首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The DNA repair enzyme MutY plays an important role in the prevention of DNA mutations resulting from the presence of the oxidatively damaged lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG). MutY is a base excision repair (BER) glycosylase that removes misincorporated adenine residues from OG:A mispairs, as well as G:A and C:A mispairs. We have previously shown that, under conditions of low MutY concentrations relative to an OG:A or G:A substrate, the time course of the adenine glycosylase reaction exhibits biphasic kinetic behavior due to slow release of the DNA product by MutY. The dissociation of MutY from its product may require the recruitment of other proteins from the BER pathway, such as an apurinic-apyrimidinic (AP) endonuclease, as turnover-enhancing cofactors. The effect of the AP endonucleases endonuclease IV (Endo IV), exonuclease III (Exo III), and Ape1 on the reaction kinetics of MutY with G:A- and OG:A-containing substrates was investigated. The effect of the glycosylases UDG and MutM and the DNA polymerase pol I was also characterized. Endo IV and Exo III, unlike Ape1, UDG, and pol I, greatly enhance the rate of product release with a G:A substrate, whereas the rate constant for the adenine removal step remains unchanged. Furthermore, the turnover rate with a truncated form of MutY, Stop 225, which lacks 125 amino acids of the C terminus, is unaffected by the presence of Endo IV or Exo III. These results constitute the first evidence of an interaction between the MutY-product DNA complex and Endo IV or Exo III. Furthermore, they suggest a role for the C-terminal domain of MutY in mediating this interaction.  相似文献   

2.
The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2"-deoxyguanosine (OG):A and G:A mispairs in DNA. Our approach toward understanding recognition and processing of DNA damage by MutY has been to use substrate analogs that retain the recognition properties of the substrate mispair but are resistant to the glycosylase activity of MutY. This approach provides stable MutY-DNA complexes that are amenable to structural and biochemical characterization. In this work, the interaction of MutY with the 2"-deoxyadenosine analogs 2"-deoxy-2"-fluoroadenosine (FA), 2"-deoxyaristeromycin (R) and 2"-deoxyformycin A (F) was investigated. MutY binds to duplexes containing the FA, R or F analogs opposite G and OG within DNA with high affinity; however, no enzymatic processing of these duplexes is observed. The specific nature of the interaction of MutY with an OG:FA duplex was demonstrated by MPE-Fe(II) hydroxyl radical footprinting experiments which showed a nine base pair region of protection by MutY surrounding the mispair. DMS footprinting experiments with an OG:A duplex revealed that a specific G residue located on the OG-containing strand was protected from DMS in the presence of MutY. In contrast, a G residue flanking the substrate analogs R, F or FA was observed to be hypersensitive to DMS in the presence of MutY. These results suggest a major conformational change in the DNA helix upon binding of MutY that exposes the substrate analog-containing strand. This finding is consistent with a nucleotide flipping mechanism for damage recognition by MutY. This work demonstrates that duplex substrates for MutY containing FA, R or F instead of A are excellent substrate mimics that may be used to provide insight into the recognition by MutY of damaged and mismatched base pairs within DNA.  相似文献   

3.
DNA damage recognition and repair by the murine MutY homologue   总被引:1,自引:0,他引:1  
Pope MA  David SS 《DNA Repair》2005,4(1):91-102
E. coli MutY excises adenine from duplex DNA when it is mispaired with the mutagenic oxidative lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG). While E. coli MutY has been extensively studied, a detailed kinetic analysis of a mammalian MutY homologue has been inhibited by poor overexpression in bacterial hosts. This current work is the first detailed study of substrate recognition and repair of mismatched DNA by a mammalian adenine glycosylase, the murine MutY homologue (mMYH). Similar to E. coli MutY, the processing of OG:A substrates by mMYH is biphasic, indicating that product release is rate-limiting. Surprisingly, the intrinsic rates of adenine removal from both OG:A and G:A substrates by mMYH are diminished ( approximately 10-fold) compared to E. coli MutY. However, similar to E. coli MutY, the rate of adenine removal is approximately nine-fold faster with an OG:A- than a G:A-containing substrate. Interestingly, the rate of removal of 2-hydroxyadenine mispaired with OG or G in duplex DNA by mMYH was similar to the rate of adenine removal from the analogous context. In contrast, 2-hydroxyadenine removal by E. coli MutY was significantly reduced compared to adenine removal opposite both OG and G. Furthermore, dissociation constant measurements with duplexes containing noncleavable 2'-deoxyadenosine analogues indicate that mMYH is less sensitive to the structure of the base mispaired with OG or G than MutY. Though in many respects the catalytic behavior of mMYH is similar to E. coli MutY, the subtle differences may translate into differences in their in vivo functions.  相似文献   

4.
Williams SD  David SS 《Biochemistry》2000,39(33):10098-10109
The E. coli adenine glycosylase MutY is a member of the base excision repair (BER) superfamily of DNA repair enzymes. MutY plays an important role in preventing mutations caused by 7, 8-dihydro-8-oxo-2'-deoxyguanosine (OG) by removing adenine from OG:A base pairs. Some enzymes of the BER superfamily catalyze a strand scission even concomitant with base removal. These bifunctional glycosylase/AP lyases bear a conserved lysine group in the active site region, which is believed to be the species performing the initial nucleophilic attack at C1' in the catalysis of base removal. Monofunctional glycosylases such as MutY are thought to perform this C1' nucleophilic displacement by a base-activated water molecule, and, indeed, the conservation of amine functionality positioning has not been observed in protein sequence alignments. Bifunctional glycosylase/AP lyase activity was successfully engineered into MutY by replacing serine 120 with lysine. MutY S120K is capable of catalyzing DNA strand scission at a rate equivalent to that of adenine excision for both G:A and OG:A mispair substrates. The extent of DNA backbone cleavage is independent of treating reaction aliquots with 0.1 M NaOH. Importantly, the replacement of the serine with lysine results in a catalytic rate that is compromised by at least 20-fold. The reduced efficiency in the glycosylase activity is also reflected in a reduced ability of S120K MutY to prevent DNA mutations in vivo. These results illustrate that the mechanisms of action of the two classes of these enzymes are quite similar, such that a single amino acid change is sufficient, in the case of MutY, to convert a monofunctional glycosylase to a bifunctional glycosylase/AP lyase.  相似文献   

5.
Francis AW  David SS 《Biochemistry》2003,42(3):801-810
MutY and formamidopyrimidine-DNA-glycosylase (Fpg) are base-excision repair (BER) enzymes involved in the 8-oxoguanine repair pathway in Escherichia coli. An impressive feature of these enzymes is the ability to locate 8-oxoguanine lesions among a large excess of undamaged DNA. To provide insight into the mechanism of target location, the ability of these enzyme to utilize a one-dimensional processive search (DNA sliding) or distributive (random diffusion-mediated) mechanism was investigated. Each enzyme was incubated with double-stranded concatemeric polynucleotides containing a site-specific target site at 25-nucleotide (nt) intervals. The products of each reaction were analyzed after further treatment and denaturation. A rapid accumulation of predominantly 25-nt fragments would indicate the utilization of a processive mechanism, whereas oligomeric multiples of 25-nt fragments would form if a distributive mechanism were used. Both Fpg and MutY were found to function processively on concatemers containing 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG).C and G.A mispairs, respectively. An increase in sodium chloride concentration results in the modulation from a processive to distributive mechanism for both enzymes. Interestingly, processive behavior was not observed in the reaction of MutY with concatemers containing OG.A mispairs. A truncated form of MutY (Stop 225) containing only the N-terminal domain was found to behave in a manner consistent with a processive mechanism with both OG.A- and G.A-containing substrates. This suggests that the C-terminal domain of MutY plays an important role in the mechanism by which the enzyme detects OG.A base pairs in DNA.  相似文献   

6.
The oxidation product of 2'-deoxyguanosine, 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG), produces G:C to T:A transversion mutations. The Escherichia coli base excision repair glycosylase MutY plays an important role in preventing OG-associated mutations by removing adenines misincorporated opposite OG lesions during DNA replication. Recently, biallelic mutations in the human MutY homologue (hMYH) have been correlated with the development of colorectal cancer. The two most common mutations correspond to two single amino acid substitutions in the hMYH protein: Y165C and G382D [Al-Tassan, N., et al. (2002) Nat. Genet. 30, 227-232]. Previously, our laboratory analyzed the adenine glycosylase activity of the homologous variant E. coli MutY enzymes, Y82C and G253D [Chmiel, N. H., et al. (2003) J. Mol. Biol. 327, 431-443]. This work demonstrated that both variants have a reduced adenine glycosylase activity and affinity for substrate analogues compared to wild-type MutY. Recent structural work on Bacillus stearothermophilus MutY bound to an OG:A mismatch-containing duplex indicates that both residues aid in recognition of OG [Fromme, J. C., et al. (2004) Nature 427, 652-656]. To determine the extent with which Tyr 82 and Gly 253 contribute to catalysis of adenine removal by E. coli MutY, we made a series of additional modifications in these residues, namely, Y82F, Y82L, and G253A. When the substrate analogue 2'-deoxy-2'-fluoroadenosine (FA) in duplex paired with G or OG is used, both Y82F and G253A showed reduced binding affinity, and G253A was unable to discriminate between OG and G when paired with FA. Additionally, compromised glycosylase activity of Y82F, Y82C, and G253A MutY was observed using the nonoptimal G:A substrate, or at low reaction temperatures. Interestingly, adenine removal from an OG:A-containing DNA substrate by Y82C MutY was also shown to be extremely sensitive to the NaCl concentration. The most surprising result was the remarkably similar activity of Y82L MutY to the WT enzyme under all conditions examined, indicating that a leucine residue may effectively replace tyrosine for intercalation at the OG:A mismatch. The results contained herein provide further insight regarding the intricate roles of Tyr 82 and Gly 253 in the OG recognition and adenine excision functions of MutY.  相似文献   

7.
Pope MA  Chmiel NH  David SS 《DNA Repair》2005,4(3):315-325
Escherichia coli MutY and its eukaryotic homologues play an important role in preventing mutations by removing adenine from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A mismatches. It has recently been demonstrated that inherited biallelic mutations in the genes encoding the human homologue of MutY (hMYH) are correlated with a genetic predisposition for multiple colorectal adenomas and carcinomas. The two most common hMYH variants found in patients with colorectal cancer are Y165C and G382D. In this study, we examined the equivalent variants in the murine MutY homologue (mMYH), Y150C and G365D. The Y150C mMYH enzyme showed a large decrease in the rate of adenine removal from both OG:A- and G:A-containing substrates, while G365D mMYH showed a decrease in the ability to catalyze adenine removal only with a G:A-containing substrate. Both mMYH variants exhibit a significantly decreased affinity for duplexes containing noncleavable 2'-deoxyadenosine analogues. In addition, the human apurinic/apyrimidinic endonuclease (Ape1) stimulated product formation by wild-type and G365D mMYH with an OG:A substrate under conditions of multiple-turnover ([E]<[S]). In contrast, the presence of Ape1 nearly completely inhibited adenine removal by Y150C mMYH from the OG:A mismatch substrate. The more deleterious effect of Ape1 on the glycosylase activity of Y150C relative to G365D mMYH correlated with the more compromised binding affinity of Y150C to substrate analogue duplexes. These results suggest that the equivalent hMYH variants may be significantly compromised in substrate targeting in vivo due to a decrease in binding to substrate DNA; moreover, competition with other DNA binding proteins may further reduce the effective adenine glycosylase activity in vivo.  相似文献   

8.
Li L  Lu AL 《Nucleic acids research》2003,31(12):3038-3049
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxo-guanine (8-oxoG). The C-terminal domain of MutY is required for 8-oxoG recognition and is critical for mutation avoidance of oxidative damage. To determine which residues of this domain are involved in 8-oxoG recognition, we constructed four MutY mutants based on similarities to MutT, which hydrolyzes specifically 8-oxo-dGTP to 8-oxo-dGMP. F294A-MutY has a slightly reduced binding affinity to A/G mismatch but has a severe defect in A/8-oxoG binding at 20°C. The catalytic activity of F294A-MutY is much weaker than that of the wild-type MutY. The DNA binding activity of R249A-MutY is comparable to that of the wild-type enzyme but the catalytic activity is reduced with both A/G and A/8-oxoG mismatches. The biochemical activities of F261A-MutY are nearly similar to those of the wild-type enzyme. The solubility of P262A-MutY was improved as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. The binding of GB1-P262A-MutY with both A/G and A/8-oxoG mismatches are slightly weaker than those of the wild-type protein. The catalytic activity of GB1-P262A-MutY is weaker than that of the wild-type enzyme at lower enzyme concentrations. Importantly, all four mutants can complement mutY mutants in vivo when expressed at high levels; however, F294A, R249A and P262A, but not F261A, are partially defective in vivo when they are expressed at low levels. These results strongly support that the C-terminal domain of MutY is involved not only in 8-oxoG recognition, but also affects the binding and catalytic activities toward A/G mismatches.  相似文献   

9.
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/8-oxoG, or A/C mismatches and also has a weak guanine glycosylase activity on G/8-oxoG-containing DNA. The N-terminal domain of MutY, residues 1-226, has been shown to retain catalytic activity. Substrate binding, glycosylase, and Schiff base intermediate formation activities of the truncated and intact MutY were compared. MutY has high binding affinity with 8-oxoG when mispaired with A, G, T, C, or inosine. The truncated protein has more than 18-fold lower affinities for binding various 8-oxoG-containing mismatches when compared with intact MutY. MutY catalytic activity toward A/8-oxoG-containing DNA is much faster than that on A/G-containing DNA whereas deletion of the C-terminal domain reduces its catalytic preference for A/8-oxoG-DNA over A/G-DNA. MutY exerts more inhibition on the catalytic activity of MutM (Fpg) protein than does truncated MutY. The tight binding of MutY with GO mispaired with T, G, and apurinic/apyrimidinic sites may be involved in the regulation of MutM activity. An E. coli mutY strain that produces an N-terminal 249-residue truncated MutY confers a mutator phenotype. These findings strongly suggest that the C-terminal domain of MutY determines the 8-oxoG specificity and is crucial for mutation avoidance by oxidative damage.  相似文献   

10.
Li X  Lu AL 《Nucleic acids research》2000,28(23):4593-4603
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase active on DNA substrates containing A/G, A/8-oxoG, A/C or G/8-oxoG mismatches. A truncated form of MutY (M25, residues 1–226) retains catalytic activity; however, the C-terminal domain of MutY is required for specific binding to the 8-oxoG and is critical for mutation avoidance of oxidative damage. Using alkylation interference experiments, the determinants of the truncated and intact MutY were compared on A/8-oxoG-containing DNA. Several purines within the proximity of mismatched A/8-oxoG show differential contact by the truncated and intact MutY. Most importantly, methylation at the N7 position of the mismatched 8-oxoG and the N3 position of mismatched A interfere with intact MutY but not with M25 binding. The electrostatic contacts of MutY and M25 with the A/8-oxoG-containing DNA substrates are drastically different as shown by ethylation interference experiments. Five consecutive phosphate groups surrounding the 8-oxoG (one on the 3′ side and four on the 5′ side) interact with MutY but not with M25. The activities of the truncated and intact MutY are modulated differently by two minor groove-binding drugs, distamycin A and Hoechst 33258. Both distamycin A and Hoechst 33258 can inhibit, to a similar extent, the binding and glycosylase activities of MutY and M25 on A/G mismatch. However, binding and glycosylase activities on A/8-oxoG mismatch of intact MutY are inhibited to a lesser degree than those of M25. Overall, these results suggest that the C-terminal domain of MutY specifies additional contact sites on A/GO-containing DNA that are not found in MutY–A/G and M25–A/8-oxoG interactions.  相似文献   

11.
MutY is an adenine glycosylase in the base excision repair (BER) superfamily that is involved in the repair of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A and G:A mispairs in DNA. MutY contains a [4Fe-4S]2+ cluster that is part of a novel DNA binding motif, referred to as the iron-sulfur cluster loop (FCL) motif. This motif is found in a subset of members of the BER glycosylase superfamily, defining the endonuclease III-like subfamily. Site-specific cross-linking was successfully employed to investigate the DNA-protein interface of MutY. The photoreactive nucleotide 4-thiothymidine (4ST) incorporated adjacent to the OG:A mismatch formed a specific cross-link between the substrate DNA and MutY. The amino acid participating in the cross-linking reaction was characterized by positive ion electrospray ionization (ESI) tandem mass spectrometry. This analysis revealed Arg 143 as the site of modification in MutY. Arg 143 and nearby Arg 147 are conserved throughout the endo III-like subfamily. Replacement of Arg 143 and Arg 147 with alanine by site-directed mutagenesis reduces adenine glycosylase activity of MutY toward OG:A and G:A mispairs. In addition, the R143A and R147A enzymes exhibit a reduced affinity for duplexes containing the substrate analogue 2'-deoxy-2'-fluoroadenosine opposite OG and G. Modeling of MutY bound to DNA using an endonuclease III-DNA complex structure shows that these two conserved arginines are located within close proximity to the DNA backbone. The insight from mass spectrometry experiments combined with functional mutagenesis results indicate that these two amino acids in the [4Fe-4S]2+ cluster-containing subfamily play an important role in recognition of the damaged DNA substrate.  相似文献   

12.
MutY, a DNA repair enzyme, is unusual in that it binds exceedingly tightly to its products after the chemical steps of catalysis. Until now it was not known whether the product being released in the rate-limiting step was DNA, adenine, or both. MutY hydrolyzes adenine from 8-oxo-G:A (OG:A) base pair mismatches as the first step in the base excision repair pathway, as well as from G:A mismatches. The products are adenine and DNA containing an apurinic (AP) site. Tight product binding may have a physiological role in preventing further damage at the OG:AP site. We developed a rate assay using [8-14C]adenine in OG:A or G:A mismatches that distinguishes between adenine hydrolysis and adenine release. [8-14C]Adenine was released quickly from the MutY.AP-DNA.[8-14C]adenine complex, with a rate constant greater than 5 min-1. This was much faster than the rate-limiting step, at 0.006-0.015 min-1. Gel retardation experiments showed that AP-DNA release was very slow, consistent with it being the rate-limiting step. Thus, the kinetic mechanism involves fast adenine release after hydrolysis followed by rate-limiting AP-DNA release. Adenine appears to be buried deep in the protein.DNA interface, but there is enough flexibility or open space for it to dissociate from the MutY.APDNA.adenine complex. These results have implications for the catalytic mechanism of MutY.  相似文献   

13.
The oxidized guanine lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is highly mutagenic, resulting in G:C to T:A transversion mutations in the absence of repair. The Escherichia coli adenine glycosylase MutY and its human homolog (hMYH) play an important role in the prevention of mutations associated with OG by removing misincorporated adenine residues from OG:A mismatches. Previously, biallelic mutations of hMYH have been identified in a British family (Family N) with symptoms characteristic of familial adenomatous polyposis (FAP), which is typically associated with mutations in the adenomatous polyposis coli (APC) gene. Afflicted members of this family were compound heterozygotes for two mutations in hMYH, Y165C and G382D. These positions are highly conserved in MutY across phylogeny. The current work reveals a reduced ability of the hMYH variants compared to wild-type (WT) hMYH to complement the activity of E.coli MutY in mutY((-)) E.coli. In vitro analysis of the corresponding mutations in E.coli MutY revealed a reduction in the adenine glycosylase activity of the enzymes. In addition, evaluation of substrate affinity using a substrate analog, 2'-deoxy-2'-fluoroadenosine (FA) revealed that both mutations severely diminish the ability to recognize FA, and discriminate between OG and G. Importantly, adenine removal with both the mutant and WT E.coli enzymes was observed to be less efficient from a mismatch in the sequence context observed to be predominantly mutated in tumors of Family N. Interestingly, the magnitude of the reduced activity of the E.coli mutant enzymes relative to the WT enzyme was magnified in the "hotspot" sequence context. If the corresponding mutations in hMYH cause similar sensitivity to sequence context, this effect may contribute to the specific targeting of the APC gene. The lack of complementation of the hMYH variants for MutY, and the reduced activity of the Y82C and G253D E.coli enzymes, provide additional circumstantial evidence that the somatic mutations in APC, and the occurrence of FAP in Family N, are due to a reduced ability of the Y165C and G382D hMYH enzymes to recognize and repair OG:A mismatches.  相似文献   

14.
D M Noll  A Gogos  J A Granek  N D Clarke 《Biochemistry》1999,38(20):6374-6379
MutY is an adenine-DNA glycosylase with specificity for mismatches involving 8-oxoguanine (oG.A) or guanine (G.A). In addition to a 25 kDa catalytic domain common to all members of its DNA glycosylase superfamily, MutY has a 14 kDa C-terminal domain. Sequence analyses suggest that this C-terminal domain is distantly related to MutT, a pyrophosphohydrolase specific for 2'-deoxy-8-oxoguanosine triphosphate (doGTP). Here we present biochemical evidence that the MutT-like domain of MutY is the principal determinant of oG specificity. First, MutY dissociates approximately 1500-fold more slowly from oG-containing product DNA than from G-containing product, but a truncated protein lacking the C-terminal domain dissociates as rapidly from oG-DNA as the full-length protein dissociates from G-DNA. Second, MutY removes adenine from oG.A mismatches almost 30-fold faster than from G.A mismatches in a pre-steady-state assay, but deletion of the C-terminal domain reduces this specificity for oG.A to less than 4-fold. The kinetic data are consistent with a model in which binding of oG to the C-terminal domain of MutY accelerates the pre-steady-state glycosylase reaction by facilitating adenine base flipping. The observation that oG specificity derives almost exclusively from the C-terminal domain of MutY adds credence to the sequence analyses and suggests that specificity for oG.A mismatches was acquired by fusion of a MutT-like protein onto the core catalytic domain of an adenine-DNA glycosylase.  相似文献   

15.
Escherichia coli MutY is an adenine and weak guanine DNA glycosylase involved in reducing the mutagenic effects of 7,8-dihydro-8-oxoguanine (GO). MutY contains three structural domains: an iron-sulfur module, a six-helix barrel module with the helix-hairpin-helix motif, and a C-terminal domain. Here, we demonstrate that the mutant MutY(Delta26-134), which lacks the six-helix barrel domain, cannot complement the mutator phenotype of a mutY mutant in vivo. However, the mutant can still bind DNA and has weak catalytic activity at high enzyme concentrations. The mutant is a dimer in solution and assembled into two and multiple (up to five) complexes with 20- and 44-bp DNA fragments, respectively, in a concentration-dependent manner. Higher order complexes with DNA substrates containing A/GO mismatches were formed at lower protein concentrations than with the A/G mismatch and homoduplex DNA. Measurement of equilibrium binding using fluorescence anisotropy showed that the mutant protein retains some specificity for A/GO-containing DNA substrates and that the binding event is highly cooperative. This is consistent with the MutY structure determined, which indicates that GO specificity is contributed by both the six-helix barrel and C-terminal domains. The nonspecific binding of MutY(Delta26-134) to DNA suggests a model in which the specific binding of mismatched DNA by MutY involves sequential interactions, in which one MutY molecule scans the DNA and enhances binding of another MutY molecule to the A/GO mismatch.  相似文献   

16.
Williams SD  David SS 《Biochemistry》1999,38(47):15417-15424
The mutY gene product of Escherichia coli is a 39-kDa protein that catalyzes the removal of adenine bases mispaired with 2'-deoxyguanosine and 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA. Although adenine removal proceeds via monofunctional glycosylase activity, MutY is able to form covalent adducts with substrate DNA in the presence of borohydride, a trait otherwise known to be associated only with enzymes having bifunctional glycosylase/AP lyase activity. To help identify active site residues involved in the formation of MutY-DNA adducts in the presence of borohydride, a series of site-directed mutant forms of MutY were generated. Our data show that Lys 142 is the primary residue involved in cross-link formation. The absence of Lys 142 results in near elimination of the enzyme-DNA adducts formed relative to wild-type, suggesting that this residue is the primary one involved in forming covalent associations with DNA during MutY catalysis. Importantly, the enzymatic activity and DNA binding of the K142A enzyme is nearly identical to the WT enzyme. This shows that formation of the covalent intermediate is not required for adenine removal by MutY. Furthermore, this suggests that the covalent intermediate is formed by reaction of Lys 142 with the OG/G:(AP site) product, and this may be a consequence of MutY's unusually high affinity for the product of its glycosylase action.  相似文献   

17.
Leipold MD  Muller JG  Burrows CJ  David SS 《Biochemistry》2000,39(48):14984-14992
An intriguing feature of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is that it is highly reactive toward further oxidation. Indeed, OG has been shown to be a "hot spot" for oxidative damage and susceptible to oxidation by a variety of cellular oxidants. Recent work has identified two new DNA lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), resulting from one-electron oxidation of OG. The presence of Gh and Sp lesions in DNA templates has been shown to result in misinsertion of G and A by DNA polymerases, and therefore, both are potentially mutagenic DNA lesions. The base excision repair (BER) glycosylases Fpg and MutY serve to prevent mutations associated with OG in Escherichia coli, and therefore, we have investigated the ability of these two enzymes to process DNA duplex substrates containing the further oxidized OG lesions, Gh and Sp. The Fpg protein, which removes OG and a variety of other oxidized purine base lesions, was found to remove Gh and Sp efficiently opposite all four of the natural DNA bases. The intrinsic rate of damaged base excision by Fpg was measured under single-turnover conditions and was found to be highly dependent upon the identity of the base opposite the OG, Gh, or Sp lesion; as expected, OG is removed more readily from an OG:C- than an OG:A-containing substrate. However, when adenine is paired with Gh or Sp, the rate of removal of these damaged lesions by Fpg was significantly increased relative to the rate of removal of OG from an OG:A mismatch. The adenine glycosylase MutY, which removes misincorporated A residues from OG:A mismatches, is unable to remove A paired with Gh or Sp. Thus, the activity of Fpg on Gh and Sp lesions may dramatically influence their mutagenic potential. This work suggests that, in addition to OG, oxidative products resulting from further oxidation of OG should be considered when evaluating oxidative DNA damage and its associated effects on DNA mutagenesis.  相似文献   

18.
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/C, or A/8-oxoG mismatches. Although MutY can form a covalent intermediate with its DNA substrates, its possession of 3' apurinic lyase activity is controversial. To study the reaction mechanism of MutY, the conserved Asp-138 was mutated to Asn and the reactivity of this mutant MutY protein determined. The glycosylase activity was completely abolished in the D138N MutY mutant. The D138N mutant and wild-type MutY protein also possessed different DNA binding activities with various mismatches. Several lysine residues were identified in the proximity of the active site by analyzing the imino-covalent MutY-DNA intermediate. Mutation of Lys-157 and Lys-158 both individually and combined, had no effect on MutY activities but the K142A mutant protein was unable to form Schiff base intermediates with DNA substrates. However, the MutY K142A mutant could still bind DNA substrates and had adenine glycosylase activity. Surprisingly, the K142A mutant MutY, but not the wild-type enzyme, could promote a beta/delta-elimination on apurinic DNA. Our results suggest that Asp-138 acts as a general base to deprotonate either the epsilon-amine group of Lys-142 or to activate a water molecule and the resulting apurinic DNA then reacts with Lys-142 to form the Schiff base intermediate with DNA. With the K142A mutant, Asp-138 activates a water molecule to attack the C1' of the adenosine; the resulting apurinic DNA is cleaved through beta/delta-elimination without Schiff base formation.  相似文献   

19.
Escherichia coli MutY is an adenine glycosylase involved in base excision repair that recognizes OG:A (where OG = 7, 8-dihydro-8-oxo-2'-deoxyguanosine) and G:A mismatches in DNA. MutY contains a solvent-exposed polypeptide loop between two of the cysteine ligands to the [4Fe-4S](2+) cluster, referred to as the iron-sulfur cluster loop (FCL) motif. The FCL is located adjacent to the proposed active site pocket and has been suggested to be part of the DNA binding surface of MutY (Y. Guan et al., 1998, Nat. Struct. Biol. 5, 1058-1064). In order to investigate the role of specific residues within the FCL motif, we have determined the effects of replacing arginine 194, lysine 196, and lysine 198 with alanine on the enzymatic properties of MutY. The properties of the R194A, K196A, and K198A enzymes were also compared to the properties of mutated enzymes in which lysine residues near the active site pocket were replaced with alanine or glycine. Substrate recognition was evaluated using a duplex containing a 2'-deoxyadenosine analog in a base pair opposite G or OG. These results indicate that removal of positively charged amino acids within the FCL and the active site compromise the ability of the enzyme to bind to the substrate analog. However, only the K198A enzyme exhibited a significant reduction (15-fold) of the rate of adenine removal from a G:A base pair-containing duplex. This is the first direct evidence that Lys 198 within the FCL motif of MutY has a role in specific damage recognition and removal. Furthermore, these results suggest that the FCL motif is intimately involved in the base removal process.  相似文献   

20.
MUTYH-associated polyposis (MAP) is the only inherited colorectal cancer syndrome that is associated with inherited biallelic mutations in a base excision repair gene. The MUTYH glycosylase plays an important role in preventing mutations associated with 8-oxoguanine (OG) by removing adenine residues that have been misincorporated opposite OG. MAP-associated mutations are present throughout MUTYH, with a large number coding for missense variations. To date the available information on the functional properties of MUTYH variants is conflicting. In this study, a kinetic analysis of the adenine glycosylase activity of MUTYH and several variants was undertaken using a correction for active fraction to control for differences due to overexpression and purification. Using these methods, the rate constants for steps involved in the adenine removal process were determined for the MAP variants Y165C, G382D, P391L and Q324R MUTYH. Under single-turnover conditions, the rate of adenine removal for these four variants was found to be 30–40% of WT MUTYH. In addition, the ability of MUTYH and the variants to suppress mutations and complement for the absence of MutY in Escherichia coli was assessed using rifampicin resistance assays. The presence of WT and Q324R MUTYH resulted in complete suppression of the mutation frequency, while G382D MUTYH showed reduced ability to suppress the mutation frequency. In contrast, the mutation frequency observed upon expression of P391L and Y165C MUTYH were similar to the controls, suggesting no activity toward preventing DNA mutations. Notably, though all variations studied herein resulted in similar reductions in adenine glycosylase activity, the effects in the bacterial complementation are quite different. This suggests that the consequences of a specific amino acid variation on overall repair in a cellular context may be magnified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号