首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both pollination by animals and mycorrhizal symbioses with fungi are believed to have been important for the diversification of flowering plants. However, the mechanisms by which these above- and belowground mutualisms affect plant speciation and coexistence remain obscure. We provide evidence that shifts in pollination traits are important for both speciation and coexistence in a diverse group of orchids, whereas shifts in fungal partner are important for coexistence but not for speciation. Phylogenetic analyses show that recently diverged orchid species tend either to use different pollinator species or to place pollen on different body parts of the same species, consistent with the role of pollination-mode shifts in speciation. Field experiments provide support for the hypothesis that colonization of new geographical areas requires adaptation to new pollinator species, whereas co-occurring orchid species share pollinator species by placing pollen on different body parts. In contrast to pollinators, fungal partners are conserved between closely related orchid species, and orchids recruit the same fungal species even when transplanted to different areas. However, co-occurring orchid species tend to use different fungal partners, consistent with their expected role in reducing competition for nutrients. Our results demonstrate that the two dominant mutualisms in terrestrial ecosystems can play major but contrasting roles in plant community assembly and speciation.  相似文献   

2.
Evidence for mycorrhizal races in a cheating orchid   总被引:8,自引:0,他引:8  
Disruptive selection on habitat or host-specificity has contributed to the diversification of several animal groups, especially plant-feeding insects. Photosynthetic plants typically associate with a broad range of mycorrhizal fungi, while non-photosynthetic plants that capture energy from mycorrhizal fungi ('mycoheterotrophs') are often specialized towards particular taxa. Sister myco-heterotroph species are often specialized towards different fungal taxa, suggesting rapid evolutionary shifts in specificity. Within-species variation in specificity has not been explored. Here, we tested whether genetic variation for mycorrhizal specificity occurs within the myco-heterotrophic orchid Corallorhiza maculata. Variation across three single-nucleotide polymorphisms revealed six multilocus genotypes across 122 orchids from 30 sites. These orchids were associated with 22 different fungal species distributed across the Russulaceae (ectomycorrhizal basidiomycetes) according to internal-transcribed-spacer sequence analysis. The fungi associated with four out of the six orchid genotypes fell predominantly within distinct subclades of the Russulaceae. This result was supported by Monte Carlo simulation and analyses of molecular variance of fungal sequence diversity. Different orchid genotypes were often found growing in close proximity, but maintained their distinct fungal associations. Similar patterns are characteristic of insect populations diversifying onto multiple hosts. We suggest that diversification and specialization of mycorrhizal associations have contributed to the rapid radiation of the Orchidaceae.  相似文献   

3.
Tropical orchids constitute the greater part of orchid diversity, but little is known about their obligate mycorrhizal relationships. The specificity of these interactions and associated fungal distributions could influence orchid distributions and diversity. We investigated the mycorrhizal specificity of the tropical epiphytic orchid Ionopsis utricularioides across an extensive geographical range. DNA ITS sequence variation was surveyed in both plants and mycorrhizal fungi. Phylogeographic relationships were estimated for the mycorrhizal fungi. Orchid functional outcomes were determined through in vitro seed germination and seedling growth with a broad phylogenetic representation of fungi. Most fungal isolates derived from one clade of Ceratobasidium (anamorphs assignable to Ceratorhiza), with 78% within a narrower phylogenetic group, clade B. No correlation was found between the distributions of orchid and fungal genotypes. All fungal isolates significantly enhanced seed germination, while fungi in clade B significantly enhanced seedling growth. These results show that I. utricularioides associates with a phylogenetically narrow, effective fungal clade over a broad distribution. This preference for a widespread mycorrhizae may partly explain the ample distribution and abundance of I. utricularioides and contrasts with local mycorrhizal diversification seen in some nonphotosynthetic orchids. Enhanced orchid function with a particular fungal subclade suggests mycorrhizal specificity can increase orchid fitness.  相似文献   

4.
Orchidaceae is one of the most species-rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and their life cycle. The level of specificity of the association between orchid species and fungi can be related to the number of co-occurring orchid species. To investigate orchid mycorrhizal associations in adult-photosynthetic orchids, 16 Mediterranean orchid species belonging to 4 genera (Anacamptis, Ophrys, Orchis, and Serapias) at 11 different sites were subjected to DNA-based analysis. Eighteen operational taxonomic units representing two fungal families, Tulasnellaceae and Ceratobasidiaceae, were identified. All examined orchid species associated with different mycorrhizal fungi. Interestingly, there was a positive correlation between number of orchid species and number of mycorrhizal. Monospecific populations showed a lower number of fungi, while sympatric populations had a higher number of mycorrhizal fungi. Our results showed that Mediterranean orchid species associated with a higher number of mycorrhizal fungi confirming as photosynthetic orchids are typically generalists toward mycorrhizal fungi. Thus, photosynthetic orchids exhibit low specificity for fungal symbionts showing the potential for opportunistic associations with diverse fungi reducing competition for nutrient. We suggest that these characteristics could confer symbiotic assurance particularly in habitat with resource limitations or prone to stressful conditions.  相似文献   

5.
Background and Aims Most fully mycoheterotrophic (MH) orchids investigated to date are mycorrhizal with fungi that simultaneously form ectomycorrhizas with forest trees. Only a few MH orchids are currently known to be mycorrhizal with saprotrophic, mostly wood-decomposing, fungi instead of ectomycorrhizal fungi. This study provides evidence that the importance of associations between MH orchids and saprotrophic non-Rhizoctonia fungi is currently under-estimated.Methods Using microscopic techniques and molecular approaches, mycorrhizal fungi were localized and identified for seven MH orchid species from four genera and two subfamilies, Vanilloideae and Epidendroideae, growing in four humid and warm sub-tropical forests in Taiwan. Carbon and nitrogen stable isotope natural abundances of MH orchids and autotrophic reference plants were used in order to elucidate the nutritional resources utilized by the orchids.Key Results Six out of the seven MH orchid species were mycorrhizal with either wood- or litter-decaying saprotrophic fungi. Only one orchid species was associated with ectomycorrhizal fungi. Stable isotope abundance patterns showed significant distinctions between orchids mycorrhizal with the three groups of fungal hosts.Conclusions Mycoheterotrophic orchids utilizing saprotrophic non-Rhizoctonia fungi as a carbon and nutrient source are clearly more frequent than hitherto assumed. On the basis of this kind of nutrition, orchids can thrive in deeply shaded, light-limiting forest understoreys even without support from ectomycorrhizal fungi. Sub-tropical East Asia appears to be a hotspot for orchids mycorrhizal with saprotrophic non-Rhizoctonia fungi.  相似文献   

6.
All orchids have an obligate relationship with mycorrhizal symbionts. Most orchid mycorrhizal fungi are classified in the form-genus Rhizoctonia. This group includes anamorphs of Tulasnella, Ceratobasidium, and Thanatephorus. Rhizoctonia can be classified according to the number of nuclei in young cells (multi-, bi-, and uninucleate). From nine Puerto Rican orchids we isolated 108 Rhizoctonia-like fungi. Our isolates were either bi- or uninucleate, the first report of uninucleate Rhizoctonia-like fungi as orchid endophytes. We sequenced the internal transcribed spacer (ITS) region of nuclear ribosomal DNA from 26 isolates and identified four fungal lineages, all related to Ceratobasidium spp. from temperate regions. Most orchid species hosted more than one lineage, demonstrating considerable variation in mycorrhizal associations even among related orchid species. The uninucleate condition was not a good phylogenetic character in mycorrhizal fungi from Puerto Rico. All four lineages were represented by fungi from Tolumnia variegata, but only one lineage included fungi from Ionopsis utricularioides. Tropical epiphytic orchids appear to vary in degree of specificity in their mycorrhizal interactions more than previously thought.  相似文献   

7.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   

8.
Orchids typically depend on fungi for establishment from seeds, forming mycorrhizal associations with basidiomycete fungal partners in the polyphyletic group rhizoctonia from early stages of germination, sometimes with very high specificity. This has raised important questions about the roles of plant and fungal phylogenetics, and their habitat preferences, in controlling which fungi associate with which plants. In this issue of Molecular Ecology, Martos et al. (2012) report the largest network analysis to date for orchids and their mycorrhizal fungi, sampling a total of over 450 plants from nearly half the 150 tropical orchid species on Reunion Island, encompassing its main terrestrial and epiphytic orchid genera. The authors found a total of 95 operational taxonomic units of mycorrhizal fungi and investigated the architecture and nestedness of their bipartite networks with 73 orchid species. The most striking finding was a major ecological barrier between above‐ and belowground mycorrhizal fungal networks, despite both epiphytic and terrestrial orchids often associating with closely related taxa across all three major lineages of rhizoctonia fungi. The fungal partnerships of the epiphytes and terrestrial species involved a diversity of fungal taxa in a modular network architecture, with only about one in ten mycorrhizal fungi partnering orchids in both groups. In contrast, plant and fungal phylogenetics had weak or no effects on the network. This highlights the power of recently developed ecological network analyses to give new insights into controls on plant–fungal symbioses and raises exciting new hypotheses about the differences in properties and functioning of mycorrhiza in epiphytic and terrestrial orchids.  相似文献   

9.
Chen  Yanhong  Gao  Yue  Song  Linli  Zhao  Zeyu  Guo  Shunxing  Xing  Xiaoke 《中国科学:生命科学英文版》2019,62(6):838-847
Mycorrhizal fungi play an important role in the germination and growth of orchids essentially influencing their survival,abundance, and spatial distribution. In this study, we investigated the composition of the mycorrhizal fungal community in seven terrestrial orchid species inhabiting Song Mountain, Beijing, China, using Illumina MiSeq high-throughput sequencing. The mycorrhizal communities in the seven orchids were mainly composed of members of the Ceratobasidiaceae, Sebacinales, and Tulasnellaceae, while a number of ectomycorrhizal fungi belonging to the Russulaceae, Tricholomataceae, Thelephoraceae, and Cortinariaceae were occasionally observed. However, the dominant fungal associates and mycorrhizal community differed significantly among the orchid species as well as subhabitats. These findings confirm the previous observation that sympatric orchid species show different preferences for mycorrhizal fungi, which may drive niche partitioning and contribute to their cooccurrence.  相似文献   

10.
高越  郭顺星  邢晓科 《菌物学报》2019,38(11):1808-1825
自然环境下,兰科植物种子细小无胚乳,需要和适宜的真菌共生才能萌发,因而与真菌有天然的共生关系。自身繁殖率低加之近年来栖息地环境破坏导致兰科植物资源更加濒危,而通过筛选适合的真菌进行种子的共生萌发可以有效地实现兰科植物的种质保育及濒危种类野生居群的生态恢复。本文对地生型、附生型以及腐生型等兰科植物已发现的萌发真菌的多样性进行了系统地梳理,发现担子菌门的胶膜菌科、角担菌科以及蜡壳耳目真菌为已报道共生萌发真菌的主要类群;同时对兰科植物种子的共生萌发机制,包括形态学机制、营养机制和分子机制等方面的相关研究进行了归纳论述,但是当前关于兰科植物和真菌互作机制方面的研究还相对较少,许多问题需要进一步明确。本文对共生萌发真菌在兰科植物保育和繁育中的应用以及共生萌发机制的研究等方面具有一定的参考价值。  相似文献   

11.
? Premise of the study: The Orchidaceae is characterized by exceptional species diversity. Obligate orchid mycorrhizae are predicted to determine orchid distributions, and highly specific relationships between orchids and fungi may drive orchid diversification. In this study, mycorrhizal diversity was examined in the terrestrial, photosynthetic orchid genus Chiloglottis to test the hypothesis of mycorrhizal-mediated diversification in the genus Chiloglottis. This orchid genus secures pollination by sexual deception, an obligate and highly specific pollination strategy. Here we asked whether the obligate orchid-fungal interactions are also specific. ? Methods: Two sequenced loci, the internal transcribed spacer region (ITS) and mitochondrial large subunit (mtLSU), were used to identify fungal isolates and assess fungal species diversity. Symbiotic germination of two species Chiloglottis aff. jeanesii and C. valida were used to assess germination potential of isolates and confirm mycorrhizal association. ? Key results: Phylogenetic analyses revealed that six representative Chiloglottis species spanning a broad survey of the genus were all associated with a narrow group of monophyletic Tulasnella fungal lineages. ? Conclusions: The Chiloglottis-Tulasnella interaction appears to be the first known case of such a narrow symbiont association across a broadly surveyed orchid genus. It appears that the specific pollination system of Chiloglottis, rather than specific orchid-fungal interactions has been the key driving force in the diversification of the genus. These findings also indicate that plant groups with highly specific mycorrhizal partners can have a widespread distribution.  相似文献   

12.
Further advances in orchid mycorrhizal research   总被引:4,自引:0,他引:4  
Dearnaley JD 《Mycorrhiza》2007,17(6):475-486
Orchid mycorrhizas are mutualistic interactions between fungi and members of the Orchidaceae, the world’s largest plant family. The majority of the world’s orchids are photosynthetic, a small number of species are myco-heterotrophic throughout their lifetime, and recent research indicates a third mode (mixotrophy) whereby green orchids supplement their photosynthetically fixed carbon with carbon derived from their mycorrhizal fungus. Molecular identification studies of orchid-associated fungi indicate a wide range of fungi might be orchid mycobionts, show common fungal taxa across the globe and support the view that some orchids have specific fungal interactions. Confirmation of mycorrhizal status requires isolation of the fungi and restoration of functional mycorrhizas. New methods may now be used to store orchid-associated fungi and store and germinate seed, leading to more efficient culture of orchid species. However, many orchid mycorrhizas must be synthesised before conservation of these associations can be attempted in the field. Further gene expression studies of orchid mycorrhizas are needed to better understand the establishment and maintenance of the interaction. These data will add to efforts to conserve this diverse and valuable association.  相似文献   

13.
四川黄龙沟优势兰科植物菌根真菌多样性及其季节变化   总被引:1,自引:0,他引:1  
侯天文  金辉  刘红霞  安德军  罗毅波 《生态学报》2010,30(13):3424-3432
在自然条件下,兰科菌根真菌对兰花的种子萌发和植株生长都是必不可少的。为了解高原兰科植物菌根真菌的多样性状况及其季节性变化规律,选取了四川黄龙沟的两种生境中生长的8种优势兰科植物,分别于植株的萌芽期(4月份)、生长期(7月份)和果期(9月份)采集营养根进行菌根真菌的多样性研究。其中,黄花杓兰(Cypripedium flavum)、少花鹤顶兰(Phaiusdelavayi)、二叶匍茎兰(Galearis diantha)和广布小蝶兰(Ponerorchis chusua)分布在开阔生境;筒距兰(Tipularia szechuanica)、小花舌唇兰(Platanthera minutiflora)、珊瑚兰(Corallorhiza trifida)和尖唇鸟巢兰(Neottia acuminate)则分布在密林生境。通过对分离所得的50个菌株进行形态观察和ITS序列测定相结合的鉴定,共获得菌根真菌41种。对担子菌和子囊菌分别进行的系统发育树构建结果显示,子囊菌为优势种类(35种),以柔膜菌目(Helotiales)、炭角菌目(Xylariales)和肉座菌目(Hypocreales)内的种类为主,担子菌则以胶膜菌(Tulasnellaceaesp.)为主。在8种兰科植物中,二叶匐茎兰表现出极高的专一性,其菌根真菌均属于Hypocrea。其余兰科植物的菌根真菌分别属于不同的科,专一性相对较低。物种丰富度和Simpson多样性指数分析结果表明,密林生境的兰科植物的菌根真菌多样性在各生长季节基本高于开阔生境。此外,两种生境的优势兰科植物的菌根真菌物种多样性随生长季节转变所呈现的变化规律是相似的:萌发期和生长期的多样性均较高,峰值出现在生长期,到果期时则大幅下降。这与高原兰科植物的生长特性及营养供求规律基本相符。  相似文献   

14.
In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although these non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic, or pathogenic, fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species which grow in the understorey of forests: (i) form mycorrhizas with ectomycorrhizal fungi of forest trees; and (ii) have stable isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages.  相似文献   

15.
16.
Understanding the processes that determine the architecture of interaction networks represents a major challenge in ecology and evolutionary biology. One of the most important interactions involving plants is the interaction between plants and mycorrhizal fungi. While there is a mounting body of research that has studied the architecture of plant–fungus interaction networks, less is known about the potential factors that drive network architecture. In this study, we described the architecture of the network of interactions between mycorrhizal fungi and 44 orchid species that represented different life forms and co‐occurred in tropical forest and assessed the relative importance of ecological, evolutionary and co‐evolutionary mechanisms determining network architecture. We found 87 different fungal operational taxonomic units (OTUs), most of which were members of the Tulasnellaceae. Most orchid species associated with multiple fungi simultaneously, indicating that extreme host selectivity was rare. However, an increasing specificity towards Tulasnellaceae fungal associates from terrestrial to epiphytic and lithophytic orchids was observed. The network of interactions showed an association pattern that was significantly modular (M = 0.7389, Mrandom = 0.6998) and nested (NODF = 5.53, p < 0.05). Terrestrial orchids had almost no links to modules containing epiphytic or lithophytic orchids, while modules containing epiphytic orchids also contained lithophytic orchids. Within each life form several modules were observed, suggesting that the processes that organize orchid–fungus interactions are independent of life form. The overall phylogenetic signal for both partners in the interaction network was very weak. Overall, these results indicate that tropical orchids associate with a wide number of mycorrhizal fungi and that ecological rather than phylogenetic constraints determine network architecture.  相似文献   

17.
China has over 1,200 species of native orchids in nearly 173 genera. About one fourth of native species are of horticultural merit. Some species are of Chinese medicinal value. In fact, the demand on orchid species with high Chinese medicinal values such as Gastrodia elata, Dendrobium offcinale, along with demands on species of cultural importance, such as those in the genus of Cymbidium, is a major factor causing wild populations to diminish and in some cases, drive wild populations to the brink of extinction. These market demands have also driven studies on the role of mycorrhizal fungi in orchid seed germination, seedling and adult growth, and reproduction. Most of these mycorrhizal studies of Chinese orchids, however, are published in Chinese, some in medical journals, and thus overlooked by the mainstream orchid mycorrhizal publications. Yet some of these studies contained interesting discoveries on the nature of the mycorrhizal relationships between orchids and fungi. We present a review of some of these neglected publications. The most important discovery comes from the mycorrhizal studies on G. elata, in which the researchers concluded that those fungi species required to stimulate seed germination are different from those that facilitate the growth of G. elata beyond seedling stages. In addition, presence of the mycorrhizal fungi associated with vegetative growth of post-seedling G. elata hindered the germination of seeds. These phenomena were unreported prior to these studies. Furthermore, orchid mycorrhizal studies in China differ from the mainstream orchid studies in that many epiphytic species (in the genus of Dendrobium, as medicinal herbs) were investigated as well as terrestrial orchids (mostly in the genus Cymbidium, as traditional horticultural species). The different responses between epiphytic and terrestrial orchid seeds to fungi derived from roots suggest that epiphytic orchids may have a more general mycorrhizal relationship with fungi than do terrestrial orchid species during the seed germination stage. To date, orchid mycorrhizal research in China has had a strongly commercial purpose. We suggest that this continuing research on orchid mycorrhizal relationships are a solid foundation for further research that includes more rare and endangered taxa, and more in-situ studies to assist conservation and restoration of the endangered orchids. Knowledge on the identities and roles of mycorrhizal fungi of orchids holds one of the keys to successful restoration and sustainable use of Chinese orchids.  相似文献   

18.
Mycorrhizal fungi have substantial potential to influence plant distribution, especially in specialized orchids and mycoheterotrophic plants. However, little is known about environmental factors that influence the distribution of mycorrhizal fungi. Previous studies using seed packets have been unable to distinguish whether germination patterns resulted from the distribution of appropriate edaphic conditions or the distribution of host fungi, as these cannot be separated using seed packets alone. We used a combination of organic amendments, seed packets and molecular assessment of soil fungi required by three terrestrial orchid species to separate direct and indirect effects of fungi and environmental conditions on both seed germination and subsequent protocorm development. We found that locations with abundant mycorrhizal fungi were most likely to support seed germination and greater growth for all three orchids. Organic amendments affected germination primarily by affecting the abundance of appropriate mycorrhizal fungi. However, fungi associated with the three orchid species were affected differently by the organic amendments and by forest successional stage. The results of this study help contextualize the importance of fungal distribution and abundance to the population dynamics of plants with specific mycorrhizal requirements. Such phenomena may also be important for plants with more general mycorrhizal associations.  相似文献   

19.
Fully mycoheterotrophic plants offer a fascinating system for studying phylogenetic associations and dynamics of symbiotic specificity between hosts and parasites. These plants frequently parasitize mutualistic mycorrhizal symbioses between fungi and trees. Corallorhiza striata is a fully mycoheterotrophic, North American orchid distributed from Mexico to Canada, but the full extent of its fungal associations and specificity is unknown. Plastid DNA (orchids) and ITS (fungi) were sequenced for 107 individuals from 42 populations across North America to identify C. striata mycobionts and test hypotheses on fungal host specificity. Four largely allopatric orchid plastid clades were recovered, and all fungal sequences were most similar to ectomycorrhizal Tomentella (Thelephoraceae), nearly all to T. fuscocinerea. Orchid-fungal gene trees were incongruent but nonindependent; orchid clades associated with divergent sets of fungi, with a clade of Californian orchids subspecialized toward a narrow Tomentella fuscocinerea clade. Both geography and orchid clades were important determinants of fungal association, following a geographic mosaic model of specificity on Tomentella fungi. These findings corroborate patterns described in other fully mycoheterotrophic orchids and monotropes, represent one of the most extensive plant-fungal genetic investigations of fully mycoheterotrophic plants, and have conservation implications for the >400 plant species engaging in this trophic strategy worldwide.  相似文献   

20.
蒋玉玲  陈旭辉  苗青  曲波 《植物生态学报》2019,43(12):1079-1090
兰科植物的生存及生长高度依赖其根中的共生真菌, 其中的菌根真菌更是对兰科植物的种子萌发与后续生长有着非常重要的作用, 研究兰科植物根中的真菌, 尤其是菌根真菌, 对兰科植物的保护有重要作用。该研究利用第二代测序技术, 对中国辽宁省境内的9种属于极小种群的兰科植物的根、根际土和根围土中的真菌群落和菌根真菌组成进行了研究。结果显示, 兰科植物根中的真菌群落和根际土、根围土中的真菌群落具有显著差异。兰科植物根中的总操作分类单元(OTU)数目远小于根际土和根围土中的总OTU数目。同时, 兰科植物根中菌根真菌的种类和丰度与根际土、根围土中菌根真菌的种类与丰度没有明显联系。FunGuild分析结果显示, 丛枝菌根真菌在根际土与根围土中的丰度非常高, 但在兰科植物的根中却数量极少。这些结果表明, 兰科植物根中的真菌群落与土壤中的真菌群落在一定程度上是相互独立的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号