首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The function of ascorbate oxidase in tobacco   总被引:28,自引:0,他引:28  
  相似文献   

2.
The apoplast has crucial functions in plant biology. It comprises all the compartments beyond the plasmalemma, including the cell wall. As the reservoir of information on the biotic and abiotic environment surrounding the cell and a major conduit of information between cells, the apoplast has functions in stress perception and the subsequent appropriate control of growth and defence. The oxidative burst phenomenon, caused by environmental challenges and pathogen attack in particular, oxidises the apoplast. Ascorbic acid (AA), the major and probably the only antioxidant buffer in the apoplast, becomes oxidised in these conditions. The apoplastic enzyme ascorbate oxidase (AO) also regulates the reduction/oxidation (redox) state of the apoplastic ascorbate pool. We propose that a key function of the oxidative burst and of AO is to modify the apoplastic redox state in such a way as to modify receptor activity and signal transduction to regulate defence and growth.  相似文献   

3.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

4.
Leaves of two barley (Hordeum vulgare L.) isolines, Alg-R, which has the dominant Mla1 allele conferring hypersensitive race-specific resistance to avirulent races of Blumeria graminis, and Alg-S, which has the recessive mla1 allele for susceptibility to attack, were inoculated with B. graminis f. sp. hordei. Total leaf and apoplastic antioxidants were measured 24 h after inoculation when maximum numbers of attacked cells showed hypersensitive death in Alg-R. Cytoplasmic contamination of the apoplastic extracts, judged by the marker enzyme glucose-6-phosphate dehydrogenase, was very low (less than 2%) even in inoculated plants. Dehydroascorbate, glutathione, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were present in the apoplast. Inoculation had no effect on the total foliar ascorbate pool size or the redox state. The glutathione content of Alg-S leaves and apoplast decreased, whereas that of Alg-R leaves and apoplast increased after pathogen attack, but the redox state was unchanged in both cases. Large increases in foliar catalase activity were observed in Alg-S but not in Alg-R leaves. Pathogen-induced increases in the apoplastic antioxidant enzyme activities were observed. We conclude that sustained oxidation does not occur and that differential strategies of antioxidant response in Alg-S and Alg-R may contribute to pathogen sensitivity.  相似文献   

5.
Three oat (Avena sativa L.) lines which show differential responses to attack by the biotrophic fungal pathogen Blumeria graminis DC f. sp. avenae Marchal, which causes powdery mildew, were studied: Maldwyn shows the strongest resistance in adult plants; Selma shows greater susceptibility; while a Selma × Maldwyn hybrid, OM1387, has a similar degree of resistance to Maldwyn. Host responses to pathogen attack were complete 48 h after inoculation but largely accomplished within the first 24 h, the point when material was taken for enzyme and metabolic assays. In Maldwyn and OM1387 about 80% of attacked cells showed localized autofluorescent host-cell responses but this fell to less than 20% in Selma. A cytoplasmic marker enzyme, glucose 6-phosphate dehydrogenase, was used to determine contamination of the apoplastic extracts by cellular components. After correction for cytoplasmic contamination, up to 4% of the total foliar activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase activities were detected in the apoplast. The apoplast contained about 2% of the total foliar glutathione pool and dehydroascorbate, but not ascorbate, at values amounting to 10% of the total foliar ascorbate plus dehydroascorbate pool. Twenty-four hours after inoculation the foliar or apoplastic ascorbate pools were similar in inoculated and control leaves. Foliar catalase activity increased in both susceptible and resistant responses. Resistance correlated with increased total foliar glutathione, an increase in the ratio of reduced to oxidized glutathione and with decreased total activities of foliar ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase. Received: 17 April 1998 / Accepted: 28 August 1998  相似文献   

6.
Ascorbate levels and redox state, as well as the activities of the ascorbate related enzymes, have been analysed both in the apoplastic and symplastic spaces of etiolated pea (Pisum sativum L.) shoots during cellular differentiation. The ascorbate pool and the ascorbate oxidizing enzymes, namely ascorbate oxidase and ascorbate peroxidase, were present in both pea apoplast and symplast, whereas ascorbate free radical reductase and dehydroascorbate reductase were only present in the symplastic fractions. During cell differentiation the ascorbate redox enzymes changed in different ways, since a decrease in ascorbate levels, ascorbate peroxidase and ascorbate free radical reductase occurred from meristematic to differentiated cells, whereas ascorbate oxidase and dehydroascorbate reductase increased. The activity of secretory peroxidases has also been followed in the apoplast of meristematic and differentiating cells. These peroxidases increased their activity during differentiation. This behaviour was accompanied by changes in their isoenzymatic profiles. The analysis of the kinetic characteristics of the different peroxidases present in the apoplast suggests that the presence of ascorbate and ascorbate peroxidase in the cell wall could play a critical role in regulating the wall stiffening process during cell differentiation by interfering with the activity of secretory peroxidases.  相似文献   

7.
Luwe M  Takahama U  Heber U 《Plant physiology》1993,101(3):969-976
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h.  相似文献   

8.
Transport and action of ascorbate at the plant plasma membrane   总被引:11,自引:0,他引:11  
The plasmalemma is both a bridge and a barrier between the cytoplasm and the outside world. It is a dynamic interface that perceives and transmits information concerning changes in the environment to the nucleus to modify gene expression. In plants, ascorbate is an essential part of this dialogue. The concentration and ratio of reduced to oxidized ascorbate in the apoplast, for example, possibly modulates cell division and growth. The leaf apoplast contains millimolar amounts of ascorbate that protect the plasmalemma against oxidative damage. The apoplastic ascorbate-dehydroascorbate redox couple is linked to the cytoplasmic ascorbate-dehydroascorbate redox couple by specific transporters for either or both metabolites. Although evidence about the mechanisms driving ascorbate or dehydroascorbate transport remains inconclusive, these carrier proteins potentially regulate the level and redox status of ascorbate in the apoplast. The redox coupling between compartments facilitated by these transport systems allows coordinated control of key physiological responses to environmental cues.  相似文献   

9.
10.
Transgenic tobacco plants expressing the ascorbate oxidase (AAO) gene in sense and antisense orientations, and an Arabidopsis mutant in which the T-DNA was inserted into a putative AAO gene, were used to examine the potential roles of AAO for salt-stress tolerance in plants. AAO activities in the transgenic tobacco plants expressing the gene in sense and antisense orientations were, respectively, about 16-fold and 0.2-fold of those in the wild type. Under normal growth conditions, no significant differences in phenotypes were observed, except for a delay in flowering time in the antisense plants. However, at high salinity, the percentage germination, photosynthetic activity, and seed yields were higher in antisense plants, with progressively lower levels in the wild type and the sense plants. The redox state of apoplastic ascorbate in sense plants was very low even under normal growth conditions. Upon salt stress, the redox state of symplastic and apoplastic ascorbate decreased among the three types of plants, but was lowest in the sense plants. The hydrogen peroxide contents in the symplastic and apoplastic spaces were higher in sense plants, progressively lower in the wild type, followed by the antisense plants. The Arabidopsis T-DNA inserted mutant exhibited very low ascorbate oxidase activity, and its phenotype was similar to that of antisense tobacco plants. These results suggest that the suppressed expression of apoplastic AAO under salt-stress conditions leads to a relatively low level of hydrogen peroxide accumulation and a high redox state of symplastic and apoplastic ascorbate which, in turn, permits a higher seed yield.  相似文献   

11.
Plant homeobox genes play an important role in plant development, including embryogenesis. Recently, the function of a class I homeobox of knox 3 gene, HBK3, has been characterized in the conifer Picea abies (L.) Karst (Norway spruce) [8]. During somatic embryogenesis, expression of HBK3 is required for the proper differentiation of proembryogenic masses into somatic embryos. This transition, fundamental for the overall embryogenic process, is accelerated in sense lines over-expressing HBK3 (HBK3-S) but precluded in antisense lines (HBK3-AS) where the expression of this gene is experimentally reduced. Altered HBK3 expression resulted in major changes of ascorbate and glutathione metabolism. During the initial phases of embryogeny the level of reduced GSH was higher in the HBK3-S lines compared to their control counterpart. An opposite profile was observed for the HBK3-AS lines where the glutathione redox state, i.e. GSH/GSH + GSSG, switched towards its oxidized form, i.e. GSSG. Very similar metabolic fluctuations were also measured for ascorbate, especially during the transition of proembryogenic masses into somatic embryos (7 days into hormone-free medium). At this stage the level of reduced ascorbate (ASC) in the HBK3-AS lines was about 75% lower compare to the untransformed line causing a switch of the ascorbate redox state, i.e. ASC/ASC + DHA + AFR, towards its oxidized forms, i.e. DHA + AFR. Changes in activities of several ascorbate and glutathione redox enzymes, including dehydroascorbate reductase (EC 1.8.5.1), ascorbate free radical reductase (EC 1.6.5.4) and glutathione reductase (GR; EC 1.6.4.2) were responsible for these metabolic differences. Data presented here suggest that HBK3 expression might regulate somatic embryo yield through alterations in glutathione and ascorbate metabolism, which have been previously implicated in controlling embryo development and maturation both in vivo and in vitro.  相似文献   

12.
Ascorbate oxidase (AO) is a cell wall-localized enzyme that uses oxygen to catalyse the oxidation of ascorbate (AA) to the unstable radical monodehydroascorbate (MDHA) which rapidly disproportionates to yield dehydroascorbate (DHA) and AA, and thus contributes to the regulation of the AA redox state. Here, it is reported that in vivo lowering of the apoplast AA redox state, through increased AO expression in transgenic tobacco (Nicotiana tabacum L. cv. Xanthi), exerts no effects on the expression levels of genes involved in AA recycling under normal growth conditions, but plants display enhanced sensitivity to various oxidative stress-promoting agents. RNA blot analyses suggest that this response correlates with a general suppression of the plant's antioxidative metabolism as demonstrated by lower expression levels of AA recycling genes. Furthermore, studies using Botrytis cinerea reveal that transgenic plants exhibit increased sensitivity to fungal infection, although the response is not accompanied by a similar suppression of AA recycling gene expression. Our current findings, combined with previous studies which showed the contribution of AO in the regulation of AA redox state, suggest that the reduction in the AA redox state in the leaf apoplast of these transgenic plants results in shifts in their capacity to withstand oxidative stress imposed by agents imposing oxidative stress.  相似文献   

13.
Transgenic tobacco ( Nicotiana tabacum L. cv. Xanthi) plants expressing cucumber ascorbate oxidase (EC.1.10.3.3) were used to examine the role of extracellular ascorbic acid in mediating tolerance to the ubiquitous air pollutant, ozone (O(3)). Three homozygous transgenic lines, chosen on the basis of a preliminary screen of AO activity in the leaves of 29 lines, revealed up to a 380-fold increase in AO activity, with expression predominantly associated with leaf cell walls. Over-expression of AO resulted in no change in the total ascorbate content recovered in apoplast washing fluid, but the redox state of ascorbate was reduced from 30% in wild-type leaves to below the threshold for detection in transgenic plants. Levels of ascorbic acid and glutathione in the symplast were not affected by AO over-expression, but the redox state of ascorbate was reduced, while that of glutathione was increased. AO over-expressing plants exposed to 100 nmol mol(-1) ozone for 7 h day(-1) exhibited a substantial increase in foliar injury, and a greater pollutant-induced reduction in both the light-saturated rate of CO(2) assimilation and the maximum in vivo rate of ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation, compared with wild-type plants. Transgenic plants also exhibited a greater decline in CO(2) assimilation rate when exposed to a brief ozone episode (300 nmol mol(-1) for 8 h). Stomatal conductance, hence O(3) uptake, was unaffected by AO over-expression. Our findings illustrate the important role played by ascorbate redox state and sub-cellular compartmentation in mediating the tolerance of plants to ozone-induced oxidative stress.  相似文献   

14.
The plant cell apoplast is the compartment beyond the cell plasmalemma, including the cell wall and intercellular space. Many environmental elements can trigger reactive oxygen species (ROS) burst at the plasma membrane which then alters the redox state of the apoplast. Recently, h-type thioredoxin (Trx), OsTRXh1, was identified to be involved in apoplastic redox state regulation in rice. OsTRXh1 is conserved redox-active Trx and can be secreted into the extracellular regions. Through transgenic rice plant, we found that OsTRXh1 regulated ROS accumulation in apoplast and influenced plant development and stress responses. This provides new insights into apoplastic redox state regulation pathway and expands our understanding of h-type Trxs function.  相似文献   

15.
Concentrations of the antioxidants ascorbate and glutathione were measured in the apoplast of beech (Fagus sylvatica L.) leaves and in leaf tissue. During early leaf development, reduced ascorbate (ASC) was almost absent from the apoplast, whereas levels of oxidized ascorbate (DHA) were high. Less than 20% of the apoplastic ascorbate was reduced. ASC increased towards midsummer, reaching top levels of about 4molm?3 apoplast volume in July and August. Reduction increased to 60–75% in summer. Neither DHA reductase nor glutathione was detected in the apoplast of beech leaves. Levels of apoplastic ascorbate were compared with ambient concentrations of ozone in air. Statistical analysis indicated a significant interrelation between atmospheric ozone and apoplastic ascorbate. In midsummer of 1993, contents of DHA were increased in the apoplast when ozone concentrations were high. Apoplastic ASC was also positively correlated with ambient ozone concentrations, but with a delay of 3 to 7d. In leaf tissue, levels of ascorbate were between 17 and 21 μmolg?1 FW in summer. Except for late April and November, more than 95% of the intracellular ascorbate was reduced. Glutathione contents were lowest during the summer. Oxidation was increased in spring and autumn, when apoplastic ascorbate was also largely oxidized. Usually, 80 to 90% of the glutathione was reduced. During the summer, intracellular concentrations of oxidized glutathione (GSSG) were increased, with a delay of about 1d following periods of high ambient ozone concentrations. The transitory accumulation of GSSG may be explained by slow enzymatic regeneration of glutathione.  相似文献   

16.
The regulation of carbon allocation between photosynthetic source leaves and sink tissues in response to stress is an important factor controlling plant yield. Ascorbate oxidase is an apoplastic enzyme, which controls the redox state of the apoplastic ascorbate pool. RNA interference was used to decrease ascorbate oxidase activity in tomato (Solanum lycopersicum L.). Fruit yield was increased in these lines under three conditions where assimilate became limiting for wild‐type plants: when fruit trusses were left unpruned, when leaves were removed or when water supply was limited. Several alterations in the transgenic lines could contribute to the improved yield and favour transport of assimilate from leaves to fruits in the ascorbate oxidase lines. Ascorbate oxidase plants showed increases in stomatal conductance and leaf and fruit sugar content, as well as an altered apoplastic hexose : sucrose ratio. Modifications in gene expression, enzyme activity and the fruit metabolome were coherent with the notion of the ascorbate oxidase RNAi lines showing altered sink strength. Ascorbate oxidase may therefore be a target for strategies aimed at improving water productivity in crop species.  相似文献   

17.
To investigate the possible mechanisms of glutathione reductase (GR) in protecting against oxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with 30–70% decreased GR activity by using a gene encoding tobacco chloroplastic GR for the RNAi construct. We investigated the responses of wild type and transgenic plants to oxidative stress induced by application of methyl viologen in vivo. Analyses of CO2 assimilation, maximal efficiency of photosystem II photochemistry, leaf bleaching, and oxidative damage to lipids demonstrated that transgenic plants exhibited enhanced sensitivity to oxidative stress. Under oxidative stress, there was a greater decrease in reduced to oxidized glutathione ratio but a greater increase in reduced glutathione in transgenic plants than in wild type plants. In addition, transgenic plants showed a greater decrease in reduced ascorbate and reduced to oxidized ascorbate ratio than wild type plants. However, there were neither differences in the levels of NADP and NADPH and in the total foliar activities of monodehydroascorbate reductase and dehydroascorbate reductase between wild type and transgenic plant. MV treatment induced an increase in the activities of GR, ascorbate peroxidase, superoxide dismutase, and catalase. Furthermore, accumulation of H2O2 in chloroplasts was observed in transgenic plants but not in wild type plants. Our results suggest that capacity for regeneration of glutathione by GR plays an important role in protecting against oxidative stress by maintaining ascorbate pool and ascorbate redox state.  相似文献   

18.
We studied the response of glutathione‐ and ascorbate‐related antioxidant systems of the two tomato cultivars to Pseudomonas syringae pv. tomato infection. In the inoculated susceptible A 100 cultivar a substantial decrease in reduced glutathione (GSH) content, oxidised glutathione accumulation and GSH redox ratio decline as well as glutathione peroxidase activity increase were found. The enhanced glutathione reductase activity was insufficient to keep the glutathione pool reduced. A transiently increased dehydroascorbic acid (DHA) content and ascorbic acid (AA) redox ratio decrease together with ascorbate peroxidase activity suppression were observed. Adversely to the progressive reduction in GSH pool size, AA content tended to increase but the changes were more modest than those of GSH. By contrast, in interaction with the resistant Ontario cultivar the glutathione pool homeostasis was maintained throughout P. syringae attack and no significant effect on the ascorbate pool was observed. Moreover, in the resistant interaction there was a significantly higher constitutive and pathogen‐induced glutathione‐S‐transferase (GST) activity. The relationship between GST activity and DHA content found in this study indicates that this enzyme could also act as dehydroascorbate reductase. These results reflect the differential involvement of GSH and AA in tomato‐P. syringae interaction and, in favour of the former, they clearly indicate the role of GSH and GSH‐utilizing enzymes in resistance to P. syringae. The maintenance of glutathione pool homeostasis and GST induction appear to contribute to tissue inaccessibility to bacterial attack.  相似文献   

19.
The effect of magnesium (Mg2+)‐deficiency on the antioxidant responses of Capsicum annuum was investigated over a 60‐day period under controlled conditions. This Mg2+‐deficiency aimed to mimic the physiological conditions that plants may experience in the field. At each harvest time, five different leaf‐levels (L2 to L6) were distinguished. L2 and L6 correspond to the second and sixth youngest leaves, respectively. The following parameters were determined: Mg2+, chlorophyll and protein contents, total and redox pools of ascorbate and glutathione, and the activities of superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Under Mg2+‐deficiency, leaf Mg2+ contents decreased over time in all leaf‐levels except in the second youngest leaves (L2), where they remained constant at about 0.25% (dry weight basis). Mg2+‐deficiency led to an increase in the antioxidant enzyme activities concomitant with an increase in the ascorbate and glutathione pools, whereas total chlorophyll and soluble protein contents decreased. The L2 leaves showed an increase in glutathione reductase activity and in the ascorbate redox state whereas no difference was observed for the other parameters. Superoxide dismutase activities increased in L5 leaves from day 15 and, afterwards, in L3 to L5 leaves, irrespective of Mg2+ content. At day 30, glutathione reductase activities increased in L2 to L4 leaves and dehydroascorbate reductase activities in L4 leaves. At day 45, we observed an increase in the ascorbate peroxidase activities in L3 to L5 leaves. At the same time, ascorbate and glutathione pools increased in intermediate leaves, whereas chlorophyll content decreased in L3 and L4 leaves, and protein content decreased in L4 leaves. Results suggest that pepper leaves enhance their defence capacities against oxidative stress by increasing ascorbate more than glutathione synthesis. However, cells showed higher regeneration rates for the glutathione redox state than for the ascorbate redox state.  相似文献   

20.
Exogenous-applied 24-epibrassinolide (EBR) increased the seedling growth of radish (Raphanus sativus L.) in terms of seedling length, fresh weight and dry weight both in zinc (Zn2+)-stressed and unstressed conditions. Moreover, EBR lowered the Zn2+ uptake and bioaccumulation. Increased oxidation of ascorbate (AsA) and glutathione (GSH) pools to dehydroascorbate and glutathione disulfide respectively was observed in Zn2+-stressed seedlings, a clear indication of oxidative stress. However, exogenous application of EBR to stressed seedlings inhibited the oxidation of ascorbate and glutathione, maintaining redox molecules in reduced form. Under Zn2+ stress, enzymatic activities of ascorbate–glutathione cycle such as ascorbate peroxidase, monodehydroascorbate reductase increased but the dehydroascorbate reductase, glutathione reductase decreased. Zn2+ stress induced the gamma-glutamylcysteine synthetase, and glutathione-s-transferase activities in radish seedlings were further enhanced with EBR application. Zn2+ toxicity decreased the thiol content but, EBR supplementation resulted in restoration of thiol pool. The results of present study clearly demonstrated that external application of EBR modulates the AsA and GSH redox status to combat the oxidative stress of Zn2+ in seedlings via the AsA–GSH cycle and glutathione metabolism as an antioxidant defense system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号