstrated a new mode of ellipticine action, formation of covalent DNA adducts mediated by its oxidation with cytochromes P450 (CYP) and peroxidases. The article reports the molecular mechanism of ellipticine oxidation by CYPs and identifies human and rat CYPs responsible for ellipticine metabolic activation and detoxication. It also presents a role of peroxidases (i.e. myeloperoxidase, cyclooxygenases, lactoperoxidase) in ellipticine oxidation leading to ellipticine-DNA adducts. The 9-hydroxy- and 7-hydroxyellipticine metabolites formed by CYPs and the major product of ellipticine oxidation by peroxidases, the dimer, in which the two ellipticine skeletons are connected via N(6) of the pyrrole ring of one ellipticine molecule and C9 in the second one, are the detoxication metabolites. On the contrary, 13-hydroxy- and 12-hydroxyellipticine, produced by ellipticine oxidation with CYPs, the latter one formed also spontaneously from another CYP- and peroxidase-mediated metabolite, ellipticine N(2)-oxide, are metabolites responsible for formation of two ellipticine-derived deoxyguanosine adducts in DNA. The results reviewed here allow us to propose species, two carbenium ions, ellipticine-13-ylium and ellipticine-12-ylium, as reactive species generating two major DNA adducts seen in vivo in rats treated with ellipticine. The study forms the basis to further predict the susceptibility of human cancers to ellipticine.  相似文献   

3.
Ellipticine is a potent antineoplastic agent, whose mode of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Since we found that ellipticine also forms the cytochrome P450 (CYP)-mediated covalent DNA adducts, this anticancer drug is considered to function as a pro-drug, whose pharmacological efficiency and/or genotoxic side effects are dependent on its enzymatic activation in target tissues. Here, we demonstrate that ellipticine is also oxidized by peroxidases, which are abundantly expressed in several target tumor tissues. Lactoperoxidase, myeloperoxidase and horseradish peroxidase were used as models. Peroxidases in the presence of hydrogen peroxide oxidize ellipticine to an ellipticine dimer and N(2)-oxide of ellipticine as the major and minor metabolite, respectively. Inhibition of the peroxidase-mediated ellipticine oxidation by radical scavengers ascorbate, glutathione and NADH suggests a one-electron mechanism of the oxidation. The implication of the oxidation of ellipticine by peroxidases in its mechanism of action is discussed.  相似文献   

4.
In this study, tetrahydrocannabinols (THCs) were mainly oxidized at the 11-position and allylic sites at the 7alpha-position for Delta(8)-THC and the 8beta-position for Delta(9)-THC by human hepatic microsomes. Cannabinol (CBN) was also mainly metabolized to 11-hydroxy-CBN and 8-hydroxy-CBN by the microsomes. The 11-hydroxylation of three cannabinoids by the microsomes was markedly inhibited by sulfaphenazole, a selective inhibitor of CYP2C enzymes, while the hydroxylations at the 7alpha-(Delta(8)-THC), 8beta-(Delta(9)-THC) and 8-positions (CBN) of the corresponding cannabinoids were highly inhibited by ketoconazole, a selective inhibitor of CYP3A enzymes. Human CYP2C9-Arg expressed in the microsomes of human B lymphoblastoid cells efficiently catalyzed the 11-hydroxylation of Delta(8)-THC (7.60 nmol/min/nmol CYP), Delta(9)-THC (19.2 nmol/min/nmol CYP) and CBN (6.62 nmol/min/nmol CYP). Human CYP3A4 expressed in the cells catalyzed the 7alpha-(5.34 nmol/min/nmol CYP) and 7beta-hydroxylation (1.39 nmol/min/nmol CYP) of Delta(8)-THC, the 8beta-hydroxylation (6.10 nmol/min/nmol CYP) and 9alpha,10alpha-epoxidation (1.71 nmol/min/nmol CYP) of Delta(9)-THC, and the 8-hydroxylation of CBN (1.45 nmol/min/nmol CYP). These results indicate that CYP2C9 and CYP3A4 are major enzymes involved in the 11-hydroxylation and the 8-(or the 7-) hydroxylation, respectively, of the cannabinoids by human hepatic microsomes. In addition, CYP3A4 is a major enzyme responsible for the 7alpha- and 7beta-hydroxylation of Delta(8)-THC, and the 9alpha,10alpha-epoxidation of Delta(9)-THC.  相似文献   

5.
Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.  相似文献   

6.
Induction of cytochrome P450 1A (CYP1A) can be used as a biomarker of exposure to planar halogenated aromatic hydrocarbons (PHAHs). Our objective was to characterize the induction of CYP1A activity and protein in three avian species following in vivo treatment with β-naphthoflavone (BNF) and/or isosafrole. Alkoxyresorufin-O-dealkylase (alk-ROD) activities of hepatic microsomes from Herring Gulls (Larus argentatus) (HGs), Double-crested Cormorants (Phalacrocorax auritus) (DCCs) and chickens (Gallus domesticus) were measured using ethoxy-, methoxy-, pentoxy- and benzyloxy-resorufin, in the presence and absence of the inhibitors ellipticine or furafylline. Immunoreactivity of microsomal proteins with antibodies to several CYP1A proteins was investigated. CYP1A protein and alk-ROD activities of HGs and DCCs, but not chickens, were induced by isosafrole. Ellipticine was a potent and non-selective inhibitor of alk-ROD activity in all three species, while furafylline inhibition of alk-ROD activities varied among species and treatments. In all three species, BNF induced a protein immunoreactive with monoclonal antibody to CYP1A1 from the marine fish Stenotomus chrysops (scup), but a CYP1A2-like protein was not detected in avian microsomes probed with polyclonal antibodies to mouse CYP1A2. Variations in responses among avian species indicate that CYP1A proteins and substrate specificities should be characterized for each species used in PHAH biomonitoring programs.  相似文献   

7.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

8.
2-Methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole) are important pollutants and potent carcinogens for rodents. o-Anisidine is oxidized by microsomes of rats and rabbits to N-(2-methoxyphenyl)hydroxylamine that is also formed as the reduction metabolite of o-nitroanisole. o-Anisidine is a promiscuity substrate of rat and rabbit cytochrome P450 (CYP) enzymes, because CYPs of 1A, 2B, 2E and 3A subfamilies oxidize o-anisidine. Using purified CYP enzymes, reconstituted with NADPH: CYP reductase, rabbit CYP2E1 was the most efficient enzyme oxidizing o-anisidine, but the ability of CYP1A1, 1A2, 2B2, 2B4 and 3A6 to participate in o-anisidine oxidation was also proved. Utilizing Western blotting and consecutive immunoquantification employing chicken polyclonal anti bodies raised against various CYPs, the effect of o-anisidine and o-nitroanisole on the expression of the CYP enzymes was investigated. The expression of CYP1A1/2 was found to be strongly induced in rats treated with either compounds. In addition, 7-ethoxyresorufin O-deethylation, a marker activity for both CYP1A1 and 1A2, was significantly increased in rats treated with either carcinogen. The data demonstrate the participation of different rat and rabbit CYP enzymes in o-anisidine oxidation and indicate that both experimental animal species might serve as suitable models to mimic the o-anisidine oxidation in human. Furthermore, by induction of rat hepatic and renal CYP1A1/2, both o-nitroanisole and o-anisidine influence their carcinogenic effects, modifying their detoxification and/or activation pathways.  相似文献   

9.
Li J  Liu Y  Zhang JW  Wei H  Yang L 《Comparative medicine》2006,56(4):286-290
We used various substrates and selective inhibitors of human cytochrome P450 (CYP) isozymes as probes to study the metabolism of liver microsomes from Chinese Bama miniature pigs. Nifedipine oxidation (NOD) and testosterone 6beta-hydroxylation (6beta-OHT) activities were similar between human liver microsomes and those from Bama miniature pigs. However, compared with those from humans, liver microsomes from Bama miniature pigs showed decreased phenacetin O-deethylation, coumarin 7-hydroxylation, and chlorzoxazone 6-hydroxylation activities, whereas dextromethorphan O-demethylation activity was increased. Ketoconazole selectively inhibited NOD and 6beta-OHT activities in microsomes from Bama pigs, and 8-methoxypsoralen and tranylcypromine inhibited coumarin 7-hydroxylation in pig microsomes. However, furafylline and quinidine failed to selectively inhibit phenacetin O-deethylation and dextromethorphan O-demethylation in microsomes from Bama pigs, whereas chlormethiazole more efficiently inhibited coumarin 7-hydroxylation activity than chlorzoxazone 6-hydroxylation in pig microsomes. Our results suggest that liver microsomes from Chinese Bama miniature pigs are similar to those from humans in regard to metabolism of nifedipine and testosterone (both are probe substrates for human CYP3A4). In addition, chemical inhibitors used as specific probes for human P450 enzymes did not always show the same selectivity toward corresponding enzyme activities in liver microsomes from Bama pigs. However, ketoconazole (a potent inhibitor of human CYP3A4) could be used as a selective inhibitor probe for the NOD and 6beta-OHT activities in liver microsomes from Chinese Bama miniature pigs.  相似文献   

10.
Medroxyprogesterone acetate (MPA) is a drug commonly used in endocrine therapy for advanced breast cancer, although it is known to cause thrombosis as a serious side effect. Recently, we found that cytochrome P450 3A4 (CYP3A4) mainly catalyzed the metabolism of MPA via CYP in human liver microsomes. However, the metabolic products of MPA in humans and rats have not been elucidated. In addition, it is not clear whether thrombosis could be induced by MPA itself or by its metabolites. In this study, we determined the overall metabolism of MPA as the disappearance of the parent drug from an incubation mixture, and identified the enzymes catalyzing the metabolism of MPA via CYP in rats. Moreover, the effects of CYP-modulators on MPA-induced hypercoagulation in vivo were examined. Intrinsic clearance of MPA in rat liver microsomes was increased by treatment with CYP3A-inducers. The intrinsic clearance of MPA in liver microsomes of rats treated with various CYP-inducers showed a significant correlation with CYP3A activity, but not CYP1A activity, CYP2B activity or CYP2C contents. Among the eight recombinant rat CYPs studied, CYP3A1, CYP3A2 and CYP2A2 catalyzed the metabolism of MPA. However, since CYP3A2 and CYP2A2 are male-specific isoforms, CYP3A1 appears to be mainly involved in the metabolism of MPA in liver microsomes of female rats. In an in vivo study, pretreatment of female rats with SKF525A, an inhibitor of CYPs including CYP3A1, significantly (p < 0.05) enhanced MPA-induced hypercoagulation, whereas pretreatment with phenobarbital, an inducer of CYPs including CYP3A1, reduced it. These findings suggest that CYP-catalyzed metabolism of MPA is mainly catalyzed by CYP3A1 and that MPA-induced hypercoagulation is predominantly caused by MPA itself in female rats.  相似文献   

11.
BackgroundStyrax, one of the most famous folk medicines, has been frequently used for the treatment of cardiovascular diseases and skin problems in Asia and Africa. It is unclear whether Styrax or Styrax-related herbal medicines may trigger clinically relevant herb-drug interactions.PurposeThis study was carried out to investigate the inhibitory effects of Styrax on human cytochrome P450 enzymes (CYPs) and to clarify whether this herb may modulate the pharmacokinetic behavior of the CYP-substrate drug warfarin when co-administered.Study DesignThe inhibitory effects of Styrax on CYPs were assayed in human liver microsomes (HLM), while the pharmacokinetic interactions between Styrax and warfarin were investigated in rats. The bioactive constituents in Styrax with strong CYP3A inhibitory activity were identified and their inhibitory mechanisms were carefully investigated.MethodsThe inhibitory effects of Styrax on human CYPs were assayed in vitro, while the pharmacokinetic interactions between Styrax and warfarin were studied in rats. Fingerprinting analysis of Styrax coupled with LC-TOF-MS/MS profiling and CYP inhibition assays were used to identify the constituents with strong CYP3A inhibitory activity. The inhibitory mechanism of oleanonic acid (the most potent CYP3A inhibitor occurring in Styrax) against CYP3A4 was investigated by a panel of inhibition kinetics analyses and in silico analysis.ResultsIn vitro assays demonstrated that Styrax extract strongly inhibited human CYP3A and moderately inhibited six other tested human CYPs, as well as potently inhibited warfarin 10-hydroxylation in liver microsomes from both humans and rats. In vivo assays demonstrated that compared with warfarin given individually in rats, Styrax (100 mg/kg) significantly prolonged the plasma half-life of warfarin by 2.3-fold and increased the AUC(0-inf) of warfarin by 2.7-fold when this herb was co-administrated with warfarin (2 mg/kg) in rats. Two LC fractions were found with strong CYP3A inhibitory activity and the major constituents in these fractions were characterized by LC-TOF-MS/MS. Five pentacyclic triterpenoid acids (including epibetulinic acid, betulinic acid, betulonic acid, oleanonic acid and maslinic acid) present in Styrax were potent CYP3A inhibitors, and oleanonic acid was a competitive inhibitor against CYP3A-mediated testosterone 6β-hydroxylation.ConclusionStyrax and the pentacyclic triterpenoid acids occurring in this herb strongly modulate the pharmacokinetic behavior of warfarin via inhibition of CYP3A.  相似文献   

12.
13.
Inhibitors of mammalian cytochrome P450 and P450 reductase were used to investigate the enzymes in flounder (Platichthys flesus) hepatic microsomes involved in the stimulation of NAD(P)H-dependent iron/EDTA-mediated 2-keto-4-methiolbutyric acid (KMBA) oxidation (hydroxyl radical production) by the redox cycling compounds menadione and nitrofurantoin. Inhibitors were first tested for their effects on flounder microsomal P450 and flavoprotein reductase activities. Ellipticine gave type II difference binding spectra (app. Ks 5.36 μM; ΔA max 0.16 nmol-1 P450) and markedly inhibited NADPH-cytochrome c reductase, NADPH-cytochrome P450 reductase, and monooxygenase (benzo[a]pyrene metabolism) activities. 3-aminopyridine adenine dinucleotide phosphate (AADP; competitive inhibitor of P450 reductase) inhibited NADPH-cytochrome c but not NADH-cytochrome c or NADH-ferricyanide reductase activities. Alkaline phosphatase (inhibitor of rabbit P450 reductase) stimulated NADPH-cytochrome c reductase activity seven fold but had less effect on NADH-reductase activities. AADP inhibited nitrofurantoin- and menadione-stimulated KMBA oxidation by 45 and 17%, respectively, indicating the involvement of P450 reductase at least in the former. In contrast, ellipticine had relatively little effect, possibly because, unlike cytochrome c, the smaller xenobiotic molecules can access the hydrophilic binding site of P450 reductase. Alkaline phosphatase stimulated NAD(P)H-dependent basal and xenobiotic-stimulated KMBA oxidation, showing general consistency with the results for reductase activities. Overall, the studies indicate both similarities (ellipticine, AADP) and differences (alkaline phosphatase) between the flounder and rat hepatic microsomal enzyme systems.  相似文献   

14.
Reduction of toxic metabolite formation of acetaminophen   总被引:5,自引:0,他引:5  
Acetaminophen is a widely used over-the-counter drug that causes severe hepatic damage upon overdose. Cytochrome P450-dependent oxidation of acetaminophen results in the formation of the toxic N-acetyl-p-benzoquinone-imine (NAPQI). Inhibition of cytochrome P450 enzymes responsible for NAPQI formation might be useful--besides N-acetylcysteine treatment--in managing acetaminophen overdose. Investigations were carried out using human liver microsomes to test whether selective inhibition of cytochrome P450s reduces NAPQI formation. Selective inhibition of CYP3A4 and CYP1A2 did not reduce, whereas the inhibition of CYP2A6 and CYP2E1 significantly decreased NAPQI formation. Furthermore, selective CYP2E1 inhibitors that are used in human therapy were tested for their inhibitory effect on NAPQI formation. 4-Methylpyrazole, disulfiram, and diethyl-dithiocarbamate were the most potent inhibitors with IC(50) values of 50 microM, 8 microM, and 33 microM, respectively. Although cimetidin is used in the therapy of acetaminophen overdose as an inhibitor of cytochrome P450, it is not able to reduce NAPQI formation.  相似文献   

15.
N-(2-Methoxyphenyl)hydroxylamine is a component in the human metabolism of two industrial and environmental pollutants and bladder carcinogens, viz. 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole), and it is responsible for their genotoxicity. Besides its capability to form three deoxyguanosine adducts in DNA, N-(2-methoxyphenyl)-hydroxylamine is also further metabolized by hepatic microsomal enzymes. To investigate its metabolism by human hepatic microsomes and to identify the major microsomal enzymes involved in this process are the aims of this study. N-(2-Methoxyphenyl)hydroxylamine is metabolized by human hepatic microsomes predominantly to o-anisidine, one of the parent carcinogens from which N-(2-methoxyphenyl)hydroxylamine is formed, while o-aminophenol and two N-(2-methoxyphenyl)hydroxylamine metabolites, whose exact structures have not been identified as yet, are minor products. Selective inhibitors of microsomal CYPs, NADPH:CYP reductase and NADH:cytochrome-b(5) reductase were used to characterize human liver microsomal enzymes reducing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. Based on these studies, we attribute the main activity for this metabolic step in human liver to CYP3A4, 2E1 and 2C (more than 90%). The enzymes CYP2D6 and 2A6 also partake in this N-(2-methoxyphenyl)hydroxylamine metabolism in human liver, but only to ~6%. Among the human recombinant CYP enzymes tested in this study, human CYP2E1, followed by CYP3A4, 1A2, 2B6 and 2D6, were the most efficient enzymes metabolizing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. The results found in this study indicate that genotoxicity of N-(2-methoxyphenyl)hydroxylamine is dictated by its spontaneous decomposition to nitrenium/carbenium ions generating DNA adducts, and by its susceptibility to metabolism by CYP enzymes.  相似文献   

16.
Aroclor 1254-induced rat liver homogenate supernatant (liver S-9) is routinely used as an exogenous metabolic activation system for the evaluation of mutagenicity of xenobiotics. The purpose of this study is to evaluate whether results obtained with Aroclor 1254-induced liver microsomes would be relevant to human. Aroclor 1254-induced and uninduced rat liver microsomes were compared to human liver microsomes in the metabolism of substrates which are known to be selectively metabolized by the major human cytochrome P450 (CYP) isoforms. The activities studied and the major CYP isoforms involved were as follows: phenacetin O-deethylation (CYP1A2); coumarin 7-hydroxylation, (CYP2A6); tolbutamide 4-hydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19); dextromethorphan O-demethylation (CYP2D6); chloroxazone 6-hydroxylation (CYP2E1); and testosterone 6beta-hydroxylation (CYP3A4). We found that both induced and uninduced rat liver microsomes were active in all the pathways studied with the exception of coumarin 7-hydroxylation. Coumarin 7-hydroxylation was observed with human liver microsomes but not the rat liver microsomes. Aroclor-1254 was found to induce all activities measured, with the exception of coumarin 7-hydroxylation. Dextromethorphan O-deethylation activity was higher in the rat liver microsomes than the human liver microsomes. Testosterone 6beta-hydroxylation activity was found to be similar between the human liver microsomes and the induced rat liver microsomes. Our results suggest that experimental data obtained with Aroclor 1254-induced rat liver microsomes may not always be relevant to human.  相似文献   

17.
Antibody against purified CYP2A1 recognizes two rat liver microsomal P450 enzymes, CYP2A1 and CYP2A2, that catalyze the 7 alpha- and 15 alpha-hydroxylation of testosterone, respectively. In human liver microsomes, this antibody recognizes a single protein, namely CYP2A6, which catalyzes the 7-hydroxylation of coumarin. To examine species differences in CYP2A function, liver microsomes from nine mammalian species (rat, mouse, hamster, rabbit, guinea pig, cat, dog, cynomolgus monkey, and human) were tested for their ability to catalyze the 7 alpha- and 15 alpha-hydroxylation of testosterone and the 7-hydroxylation of coumarin. Antibody against rat CYP2A1 recognized one or more proteins in liver microsomes from all mammalian species examined. However, liver microsomes from cat, dog, cynomolgus monkey, and human catalyzed negligible rates of testosterone 7 alpha- and/or 15 alpha-hydroxylation, whereas rat and cat liver microsomes catalyzed negligible rates of coumarin 7-hydroxylation. Formation of 7-hydroxycoumarin accounted for a different proportion of the coumarin metabolites formed by liver microsomes from each of the various species examined. 7-Hydroxycoumarin was the major metabolite (greater than 70%) in human and monkey, but only a minor metabolite (less than 1%) in rat. The 7-hydroxylation of coumarin by human liver microsomes was catalyzed by a single, high-affinity enzyme (Km 0.2-0.6 microM), which was markedly inhibited (greater than 95%) by antibody against rat CYP2A1. The rate of coumarin 7-hydroxylation varied approximately 17-fold among liver microsomes from 22 human subjects. This variation was highly correlated (r2 = 0.956) with interindividual differences in the levels of CYP2A6, as determined by immunoblotting. These results indicate that CYP2A6 is largely or entirely responsible for catalyzing the 7-hydroxylation of coumarin in human liver microsomes. Treatment of monkeys with phenobarbital or dexamethasone increased coumarin 7-hydroxylase activity, whereas treatment with beta-naphthoflavone caused a slight decrease. These results suggest that environmental factors can increase or decrease CYP2A expression in cynomolgus monkeys, which implies that environmental factors may be responsible for the large variation in CYP2A6 levels in humans, although genetic factors may also be important. In contrast to rats and mice, the expression of CYP2A enzymes in cynomolgus monkeys and humans was not sexually differentiated. Despite their structural similarity to coumarin, the anticoagulants dicumarol and warfarin do not appear to be substrates for CYP2A6. The overall rate of dicumarol metabolism varied approximately 5-fold among the human liver microsomal samples, but this variation correlated poorly (r2 = 0.126) with the variation observed in CYP2A6 levels and coumarin 7-hydroxylase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Administration of the antineoplastic doxorubicin to rodents causes depression of hepatic cytochrome P450 (CYP) dependent biotransformation, an effect that has been partially attributed to the ability of doxorubicin to stimulate microsomal lipid peroxidation. Since doxorubicin can be bioactivated by the CYP/NADPH-CYP reductase system to products that bind covalently to microsomal protein, we hypothesized that doxorubicin functions as a mechanism-based inactivator of hepatic microsomal CYPs and (or) NADPH-CYP reductase under conditions in which doxorubicin-stimulated NADPH-dependent lipid peroxidation is minimized. In vitro studies were conducted with hepatic microsomes isolated from untreated and phenobarbital-treated male rats. Unlike the positive control carbon tetrachloride, doxorubicin (10 microM) did not stimulate NADPH-dependent lipid peroxidation in microsomal incubations containing EDTA (1.5 mM). Doxorubicin did not cause NADPH-dependent loss of microsomal CYP, heme, or steroid hydroxylation activities selective for CYP2A, CYP2B, CYP2C11, and CYP3A. The positive control 1-aminobenzotriazole caused marked NADPH-dependent decreases in all of these parameters. Neither doxorubicin nor 1-aminobenzotriazole caused NADPH-dependent loss of NADPH-CYP reductase activity, and neither compound altered the immunoreactive protein levels of CYP2B, CYP2C11, CYP3A, and NADPH-CYP reductase. These results indicate that a pharmacologically relevant concentration of doxorubicin does not cause direct mechanism-based inactivation of hepatic microsomal CYPs or NADPH-CYP reductase, suggesting that the ability of doxorubicin to depress hepatic CYP-mediated biotransformation in vivo is due to lipid peroxidation mediated heme destruction, altered heme metabolism, and (or) decreased expression of selected CYP enzymes.  相似文献   

19.
Progesterone 21-hydroxylation in hepatic microsomes from adult male sheep is a quantitatively important metabolic pathway (0.27 +/- 0.08 nmol deoxycorticosterone formed/min/mg protein; representing 13-25% of total progesterone conversion). This study was undertaken to determine whether the ovine hepatic progesterone 21-hydroxylase may be another member of the P450 2C subfamily, normally associated with progesterone 21-hydroxylation in rodent liver. An IgG preparation raised in rabbits against purified rat liver microsomal cytochrome P450 2C6 was found to recognize a single antigen (MW 52 kDa) in sheep liver microsomes. This protein was present in sheep liver (apparent concentration 16 +/- 4 ng/micrograms microsomal protein) representing approx. 28% of the corresponding content of P450 2C6 in untreated rat liver. Preincubation of the anti-P450 2C6 IgG with hepatic microsomes was found to decrease the rate of progesterone 21-hydroxylation to 50-80% of uninhibited control. Taken together, from these findings it is apparent that a P450 enzyme, most likely from the 2C subfamily, catalyses deoxycorticosterone formation from progesterone in sheep liver and that this is a quantitatively important pathway of progesterone hydroxylation in these fractions.  相似文献   

20.
Piver B  Berthou F  Dreano Y  Lucas D 《Life sciences》2003,73(9):1199-1213
epsilon-Viniferin, a dimer of resveratrol, was isolated in wine at concentration between 0.5 and 5 microM. As resveratrol and polyphenols from red wine were reported to inhibit cytochrome P450 (CYP) activities, this led us to investigate the inhibitory effects of epsilon-viniferin on human CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2E1, CYP3A4 and CYP4A activities. These effects were compared to those of resveratrol and non volatiles compounds from red wine or various Cognac(R) beverages (enriched with oak-polyphenols). Assays were carried out on human liver microsomes and heterologously expressed CYPs. Ethoxyresorufin, coumarin, benzoxyresorufin, chlorzoxazone, testosterone and lauric acid were used as selective substrates for CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2E1, CYP3A4 and CYP4A, respectively. epsilon-viniferin displayed a more potent inhibitory effect than resveratrol for all the CYP activities tested (Ki 0.5 to 20 microM vs. 10 to 100 microM, respectively). This effect was not due to an inhibition of the NADPH reductase. A particularly potent inhibitory effect was shown for CYP1A1, CYP1B1 and CYP2B6 which are involved in bioactivation of numerous carcinogens. epsilon-viniferin was not a mechanism-based inhibitor of human CYPs. It displayed, like resveratrol, mixed-type inhibitions for all the CYP tested, except for CYP2E1 (non-competitive). Comparison of the inhibitory effects exerted on CYP activities by epsilon-viniferin, resveratrol and non volatile components from red wine or various Cognac beverages showed that neither resveratrol, nor epsilon-viniferin is the main CYP inhibitor present in red wine solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号