首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the many transmembrane receptor classes, the receptor tyrosine kinases represent an important superfamily, involved in many cellular processes like embryogenesis, development and cell division. Deregulation and dysfunctions of these receptors can lead to various forms of cancer and other diseases. Mostly, only fragmented knowledge exists about functioning of the entire receptors, and many studies have been performed on isolated receptor domains. In this review we focus on the function of the ErbB family of receptor tyrosine kinases with a special emphasis on the role of the transmembrane domain and on the mechanisms underlying regulated and deregulated signaling. Many general aspects of ErbB receptor structure and function have been analyzed and described. All human ErbBs appear to form homo- and heterodimers within cellular membranes and the single transmembrane domain of the receptors is involved in dimerization. Additionally, only defined structures of the transmembrane helix dimer allows signaling of ErbB receptors.Key words: ErbB, EGFR, receptor, receptor-tyrosine kinase, transmembrane proteins, signaling, helix-helix interaction  相似文献   

2.
Cuthbertson JM  Bond PJ  Sansom MS 《Biochemistry》2006,45(48):14298-14310
The glycophorin helix dimer is a paradigm for the exploration of helix-helix interactions in integral membrane proteins. Two NMR structures of the dimer are known, one in a detergent micelle and one in a lipid bilayer. Multiple (4 x 50 ns) molecular dynamics simulations starting from each of the two NMR structures, with each structure in either a dodecyl phosphocholine (DPC) micelle or a dimyristoyl phosphatidylcholine (DMPC) bilayer, have been used to explore the conformational dynamics of the helix dimer. Analysis of the helix-helix interaction, mediated by the GxxxG sequence motif, suggests convergence of the simulations to a common model. This is closer to the NMR structure determined in a bilayer than to micelle structure. The stable dimer interface in the final simulation model is characterized by (i) Gly/Gly packing and (ii) Thr/Thr interhelix H-bonds. These results demonstrate the ability of extended molecular dynamics simulations in a lipid bilayer environment to refine membrane protein structures or models derived from experimental data obtained in protein/detergent micelles.  相似文献   

3.
The roles of peptide-peptide charged interaction and lipid phase separation in helix-helix association in lipid bilayers were investigated using a model peptide, P(24), as a transmembrane alpha-helical peptide, and its four analogues. Fluorescence amino acids, tryptophan (P(24)W) and pyrenylalanine (P(24)Pya), were introduced into the sequence of P(24), respectively. Association of these peptides permits the resonance excitation energy transfer between tryptophan in P(24)W and pyrenylalanine in P(24)Pya or excimer formation between P(24)Pya themselves. To evaluate the effect of charged interaction on the association between alpha-helical transmembrane segments in membrane proteins, charged amino acids, glutamic acid (P(24)EW) and lysine (P(24)KPya), were introduced into P(24)W and P(24)Pya, respectively. Energy transfer experiments indicated that the charged interaction between the positive charge of lysine residue in P(24)KPya and the negative charge of glutamic acid residue in P(24)EW did not affect the aggregation of transmembrane peptides in lipid membranes. As the content ratio of sphingomyelin (SM) and cholesterol (Ch) was increased in the egg phosphatidylcholine (PC), the stronger excimer fluorescence spectra of P(24)Pya were observed, indicating that the co-existence of SM and Ch in PC liposomes, that is, the raft of SM and Ch, promotes the aggregation of the alpha-helical transmembrane peptides in lipid bilayers. Since the increase in the contents of SM and Ch leads to the decrease in the content of liquid crystalline-order phase, the moving area of transmembrane peptides might be limited in the liposomes, resulting in easy formation of the excimer in the presence of the lipid-raft.  相似文献   

4.
Sequence motifs are responsible for ensuring the proper assembly of transmembrane (TM) helices in the lipid bilayer. To understand the mechanism by which the affinity of a common TM-TM interactive motif is controlled at the sequence level, we compared two well characterized GXXXG motif-containing homodimers, those formed by human erythrocyte protein glycophorin A (GpA, high-affinity dimer) and those formed by bacteriophage M13 major coat protein (MCP, low affinity dimer). In both constructs, the GXXXG motif is necessary for TM-TM association. Although the remaining interfacial residues (underlined) in GpA (LIXXGVXXGVXXT) differ from those in MCP (VVXXGAXXGIXXF), molecular modeling performed here indicated that GpA and MCP dimers possess the same overall fold. Thus, we could introduce GpA interfacial residues, alone and in combination, into the MCP sequence to help decrypt the determinants of dimer affinity. Using both in vivo TOXCAT assays and SDS-PAGE gel migration rates of synthetic peptides derived from TM regions of the proteins, we found that the most distal interfacial sites, 12 residues apart (and approximately 18 A in structural space), work in concert to control TM-TM affinity synergistically.  相似文献   

5.
G Cevc 《Biochemistry》1987,26(20):6305-6310
The principle of regulation of various membrane properties by the hydrocarbon membrane interior is now well understood. The mechanism by which the interfacial membrane region including aqueous solution affects the state of the lipid bilayer matrix, however, is as yet unclear, despite its great biological and physiological significance. Data and analysis presented in this paper show that apart from the lipid chain type, length, and degree of unsaturation the main factors determining the characteristics of lipid membranes are surface polarity and interfacial hydration. These incorporate the effects of head group dipole and multipole moments as well as the head group ability for hydrogen bonding and can account for most of the changes in the physicochemical membrane state caused by the lipid head group structure, bulk pH value, salt content, solute adsorption, etc. The effects of membrane potential are much less, only 10-30% of the former. Variations in hydration thus not only govern the short- and medium-range intermolecular and intermembrane interactions but also provide a fast and energetically inexpensive regulatory mechanism for lipid membranes to adapt their characteristics, at least locally or transiently, to new requirements.  相似文献   

6.
A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.  相似文献   

7.
Summary The modifications of the electrical properties of bilayer lipid membranes (BLM) composed of cholesterol and an ionic surfactant upon interaction with charged polypeptides were studied. The addition of 10–8 m polylysine (Ps+) to one side of anionic cholesterol dodecylphosphate BLM increases the specific membrane conductance over 1000-fold (from 10–8 to 10–5 mho/cm2) and develops a cationic transmembrane potential larger than 50 mV. This potential is reverted by addition of polyanions such as RNA, polyglutamic or polyadenilic acid to the same side on which Ps+ is present, by addition of Ps+ to the opposite side, or by addition of trypsin to either side. Both conductance and potential changes are hindered by increasing the ionic strength or by raising the pH of the bathing medium, disappearing above pH 11.5 where it is known that Ps+ folds into an -helix. The interaction of polyglutamic acid (PGA) with a cationic cholesterol-hexadecyltrimethylammonium bromide BLM results in increased membrane conductance and development of an anionic transmembrane potential which is reverted by addition of polycations to the same aqueous phase where PGA is present. Addition of either Ps+ or PGA to one or both sides of a neutral BLM composed of 7-dehydrocholesterol induces no significant change. The observations suggest the formation of a lipid polymer membrane resultant from the interaction, predominantly electrostatic, of the isolated components. The implications of these results are discussed in terms of the current models of membrane structure.  相似文献   

8.
Phosphatidylinositol-4,5-bisphosphate (PIP2), which constitutes ∼1% of the plasma membrane phospholipid, plays a key role in membrane-delimited signaling. PIP2 regulates structurally and functionally diverse membrane proteins, including voltage- and ligand-gated ion channels, inwardly rectifying ion channels, transporters, and receptors. In some cases, the regulation is known to involve specific lipid–protein interactions, but the mechanisms by which PIP2 regulates many of its various targets remain to be fully elucidated. Because many PIP2 targets are membrane-spanning proteins, we explored whether the phosphoinositides might alter bilayer physical properties such as curvature and elasticity, which would alter the equilibrium between membrane protein conformational states—and thereby protein function. Taking advantage of the gramicidin A (gA) channels’ sensitivity to changes in lipid bilayer properties, we used gA-based fluorescence quenching and single-channel assays to examine the effects of long-chain PIP2s (brain PIP2, which is predominantly 1-stearyl-2-arachidonyl-PIP2, and dioleoyl-PIP2) on bilayer properties. When premixed with dioleoyl-phosphocholine at 2 mol %, both long-chain PIP2s produced similar changes in gA channel function (bilayer properties); when applied through the aqueous solution, however, brain PIP2 was a more potent modifier than dioleoyl-PIP2. Given the widespread use of short-chain dioctanoyl-phosphoinositides, we also examined the effects of diC8-phosphoinositol (PI), PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. The diC8 phosphoinositides, except for PI(3,5)P2, altered bilayer properties with potencies that decreased with increasing head group charge. Nonphosphoinositide diC8 phospholipids generally were more potent bilayer modifiers than the polyphosphoinositides. These results show that physiological increases or decreases in plasma membrane PIP2 levels, as a result of activation of PI kinases or phosphatases, are likely to alter lipid bilayer properties, in addition to any other effects they may have. The results further show that exogenous PIP2, as well as structural analogues that differ in acyl chain length or phosphorylation state, alters lipid bilayer properties at the concentrations used in many cell physiological experiments.  相似文献   

9.
We present theoretical work in which the degree of electrostatic coupling across a charged lipid bilayer in aqueous solution is analyzed on the basis of nonlinear Poisson–Boltzmann theory. In particular, we consider the electrostatic interaction of a single, large macroion with the two apposed leaflets of an oppositely charged lipid bilayer where the macroion is allowed to optimize its distance to the membrane. Three regimes are identified: a weak and a high macroion charge regime, separated by a regime of close macroion–membrane contact for intermediate charge densities. The corresponding free energies are used to estimate the degree of electrostatic coupling in a lamellar cationic lipid–DNA complex. That is, we calculate to what extent the one-dimensional DNA arrays in a sandwich-like lipoplex interact across the cationic membranes. We find that, in spite of the low dielectric constant inside a lipid membranes, there can be a significant electrostatic contribution to the experimentally observed cross-bilayer orientational ordering of the DNA arrays. Our approximate analytical model is complemented and supported by numerical calculations of the electrostatic potentials and free energies of the lamellar lipoplex geometry. To this end, we solve the nonlinear Poisson–Boltzmann equation within a unit cell of the lamellar lipoplex using a new lattice Boltzmann method. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

10.
Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.  相似文献   

11.
Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol''s biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket.  相似文献   

12.
The interaction of the delta-opioid receptor selective peptides, cyclic [D-Pen2, D-Pen5]-enkephalin [DPDPE] and its acyclic analog, DPDPE(SH)2, with neutral phospholipid bilayer membranes was examined by permeability and calorimetry measurements. The permeabilities were accomplished by entrapping either peptide inside of unilamellar liposomes (composed of a mixture of a molar ratio 65:25:10 phosphatidylcholine/phosphatidylethanolamine/cholesterol) then monitoring the peptide efflux through the bilayer. The initial permeability of DPDPE (first 12 h) averaged over four experiments was (0.91 +/- 0.47).10(-12) cm s-1. In contrast the average permeability of the acylic DPDPE(SH)2 was (4.26 +/- 0.23).10(-12) cm s-1. The effect of these peptides on the phase transition, Tm, of 1,2-dipalmitoylphosphatidylcholine (DPPC) bilayers was examined by high sensitivity differential scanning calorimetry. The Tm, the calorimetric enthalpy, and the van 't Hoff enthalpy of DPPC were not significantly altered by the presence of DPDPE, whereas the calorimetric data for DPPC with DPDPE(SH)2 showed a small, yet significant, increase (0.2 degrees C) in the Tm with a 30% decrease in the cooperative unit. Both the permeability and calorimetry data reveal a stronger peptide-membrane interaction in the case of the more flexible acyclic peptide.  相似文献   

13.
The transmembrane reaction of ferricyanide reduction by exogenous ascorbate in the liposomes in the presence of N,N,N',N'-tetramethylparaphenylenediamine (TMPD) or 2,3,5,6-tetramethylphenylenediamine (DAD) was investigated. The reaction equilibrium was shown to depend on the intraliposomal pH. At alkaline pH values under the experimental conditions used TMPD functions mainly as an electron carrier, while at acidic pH values TMPD effectuates a coupled transmembrane electron and proton transfer. This reaction is paralleled with local changes in the pH values in the unstirred layer near the membrane.  相似文献   

14.
Formation and properties of cell-size lipid bilayer vesicles   总被引:2,自引:2,他引:2       下载免费PDF全文
Hydration of single or mixed phospholipids or lipid protein mixtures at low ionic strength results in the formation of a population of large, solvent free, single bilayer vesicles with included volumes of up to 300 microliters/mumol lipid. Their size ranges from 0.1 to 300 microns and they can be sorted out according to size by centrifugation. When formed in distilled water their internal solution has a conductivity of 20-50 microseconds/cm-1, an osmolarity of 0.5-5 mOsM, and a density of 1.0005-1.001. The osmotic pressure produced by the internal solutes cause a surface stress of 25 dyn/cm for a 20-microns vesicle. Their elastic constant ranges from 75-150 dyn/cm. During formation they can internalize particles such as latex beads or cell nuclei. They can be impaled with microelectrodes, or patch clamped. They can also be sealed to a small Vaseline-treated hole in a thin partition between two aqueous compartments. Sealing occurs in two stages. In the first stage sealing resistance is similar to that seen with patch-clamp pipettes. In the second stage, a much tighter seal is obtained. After sealing, the smaller portion of the sealed vesicle can be selectively broken by an electric shock leaving a single membrane across the hole. The capacitance and resistance of such membranes, in the presence of 10 mM NaCl, are approximately 0.7 microF/cm2 and 10(8) omega cm2 for pure lipid vesicles. Gramicidin increases the membrane conductance and monazomycin induces voltage-dependent gating thus providing further evidence that the vesicles are bounded by a single bilayer.  相似文献   

15.
16.
Kawai T  Caaveiro JM  Abe R  Katagiri T  Tsumoto K 《FEBS letters》2011,585(22):3533-3537
ATP-binding cassette (ABC) transporters couple hydrolysis of ATP with vectorial transport across the cell membrane. We have reconstituted ABC transporter MsbA in nanodiscs of various sizes and lipid compositions to test whether ATPase activity is modulated by the properties of the bilayer. ATP hydrolysis rates, Michaelis-Menten parameters, and dissociation constants of substrate analog ATP-γ-S demonstrated that physicochemical properties of the bilayer modulated binding and ATPase activity. This is remarkable when considering that the catalytic unit is located ~50? from the transmembrane region. Our results validated the use of nanodiscs as an effective tool to reconstitute MsbA in an active catalytic state, and highlighted the close relationship between otherwise distant transmembrane and ATPase modules.  相似文献   

17.
Aromatic residues have been previously shown to mediate the self-assembly of different soluble proteins through pi-pi interactions (McGaughey, G. B., Gagne, M., and Rappe, A. K. (1998) J. Biol. Chem. 273, 15458-15463). However, their role in transmembrane (TM) assembly is not yet clear. In this study, we performed statistical analysis of the frequency of occurrence of aromatic pairs in a bacterial TM data base that provided an initial indication that the appearance of a specific aromatic pattern, Aromatic-XX-Aromatic, is not coincidental, similar to the well characterized QXXS motif. The QXXS motif was previously shown to be both critical and sufficient for stabilizing TM self-assembly. Using the ToxR system, we monitored the dimerization propensities of TM domains that contain mutations of interacting residues to aromatic amino acids and demonstrated that aromatic residues can adequately stabilize self-association. Importantly, we have provided an example of a natural TM domain, the cholera toxin secretion protein EpsM, whose TM self-assembly is mediated by an aromatic motif (WXXW). This is, in fact, the first evidence that aromatic residues are involved in the dimerization of a wild type TM domain. The association mediated by aromatic residues was found to be sensitive to the TM sequence, suggesting that aromatic residue motifs can provide a general means for specificity in TM assembly. Molecular dynamics provided a structural explanation for this backbone sequence sensitivity.  相似文献   

18.
BACKGROUND: Endothelium is supported, in normal conditions, by a basement membrane composed, among others, by collagen IV and laminin. Changes in the basement membrane composition could induce changes in endothelial cell modifying their interactions with leukocytes. METHODS AND RESULTS: Isolated polymorphonuclear cells (PMN) and peripheral blood mononuclear cells (PBMC) were added to cultured human umbilical endothelial cells (HuVEC) previously seeded on collagen IV, collagen I or gelatin. Adhesion of leukocytes to HUVEC and specific cytotoxicity were analysed. PMN adhesion and cytotoxicity were lower whereas those from PBMC were higher when HuVEC were seeded on collagen I, as compared with cells seeded on collagen IV. To analyse the mechanisms involved in these phenomena, P-selectin, ICAM-1, VCAM-1 and MCP- 1 expression were evaluated in HuVEC seeded on the different ECM components. P-selectin and mRNA expression of VCAM-1 were lower in cells seeded on collagen I. By contrast, MCP-1 expression was higher in collagen I. Collagen I-dependent effects were partially prevented when collagen I was treated with pepsin. ILK activity was lower in cells seeded on collagen I, whereas ERK 1/2 activity was enhanced. ILK overexpression reduced ERK 1/2 phosphorylation and this could promote the reduction in P-selectin and the increase in MCP-1. CONCLUSION: Collagen I decreased ILK activity and this would induce an increase in ERK 1/2 activity in HuVEC. As a consequence, the P-selectin content is diminished and, by contrast, the MCP-1 content is increased. The final effect is a lower recruitment of PMN and a higher adhesion of PBMC.  相似文献   

19.
Transmembrane helices are no longer believed to be just hydrophobic segments that exist solely to anchor proteins to a lipid bilayer, but rather they appear to have the capacity to specify function and structure. Specific interactions take place between hydrophobic segments within the lipid bilayer whereby subtle mutations that normally would be considered innocuous can result in dramatic structural differences. That such specificity takes place within the lipid bilayer implies that it may be possible to identify the most favorable interaction surface of transmembrane alpha-helices based on computational methods alone, as shown in this study. Herein, an attempt is made to map the energy surface of several transmembrane helix-helix interactions for several homo-oligomerizing proteins, where experimental data regarding their structure exist (glycophorin A, phospholamban, Influenza virus A M2, Influenza virus C CM2, and HIV vpu). It is shown that due to symmetry constraints in homo-oligomers the computational problem can be simplified. The results obtained are mostly consistent with known structural data and may additionally provide a view of possible alternate and intermediate configurations.  相似文献   

20.
The polymerization of amino acids into proteins occurs on ribosomes, with the rate influenced by the amino acids being polymerized. The imino acid proline is a poor donor and acceptor for peptide-bond formation, such that translational stalling occurs when three or more consecutive prolines (PPP) are encountered by the ribosome. In bacteria, stalling at PPP motifs is rescued by the elongation factor P (EF-P). Using SILAC mass spectrometry of Escherichia coli strains, we identified a subset of PPP-containing proteins for which the expression patterns remained unchanged or even appeared up-regulated in the absence of EF-P. Subsequent analysis using in vitro and in vivo reporter assays revealed that stalling at PPP motifs is influenced by the sequence context upstream of the stall site. Specifically, the presence of amino acids such as Cys and Thr preceding the stall site suppressed stalling at PPP motifs, whereas amino acids like Arg and His promoted stalling. In addition to providing fundamental insight into the mechanism of peptide-bond formation, our findings suggest how the sequence context of polyproline-containing proteins can be modulated to maximize the efficiency and yield of protein production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号