首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hybrid cell lines (DM88-5E12 and DM88-4C9) secreting monoclonal antibodies against DNA polymerase alpha-primase complex from Drosophila melanogaster Kc cells were established by immunizing mice with the complex partially purified by a conventional method. The IgG subclasses of both antibodies were IgG1. Both antibodies immunoprecipitated the DNA polymerase alpha-primase complex from D. melanogaster Kc cells. The DNA-polymerizing activity was neutralized by 4C9 antibody, but not by 5E12 antibody. The DNA priming activity was not neutralized by either antibody. These antibodies did not cross-react to HeLa DNA polymerase alpha-primase complex. A rapid, two-step purification of DNA polymerase alpha-primase complex from D. melanogaster Kc cell was carried out by 5E12 antibody column chromatography followed by single-stranded DNA cellulose column chromatography. The immunoaffinity-purified enzyme had both DNA-polymerizing and DNA-priming activities with the specific activities of 50,000 and 2,000 units/mg, respectively. The effects of aphidicolin, NEM, ddTTP, BuPdGTP, and DMSO on the enzyme activity showed that the purified enzyme was DNA polymerase alpha, but not DNA polymerase beta, gamma, or delta. The purified enzyme consisted of polypeptides with apparent molecular weights of 180 (and 145, 140, 130 kDa), 72, 63, 51, and 49 kDa. The 5E12 antibody was shown to bind to all the high-molecular-weight polypeptides, 180, 145, 140, and 130 kDa, by immuno-Western blotting analysis.  相似文献   

2.
Dissociation and reconstitution of a DNA polymerase alpha-primase complex   总被引:3,自引:0,他引:3  
The conditions for dissociation of the DNA polymerase alpha-primase complex (DNA polymerase alpha 1) have been examined. It was revealed that 50% ethylene glycol effectively dissociated the complex. The dissociated DNA polymerase and primase were purified to eliminate cross-contaminating activities by column chromatography using buffers containing 50% ethylene glycol. The sedimentation coefficients of the purified DNA polymerase and primase were 7.1S and 5.7S, respectively. These two enzymes were mixed in the presence of 20% ethylene glycol and the mixture was sedimented through a glycerol gradient containing no ethylene glycol. The DNA polymerase and primase activities co-sedimented at 9.1S which corresponds to the S value of intact alpha 1, indicating the reconstitution of the DNA polymerase alpha-primase complex.  相似文献   

3.
Previously, the activity of DNA polymerase alpha was found in the meiotic prophase I including non-S phase stages, in the basidiomycetes, Coprinus cinereus. To study DNA polymerase alpha during meiosis, we cloned cDNAs for the C. cinereus DNA polymerase alpha catalytic subunit (p140) and C. cinereus primase small subunit (p48). Northern analysis indicated that both p140 and p48 are expressed not only at S phase but also during the leptotene/zygotene stages of meiotic prophase I. In situ immuno-staining of cells at meiotic prophase I revealed a sub population of p48 that does not colocalize with p140 in nuclei. We also purified the pol alpha-primase complex from meiotic cells by column chromatography and characterized its biochemical properties. We found a subpopulation of primase that was separated from the pol alpha-primase complex by phosphocellulose column chromatography. Glycerol gradient density sedimentation results indicated that the amount of intact pol alpha-primase complex in crude extract is reduced, and that a smaller complex appears upon meiotic development. These results suggest that the form of the DNA polymerase alpha-primase complex is altered during meiotic development.  相似文献   

4.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex.  相似文献   

5.
Physical and functional interactions of simian virus 40 (SV40) and polyomavirus large-T antigens with DNA polymerase alpha-primase were analyzed to elucidate the molecular basis for the species specificity of polymerase alpha-primase in viral DNA replication. SV40 T antigen associated more efficiently with polymerase alpha-primase in crude human extracts than in mouse extracts, while polyomavirus T antigen interacted preferentially with polymerase alpha-primase in mouse extracts. The apparent species specificity of complex formation was not observed when purified polymerase alpha-primases were substituted for the crude extracts. Several functional interactions between T antigen and purified polymerase alpha-primase, including stimulation of primer synthesis and primer elongation on M13 DNA in the presence or absence of the single-stranded DNA binding protein RP-A, also proved to be independent of the species from which polymerase alpha-primase had been purified. However, the human DNA polymerase alpha-primase was specifically required for primosome assembly and primer synthesis on SV40 origin DNA in the presence of T antigen and RP-A.  相似文献   

6.
J K Vishwanatha  E F Baril 《Biochemistry》1990,29(37):8753-8759
A single-stranded DNA-dependent ATPase that cofractionates during the early stages of purification of a multiprotein DNA polymerase alpha complex from HeLa cells has been purified to homogeneity. The ATPase is part of a 16S multienzyme DNA polymerase alpha complex that is fully active in SV40 DNA replication in vitro. The ATPase hydrolyzes ATP to ADP in a reaction that is completely dependent on the presence of DNA. DNA in single-stranded form is strongly preferred as a cofactor, and polydeoxynucleotides with adenine or thymidine residues are highly effective. Glycerol gradient sedimentation showed that the purified ATPase sedimented at an s20,w of 7 S, and polyacrylamide gel electrophoresis under denaturing conditions reveals two polypeptides with relative molecular weights of 83,000 and 68,000. Both of these polypeptides have purine nucleotide binding sites as revealed by photoaffinity cross-linking experiments. ATP binds to the two subunits more efficiently than GTP, and CTP or UTP does not cross-link with the two polypeptides. DNA synthesis catalyzed by purified HeLa cell DNA polymerase alpha-primase is stimulated in the presence of ATPase and ATP at an optimum concentration of 2 mM. Analysis of the DNA product by gel electrophoresis indicates that with poly(dT) but not phage M13 DNA as template the ATPase overcomes a lag and decreases the length of nascent DNA chains synthesized by the DNA polymerase alpha-primase complex.  相似文献   

7.
Studies of simian virus 40 (SV40) DNA replication in a reconstituted cell-free system have established that T antigen and two cellular replication proteins, replication protein A (RP-A) and DNA polymerase alpha-primase complex, are necessary and sufficient for initiation of DNA synthesis on duplex templates containing the SV40 origin of DNA replication. To better understand the mechanism of initiation of DNA synthesis, we analyzed the functional interactions of T antigen, RP-A, and DNA polymerase alpha-primase on model single-stranded DNA templates. Purified DNA polymerase alpha-primase was capable of initiating DNA synthesis de novo on unprimed single-stranded DNA templates. This reaction involved the synthesis of a short oligoribonucleotide primer which was then extended into a DNA chain. We observed that the synthesis of ribonucleotide primers by DNA polymerase alpha-primase is dramatically stimulated by SV40 T antigen. The presence of T antigen also increased the average length of the DNA product synthesized on primed and unprimed single-stranded DNA templates. These stimulatory effects of T antigen required direct contact with DNA polymerase alpha-primase complex and were most marked at low template and polymerase concentrations. We also observed that the single-stranded DNA binding protein, RP-A, strongly inhibits the primase activity of DNA polymerase alpha-primase, probably by blocking access of the enzyme to the template. T antigen partially reversed the inhibition caused by RP-A. Our data support a model in which DNA priming is mediated by a complex between T antigen and DNA polymerase alpha-primase with the template, while RP-A acts to suppress nonspecific priming events.  相似文献   

8.
Models of DNA replication in yeast and Xenopus suggest that Mcm10p is required to generate the pre-initiation complex as well as progression of the replication fork during the elongation of DNA chains. In this report, we show that the Schizosaccharomyces pombe Mcm10p/Cdc23p binds to the S. pombe DNA polymerase (pol) alpha-primase complex in vitro by interacting specifically with the catalytic p180 subunit and stimulates DNA synthesis catalyzed by the pol alpha-primase complex with various primed DNA templates. We investigated the mechanism by which Mcm10p activates the polymerase activity of the pol alpha-primase complex by generating truncated derivatives of the full-length 593-amino acid Mcm10p. Their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA and to pol alpha were compared. Concomitant with increased deletion of the N-terminal region (from amino acids 95 to 415), Mcm10p derivatives lost their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA. Truncated derivatives of Mcm10p containing amino acids 1-416 retained the pol alpha binding activity, whereas the C terminus, amino acids 496-593, did not. These results demonstrate that both the single-stranded DNA binding and the pol alpha binding properties of Mcm10p play important roles in the activation. In accord with these findings, Mcm10p facilitated the binding of pol alpha-primase complex to primed DNA and formed a stable complex with pol alpha-primase on primed templates. A mutant that failed to activate or bind to DNA and pol alpha, was not observed in this complex. We suggest that the interaction of Mcm10p with the pol alpha-primase complex, its binding to single-stranded DNA, and its activation of the polymerase complex together contribute to its role in the elongation phase of DNA replication.  相似文献   

9.
Human cell extracts efficiently support replication of simian virus 40 (SV40) DNA in vitro, while mouse cell extracts do not. Since human DNA polymerase alpha-primase is the major species-specific factor, we set out to determine the subunit(s) of DNA polymerase alpha-primase required for this species specificity. Recombinant human, mouse, and hybrid human-mouse DNA polymerase alpha-primase complexes were expressed with baculovirus vectors and purified. All of the recombinant DNA polymerase alpha-primases showed enzymatic activity and efficiently synthesized the complementary strand on an M13 single-stranded DNA template. The human DNA polymerase alpha-primase (four subunits [HHHH]) and the hybrid DNA polymerase alpha-primase HHMM (two human subunits and two mouse subunits), containing human p180 and p68 and mouse primase, initiated SV40 DNA replication in a purified system. The human and the HHMM complex efficiently replicated SV40 DNA in mouse extracts from which DNA polymerase alpha-primase was deleted, while MMMM and the MMHH complex did not. To determine whether the human p180 or p68 subunit was required for SV40 DNA replication, hybrid complexes containing only one human subunit, p180 or p68, together with three mouse subunits (HMMM and MHMM) or three human subunits and one mouse subunit (MHHH and HMHH) were tested for SV40 DNA replication activity. The hybrid complexes HMMM and HMHH synthesized oligoribonucleotides in the SV40 initiation assay with purified proteins and replicated SV40 DNA in depleted mouse extracts. In contrast, the hybrid complexes containing mouse p180 were inactive in both assays. We conclude that the human p180 subunit determines host-specific replication of SV40 DNA in vitro.  相似文献   

10.
Mouse cell extracts support vigorous replication of polyomavirus (Py) DNA in vitro, while human cell extracts do not. However, the addition of purified mouse DNA polymerase alpha-primase to human cell extracts renders them permissive for Py DNA replication, suggesting that mouse polymerase alpha-primase determines the species specificity of Py DNA replication. We set out to identify the subunit of mouse polymerase alpha-primase that mediates this species specificity. To this end, we cloned and expressed cDNAs encoding all four subunits of mouse and human polymerase alpha-primase. Purified recombinant mouse polymerase alpha-primase and a hybrid DNA polymerase alpha-primase complex composed of human subunits p180 and p68 and mouse subunits p58 and p48 supported Py DNA replication in human cell extracts depleted of polymerase alpha-primase, suggesting that the primase heterodimer or one of its subunits controls host specificity. To determine whether both mouse primase subunits were required, recombinant hybrid polymerase alpha-primases containing only one mouse primase subunit, p48 or p58, together with three human subunits, were assayed for Py replication activity. Only the hybrid containing mouse p48 efficiently replicated Py DNA in depleted human cell extracts. Moreover, in a purified initiation assay containing Py T antigen, replication protein A (RP-A) and topoisomerase I, only the hybrid polymerase alpha-primase containing the mouse p48 subunit initiated primer synthesis on Py origin DNA. Together, these results indicate that the p48 subunit is primarily responsible for the species specificity of Py DNA replication in vitro. Specific physical association of Py T antigen with purified recombinant DNA polymerase alpha-primase, mouse DNA primase heterodimer, and mouse p48 suggested that direct interactions between Py T antigen and primase could play a role in species-specific initiation of Py replication.  相似文献   

11.
Purified SV40 large T antigen and purified DNA polymerase alpha-primase form a complex detectable by ELISA and by a modified immunoblotting technique. The interaction is specific for the large catalytic subunit of polymerase alpha. The amino terminal 83 amino acids of T antigen are both necessary and sufficient for binding to the polymerase. However, antibody epitopes located in the carboxy terminal ATPase domain of T antigen are masked in the polymerase-T antigen complex, and complex formation is inhibited by an antibody directed against the carboxy terminus of T antigen, suggesting that this region of T antigen, though not required for binding, is in close proximity to the bound polymerase. The affinity of human DNA polymerase alpha for T antigen is approximately 10-fold greater than that of polymerase alpha from calf thymus, consistent with the interpretation that polymerase alpha is at least in part responsible for the primate-specific replication of SV40 DNA in vivo and in vitro. The results suggest that specific protein-protein interaction between DNA polymerase alpha and T antigen plays an important role in viral DNA replication.  相似文献   

12.
The purified human single-stranded DNA binding protein, replication protein A (RP-A), forms specific complexes with purified SV40 large T antigen and with purified DNA polymerase alpha-primase, as shown by ELISA and a modified immunoblotting technique. RP-A associated efficiently with the isolated primase, as well as with intact polymerase alpha-primase. The 70 kDa subunit of RP-A was sufficient for association with polymerase alpha-primase. Purified SV40 large T antigen bound to intact RP-A and to polymerase-primase, but not to any of the separated subunits of RP-A or to the isolated primase. These results suggest that the specific protein-protein interactions between RP-A, polymerase-primase and T antigen may play a role in the initiating of SV40 DNA replication.  相似文献   

13.
V Sylvia  G Curtin  J Norman  J Stec  D Busbee 《Cell》1988,54(5):651-658
A low activity form of DNA polymerase alpha immunoaffinity-purified from adult-derived human fibroblasts was activated by interaction with phosphatidylinositol-4-monophosphate, while a high activity form of the enzyme did not interact with phosphatidylinositol-4-monophosphate or its derivatives. Phosphatidylinositol-4-monophosphate was apparently hydrolyzed in the presence of a highly purified low activity form of DNA polymerase alpha, effecting the release of diacylglycerol and the retention of inositol-1,4-bisphosphate by the enzyme complex. The resulting inositol-1,4-bisphosphate/protein complex exhibited increased affinity of binding to DNA template/primer and increased deoxynucleotidyltransferase activity. These data indicate that inositol-1,4-bisphosphate may function as an effector molecule in the activation of a low activity form of human DNA polymerase alpha and suggest that it may function as a second messenger during the initiation of mitosis in stimulated cells.  相似文献   

14.
15.
The majority of the DNA polymerase alpha activity in HeLa cells has been isolated and purified as a multiprotein Mr 640,000 form. The multiprotein form of DNA polymerase alpha corresponds to DNA polymerase alpha 2 that was previously reported by us (Lamothe, P., Baril, B., Chi, A., Lee, L., and Baril, E. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4723-4727). The highly purified DNA polymerase alpha 2 has in addition to DNA polymerase alpha-associated DNase, primase, and diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A)binding activities and accessory primer recognition proteins C1 and C2. The DNA polymerase alpha and associated activities increase coordinately during the G1/S-phase transition of the cell cycle. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the electrophoretically homogeneous DNA polymerase alpha shows that it is composed of at least eight polypeptides in the molecular weight range of 180,000-15,000. Hydrophobic chromatography on butyl-agarose resolves the DNase and Ap4A-binding protein from a complex of DNA polymerase alpha, primase, and the primer recognition proteins C1 and C2. Hydrophobic chromatography of the latter complex on phenyl-Sepharose resolves the C1 protein from a DNA polymerase alpha-C2 protein-primase complex. Phosphocellulose chromatography of the DNA polymerase-primase-C2 protein complex resolves the C2 protein from a complex of DNA polymerase alpha-primase.  相似文献   

16.
Processivity of the DNA polymerase alpha-primase complex from calf thymus   总被引:4,自引:0,他引:4  
K T Hohn  F Grosse 《Biochemistry》1987,26(10):2870-2878
The processivity of the DNA polymerase alpha-primase complex from calf thymus was analyzed under various conditions. When multi-RNA-primed M13 DNA was used as the substrate, the DNA polymerase alpha-primase complex was found to incorporate 19 +/- 3 nucleotides per primer binding event. This result was confirmed by product analysis on sequencing gels following DNA synthesis on poly(dT) X (rA)10. The processivity depends strongly on the assay conditions but does not correlate with enzymic activity. Lowering the concentration of Mg2+ ions to less than 2 mM increases the processivity to 60. Replacing Mg2+ by 0.2 mM Mn2+ results in 90 nucleotides being incorporated per primer binding event. Neither the presence of ATP nor the addition of noncognate deoxynucleotide triphosphates affects the processivity of the DNA polymerase alpha-primase complex. Lower processivity was induced by lowering the reaction temperature, by adding spermine, spermidine, or putrescine, in the presence of the antibiotics novobiocin and ciprofloxacin, by adding Escherichia coli single-stranded DNA binding protein, or by adding calf thymus topoisomerase II and RNase H. Three single-stranded DNA binding proteins from calf thymus, including unwinding protein 1, do not affect processivity to any significant extent. Freshly prepared DNA polymerase alpha-primase complex exhibits in addition to its processivity of 20 further discrete processivities of about 55, 90, and 105. This result suggest that further subunits of the polymerase alpha-primase complex are necessary to reconstitute the holoenzyme form of the eukaryotic replicase.  相似文献   

17.
The protein B23 is a major nucleolar phosphoprotein comprising two isoforms, B23.1 and B23.2, which differ only in their carboxyl-terminal short sequences, the N-terminal 255 residues being identical in both forms. Both B23.1 and B23.2 stimulated immunoaffinity-purified calf thymus DNA polymerase alpha in a dose-dependent manner. The stimulatory effect of protein B23.1, the longer isoform, was found to be 2-fold greater than that of B23.2. Purified DNA polymerase alpha bound tightly to a protein B23.1-immobilized column, while it bound weakly to a protein B23.2-immobilized column. Surface plasmon resonance studies by BIAcore further showed that protein B23.1 bound to the DNA polymerase alpha-(dA).(dT) complex more tightly than did protein B23.2. The protein B23 isoforms appear to interact directly with the DNA polymerase alpha protein and not through the bound nucleic acid. These observations indicated that protein B23 physically bound to the DNA polymerase alpha and stimulated the enzyme activity. Product analyses showed that protein B23 greatly enhanced the reaction both in amount and length of product DNA, whereas it did not significantly alter the processivity of polymerization. In contrast, protein B23 effectively protected DNA polymerase alpha from heat inactivation. These results suggest that protein B23 stabilizes DNA polymerase alpha that is detached from product DNA, allowing the enzyme to be recruited for further elongation. Moreover, experiments using various C-terminal deletion mutants of protein B23 indicated that 12 amino acids at the C-terminal end of B23.1, which are absent in B23.2, may be essential for the full stimulation of the DNA polymerase alpha.  相似文献   

18.
Study of the proteins involved in DNA replication of a model system such as SV40 is a first step in understanding eukaryotic chromosomal replication. Using a cell-free system that is capable of replicating plasmid DNA molecules containing the SV40 origin of replication, we conducted a series of systematic fractionation-reconstitution experiments for the purpose of identifying and characterizing the cellular proteins involved in SV40 DNA replication. In addition to the one viral-encoded replication protein, T antigen, we have identified and begun to characterize at least six cellular components from a HeLa cytoplasmic extract that are absolutely required for SV40 DNA replication in vitro. These include: (i) two partially purified fractions, CF IC and CF IIA, and (ii) four proteins that have been purified to near homogeneity, replication protein-A, proliferating cell nuclear antigen, DNA polymerase alpha-primase complex, and topoisomerase (I and II). Replication protein-A is a multi-subunit protein that has single-stranded DNA binding activity and is required for a T antigen-dependent, origin-dependent unwinding reaction which may be an important early step in initiation of replication. Fraction CF IC can stimulate this unwinding reaction, suggesting that it also may function during initiation. Proliferating cell nuclear antigen, DNA polymerase alpha-primase, and CF IIA all appear to be involved in elongation of nascent chains.  相似文献   

19.
20.
For the specific purification of eukaryotic DNA-dependent DNA polymerase alpha, we prepared two novel affinity resins bearing 5-(E)-(4-aminostyryl) araUTP as a ligand. One of them was araUTP-Sepharose 4B which was coupled directly with the ligand and the other was araUTP-Affi-Gel 10 which was coupled with the ligand through a spacer. No DNA polymerase alpha-primase activity from cherry salmon (Oncorhynchus masou) testes was bound on the araUTP-Sepharose 4B in all cases examined. On the other hand, the araUTP-Affi-Gel 10 retains this enzyme activity when poly(dA) or poly(dA)-oligo(dT)12-18 is present. The retained enzyme activity was sharply eluted around 100-mM KCl concentrations as a single peak, and this fraction showed a specific activity of about 170,000 units/mg as alpha-polymerase activity. The highly purified DNA polymerase alpha-primase isolated using the araUTP-Affi-Gel 10 contained only three polypeptides, which showed Mr values of 120,000, 62,000, and 58,000, respectively, as judged using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号