首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) and dichloromethylidene-bisphosphonate (Cl2MBP) on the structure of the organic matrix of heterotopically induced bone in guinea pig was studied. Heterotopic bone formation was induced by transplantation of allogenic urinary bladder epithelium. Starting from the day of transplantation the animals were treated subcutaneously with HEBP and Cl2MBP with a dose of 12.5 mg P/kg/day during 35 days. The control group was injected with 0.9% NaCl solution. The advantage of heterotopic bone induction as an experimental model is the fact that the applied drugs act on de novo bone formation. Collagen fibers were treated as markers of bone because their size and spatial arrangement reflect the structure and maturity of organic matrix of this tissue. Decalcified histological sections of induced bone, taken 35 days after implantation of inductor, were stained by the picrosirius method. This staining enhances the natural birefringency of collagen fibers and allows for better and specific visualization of collagen fibers bundles under polarizing microscope. In this way the amount of information in the analysed image is increased. Thirty five microphotographs were analysed from each of the investigated groups with the use of optical diffractometry. The radial distribution of light intensity in diffraction patterns was analysed what allowed to evaluate spatial frequencies connected with the width of collagen bundles in induced bone tissue. Since the spatial arrangement of collagen fibers in newly formed bone is random, analysis of angular distribution of light intensity in diffractograms was not performed.Using discriminant analysis the significant differences between all three studied groups of animals were found. The widest differences were found between the Cl2MBP and HEBP treated animals. They were larger than those between each of these two groups and the control one. In control as well as in HEBP treated animals thicker bundles of collagen fibers were more frequently observed than in the Cl2MBP treated group, while in the latter thin bundles, nondetected in the former two groups were found. Generally, the radial distribution of light intensity in diffraction patterns of the HEBP treated animals resembles more that in the control group than in the Cl2MBP treated one. The different effects of the two analysed bisphosphonates (BPs) on the organic bone matrix of heterotopically induced bone is interpreted as differences in their influence on osteogenic cells and/or as differences in their direct influence on extracellular collagen fiber bundles formation.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

2.
Summary Optical Fourier analysis was applied for evaluation of the differences between normal and pathologically changed bone tissue. Collagen fibers were used as markers of bone structure. To prove the usefulness of this technique for objective mathematical analysis of these differences the spatial distribution of collagen fiber bundles was evaluated in normal and osteopetrotic bone. The variation in the spatial distribution of collagen fiber bundles in cross sections of femur diaphyses was evaluated quantitatively by optical diffraction in three groups of Fatty Orl-op strain rats, i.e. phenotypically normal animals, osteopetrotic (op/op) mutants and op/op-mutants cured by transplantation of normal syngenic bone marrow. The histological sections of decalcified bone were stained with Sirus-Red and then photographed under polarizing microscope. The Sirus-Red staining was used to enhance the natural birefringency of collagen fibers. Diffractograms obtained from microphotographs of selected bone section areas, i.e. outer and inner circumferential lamellae and haversian bone of normal and cured op/op animals as well as whole cortical bone and woven bone filling the medullary cavities in op/op mutants were analysed separately. Diffractograms contain summarized information on the size and relative position of histological structures. The radial distribution of light energy informs on the size and/or distances between the structures, while angular distribution gives the relative position of these structures in histological sections. The radial and angular distribution of light energy were evaluated for each diffractogram with an electronic detector. The obtained distributions were described by several sets of parameters concerning the position, level and shape of local maxima and minima. Out of these parameters five with the highest discriminant power were chosen for further mathematical analysis. This analysis was based on the calculation of the position of centroids in the multidimensional space described by the linear functions of the chosen parameters for each of the evaluated bone section areas. The centroids (mean values of discriminant scores of each group) represent the centers of gravity of the analysed groups, while the separation of the centroids tested by the F-test illustrates the differences between the respective groups of selected bone section areas. A high level of separation of centroids was found when osteopetrotic bone was compared with normal one, what means that the spatial distribution, size and interstructural distances between the collagen fiber bundles in bone tissue in these two groups of animals differ markedly. A similar situation was observed when osteopetrotic bone was compared with bone tissue obtained from op/op mutants cured by transplantation of normal syngenic bone marrow. On the other hand, the level of separation of centroids was low when bone tissue of cured op/op mutants was compared with the control one, a finding which corresponds to the less pronounced histological differences between these two groups of animals. Computer-aided classification on single microphotographs of selected bone section areas to the known a priori type of bone tissue was performed. The percentage of cases correctly classified to one of the eight groups of selected bone section areas equals 47. The probability of reaching such a result by chance was estimated as less than 10–4. The percentage of cases classified correctly to one of any two statistically different groups was higher than 90. These observations demonstrate that optical diffractometry allows to describe in numerical terms the differences between normal and pathologically changed bone tissue, and therefore might be used for automatic evaluation of histopathological sections and interlaboratory comparative studies.  相似文献   

3.
Xu S  Yu JJ 《Biophysical journal》2006,91(11):4221-4229
Astronauts lose 1-2% of their bone minerals per month during space flights. A systematic search for a countermeasure relies on a good understanding of the mechanism of bone formation at the molecular level. How collagen fibers, the dominant matrix protein in bones, are mineralized remains mysterious. Atomic force microscopy was carried out, in combination with immunostaining and Western blotting, on bovine tibia to identify unrecognized building blocks involved in bone formation and for an elucidation of the process of collagen calcification in bone formation. Before demineralization, tiles of hydroxyapatite crystals were found stacked along bundles of collagen fibers. These tiles were homogeneous in size and shape with dimensions 0.69 x 0.77 x 0.2 micro m(3). Demineralization dissolved these tiles and revealed small spheres with an apparent diameter around 145 nm. These spheres appeared to be lipid particles since organic solvents dissolved them. The parallel collagen bundles had widths mostly <2 micro m. Composition analysis of compact bones indicated a high content of apolar lipids, including triglycerides and cholesterol esters. Apolar lipids are known to form lipid droplets or lipoproteins, and these spheres are unlikely to be matrix vesicles as reported for collagen calcification in epiphyseal cartilages. Results from this study suggest that the layer of round lipid particles on collagen fibers mediates the mineral deposition onto the fibers. The homogeneous size of these lipid particles and the presence of apolipoprotein in demineralized bone tissue suggest the possibility that these particles might be of lipoprotein origin. More studies are needed to verify the last claim and to exclude the possibility that they are secreted lipid droplets.  相似文献   

4.
Structural components of the organic bone matrix were located by immunohistochemical techniques in fresh-frozen sections of normal and dysplastic bone. Fine and coarse birefringent fibers were identified as separate and distinctive features in the extracellular matrix by antibodies raised against human collagen Type III. The glycoprotein tenascin was located on a proportion of the fibers in a characteristic beaded pattern, which was absent in dysplastic bone. The fibers originated in the periosteum or in the fibrous stroma of the marrow cavity and were oriented with regard to both the spatial and the lamellar organization of the bone. The disposition and composition of the fibers suggests that they form a preliminary framework on which intramembranous bone modeling proceeds, and that the specific location of tenascin on the fibers in normal developing membrane bone may be important in determining the alignment of the bone tissue. Epitopes recognized by the collagen Type I and fibronectin antibodies were demonstrated throughout the mineralized matrix, but their incorporation into the collagen "Type III" fibers was evident only outside the mineralized matrix.  相似文献   

5.
Estradiol produces both hypertrophic and hyperplastic changes in the uterus, and these changes are associated with alterations in the structure of collagen in the lamina propria. Estriol induces only hypertrophic responses in the immature rat uterus; its effects on collagen structure were characterized in this study. Light micrographs of Masson's trichrome-stained sections revealed that the intensity of the collagen stain in the lamina propria of the rat uterus was profoundly reduced, relative to that in controls, 4 h after estriol (40 micrograms/kg) administration. These changes were not evident 24 h after estriol administration. In control uteri, transmission electron micrographs revealed that the collagen fibers surrounding stromal cells formed dense collections of bundles that were seen throughout the extracellular matrix, whereas in tissues exposed to estriol 4 h earlier, large regions of the extracellular spaces were devoid of collagen bundles. The 4-h changes in collagen were eliminated when animals were pretreated with actinomycin D (8 mg/kg) or cycloheximide (4 mg/kg). Dense collections of collagen bundles were present in tissues 24 h after estriol treatment, and their appearance was not altered by actinomycin D or cycloheximide treatment. Alterations in collagen 4 h after hormone administration appeared to be estrogen-specific since dexamethasone (600 micrograms/kg) and dihydrotestosterone (400 micrograms/kg) had no effect. These data provide evidence that the changes in collagen structure in the uterus are associated with events that function during the hypertrophic growth responses induced by estrogens.  相似文献   

6.
Collagen texture and osteocyte distribution were analyzed in human woven‐ and lamellar‐bone using scanning and transmission electron microscopy. We provide data substantiating the concept that lamellar bone is made up of an alternation of dense‐acellular lamellae and loose‐cellular lamellae, all exhibiting an interwoven texture of collagen fibers. An attempt is also made to explain how the present findings might conform to those of authors whose models propose orderly, geometric arrangements of collagen fibers inside bony lamellae. Such a comparison is possible because the present investigation analyzes split loose lamellae and tangentially‐sectioned dense lamellae. It emerged that only loose lamellae can be dissected, revealing a loose interwoven collagen texture and halved osteocyte lacunae. Dense lamellae cannot be split because of their compactness. The analysis of tangentially sectioned dense lamellae demonstrates that they consist of a network of interwoven collagen fiber bundles. Inside each bundle, collagen fibers run parallel to each other but change direction where they enter adjacent bundles, at angles as described by other authors whose TEM investigations were performed at a much higher magnification than those of the present study. Consequently, what these authors consider to be a lamella are, instead, bundles of collagen fibers inside a lamella. There is discussion of the role played by the manner of osteocyte‐recruitment in the deposition of lamellar‐ and woven‐bone and how the presence of these cells is crucial for collagen spatial arrangement in bone tissues. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
An examination of collagen ultrastructure in the lamina propria of the immature ovariectomized rat uterus revealed that a single injection of estradiol (40 micrograms/kg) produced a biphasic effect on collagen structure and organization. In saline-treated animals (controls) dense populations of collagen bundles were seen throughout the extracellular matrix (EX). Cross-sections of these bundles suggested that the bundles run parallel to the long axis of the uterus and thin filaments seemed to form cross-links between collagen fibers. In contrast, large clear spaces, collagen fragments, and loosely packed bundles of collagen were observed in the EX of animals injected with estradiol 24 hr earlier. In a time course study (0, 1, 2, 4, 24, and 48 hr), estradiol treatment altered collagen structure and organization 1 hr following administration. Collagen bundles did not appear to be as densely packed as in control tissues and large clear spaces were evident in the EX. Two hours following estrogen administration, collagen fibers appeared to be fragmented and seemed to be separating from the plasma membrane of stromal cells. Four hours following estrogen administration, large clear spaces occupied most of the EX in the lamina propria. Collagen fragments were diffusely distributed throughout the EX and small cross-sectional patches of collagen bundles were present. In 48-hr-treated animals, collagen bundles reappeared and were often closely associated with the plasma membrane of stromal cells. The collagen was not as abundant as in control animals. An overview of the cellular organization of the lamina propria revealed that stromal cells in control tissues were more densely packed than in estradiol-treated tissues (4, 24, and 48 hr) and the stromal cell size appeared to increase in hormone-treated tissues. These responses provide a good model system to study the role of estradiol in the control of collagen structure and organization in the uterus.  相似文献   

8.
Morphological, immunocytochemical and ultrastructural methods were used to investigate the role of cells during elastogenesis in the elastic tendon of the chicken wing. Intimate contact of the cell processes with elastic fibers was observed in adult birds. During development there was a sequential appearance of microfibril bundles that became progressively impregnated with amorphous elastin, which eventually predominated in fully developed elastic fibers. The growing elastic fibers were usually enveloped by recesses of the cell surface. The tendon cells were polarized in their association with fibrous components of the extracellular matrix. This arrangement suggests that these cells secrete and organize elastic and collagen fibers to different extracellular compartments. These results show that cells are intimately involved in producing components of different extracellular matrix fibers, in controlling their assembly, and in defining their borders and associations during development.  相似文献   

9.
A cystein protease inhibitor was identified in the basic fraction of bovine milk. We have reported in our previous study that the milk basic protein (MBP) fraction suppressed osteoclast-mediated bone resorption in vitro. Since osteoclasts secreted cystein protease to digest collagen in the bone matrix, we identified the cystein protease inhibitor in MBP. A 12-kDa inhibitor was purified from MBP by papain affinity gel chromatography and subsequent Hi-Load Superdex 75 gel filtration chromatography. The N-terminal sequence of the 18 amino acid residues of the inhibitor corresponded to bovine cystatin C. The 12-kDa cystein protease inhibitor in MBP therefore seemed to be cystatin C. Purified cystatin suppressed bone resorption with the use of isolated osteoclasts in vitro. Cystatin in MBP is suggested as one of the factors inhibiting bone resorption.  相似文献   

10.
The mechanisms that regulate the migration, proliferation and differentiation of osteogenic cell populations in vivo are poorly understood. Elucidation of these mechanisms is essential for an understanding of the basic processes that determine mineralized connective tissue homeostasis and regeneration. Bisphosphonates are known to regulate bone metabolism, in part through effects on osteoclastic resorption. Given previous data from other in vitro and in vivo investigations, we considered that they could also affect the proliferation and differentiation of osteoblasts in vivo. We tested this hypothesis using a bisphosphonate (ethane-1-hydroxy-1,1-bisphosphonate, HEBP, etidronate) and a calvarial wound model in which osteogenic differentiation and bone formation are coordinately induced by the wounding stimulus. Wounds through the calvarial bone were created in 20 male Wistar rats. After surgery, animals were treated every day for 1 or 2 weeks with HEBP or saline (controls) and five rats in each group were killed at 1 or 2 weeks following surgery. Cellular proliferation and clonal growth were assessed by 3H-thymidine labeling 1 h before death followed by radioautography. Cellular differentiation of osteogenic cell populations was determined by immunohistochemical staining for osteopontin and bone sialoprotein. Von Kossa and toluidine blue staining were used for the assessment of mineralization and osteoid formation, and for morphometric analysis of wound closure. At 1 and 2 weeks after surgery HEBP promoted wound closure (> twofold greater than controls, P < 0.001) and mineralized/osteoid tissue formation in the bony compartment of the wound (> 50% higher than saline controls, P < 0.05). In HEBP-treated animals there was a > 50% increase in intracellular staining for osteopontin in the endosteum-lined spaces adjacent to the wound (P < 0.05) and increased staining for osteopontin in the nascent bone at the wound margin (> 50% greater than controls, P < 0.05). However, there were reduced cell counts and labeling indices at stromal precursor sites (65% reduction compared to controls; P < 0.01). As HEBP increased osteopontin expression and osteoid/mineralized tissue formation but reduced the proliferation of precursor cells, we conclude that in addition to blockade of bone resorption and mineralization, this drug, at doses which also reversibly inhibit mineralization, may promote osteoblast differentiation as well.  相似文献   

11.
The ultrastructure of the cuticle in four species of the marine Heterodrilus (H. paucifascis, H. pentcheffi, H. flexuosus, H. minisetosus) is investigated with transmission electron microscopy. The noncellular cuticle consists of several parts; closest to the epidermis is a thick zone of collagen fibers embedded in a matrix. The matrix continues outside the fiber zone, forming a layered epicuticle. The external surface of the epicuticle is covered by evenly distributed, membrane-bound bodies, termed epicuticular projections. The epicuticular projections have their longitudinal axis perpendicular to the surface of the cuticle and are attached to the surface by either the surrounding membrane itself or by short pedestals. Microvilli, extensions from the epidermal cells, penetrate and sometimes pass completely through the cuticle. There is interspecific variation in the morphology of the cuticle. The four studied species differ in the arrangement of the collagen fibers, from irregularly distributed fibril bundles to orthogonally arranged fiber layers, as well as in the number and density of layers in the epicuticle. One of the studied species, H. paucifascis, shows intraspecific variation, which is associated with sample locality. The Bahamian specimens of H. paucifascis have four layers in the epicuticle, club-shaped epicuticular projections, and collagen fibers forming a less defined orthogonal grid, while the Belizean specimens have three layers in the epicuticle, epicuticular projections with a bulging part at midlevel, and a distinct orthogonal grid. Based on these findings the variation in the morphology of the cuticle appears to be dependent on both phylogenetic constraints, and functional and environmental factors.  相似文献   

12.
Skin is a biological material the mechanical properties of which are dependent on the constituents from which it is assembled. Skin, the outer covering of animals is made up of collagen fibers arranged in more or less ordered arrays. Pufferfish skin provides a rigid framework to support the body contents and a flexible covering to allow whatever changes are necessary for the remarkable inflation mechanism. Here, we describe the structure and tensile properties of the dorsal and ventral skin of the pufferfish, Lagocephalus gloveri Abe and Tabeta, 1983. The ultimate tensile strength of ventral skin was found to be around two times higher than that of the dorsal skin. It was observed that the dorsal skin could resist more deformation than the ventral skin. The collagen fibers were arranged in different ordered arrays for ventral and dorsal skin and the concentration of fibers was found to be more in ventral than dorsal skin. This provides more stiffness to ventral skin. Scanning electron microscopy studies of the ventral skin showed a unidirectional arrangement of the collagen fibers, which provides more stretching capacity. Dorsal skin, on the other hand, has an orthogonal arrangement of fibers. The present study thus showed that the mechanical behavior of the skin of L. gloveri is strongly influenced by the concentration and arrangement of collagen fibers.  相似文献   

13.
Wound healing of deep and extensive burns can induce hypertrophic scar formation, which is a detrimental outcome for skin functionality. These scars are characterized by an impaired collagen fibril organization with fibril bundles oriented parallel to each other, in contrast with a basket weave pattern arrangement in normal skin. We prepared a reconstructed skin made of a collagen sponge seeded with human fibroblasts and keratinocytes and grown in vitro for 20 days. We transplanted it on the back of nude mice to assess whether this reconstructed skin could prevent scar formation. After transplantation, murine blood vessels had revascularized one-third of the sponge thickness on the fifth day and were observed underneath the epidermis at day 15. The reconstructed skin extracellular matrix was mostly made of human collagen I, organized in loosely packed fibrils 5 days after transplantation, with a mean diameter of 45 nm. After 40-90 days, fibril bundles were arranged in a basket weave pattern while their mean diameter increased to 56 nm, therefore exactly matching mouse skin papillary dermis organization. Interestingly, we showed that an elastic system remodeling was started off in this model. Indeed, human elastin deposits were organized in thin fibrils oriented perpendicular to epidermis at day 90 whereas elastic system usually took years to be re-established in human scars. Our reconstructed skin model promoted in only 90 days the remodeling of an extracellular matrix nearly similar to normal dermis (i.e. collagen fibril diameter and arrangement, and the partial reconstruction of the elastic system).  相似文献   

14.
We investigated the hypothesis that hindlimb unloading inhibits healing in fibrous connective tissue such as ligament. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing, and hindlimb-suspended healing. Ambulatory and suspended animals underwent surgical rupture of their medial collateral ligaments, whereas sham surgeries were performed on control animals. After 3 or 7 wk, mechanical and/or morphological properties were measured in ligament, muscle, and bone. During mechanical testing, most suspended ligaments failed in the scar region, indicating the greatest impairment was to ligament and not to bone-ligament insertion. Ligament testing revealed significant reductions in maximum force, ultimate stress, elastic modulus, and low-load properties in suspended animals. In addition, femoral mineral density, femoral strength, gastrocnemius mass, and tibialis anterior mass were significantly reduced. Microscopy revealed abnormal scar formation and cell distribution in suspended ligaments with extracellular matrix discontinuities and voids between misaligned, but well-formed, collagen fiber bundles. Hence, stress levels from ambulation appear unnecessary for formation of fiber bundles yet required for collagen to form structurally competent continuous fibers. Results support our hypothesis that hindlimb unloading impairs healing of fibrous connective tissue. In addition, this study provides compelling morphological evidence explaining the altered structure-function relationship in load-deprived healing connective tissue.  相似文献   

15.
We evaluated the distribution of Type III collagen, Type VI collagen, and fibrillin in human bone, using monoclonal antibodies (MAb) of proven specificity. All three molecules are present in developing and remodeling bone. Type III collagen is present in discrete fiber bundles throughout the bone cortex but is concentrated at the Haversian canal surface and in the fibers at the bone-periosteal interface. The collagen fibrils in these bundles are of uniform diameter. Type III-containing collagen fibers are detected at all ages examined, from 30 fetal weeks to 80 years. Type VI collagen is present in fetal bone in discrete fibrils separate from Type III collagen, and becomes restricted to the margins of bone cells and the bone surface by 7 years. The distribution of fibrillin resembles that of Type III collagen in the fetus, but at 7 years is absent from the interior of the cortex except for the canaliculi and cement lines, and remains concentrated in discrete fibers at the bone surface.  相似文献   

16.
The collagenous fibers of von Korff pass from the dentin matrix between the odontoblasts into the dental pulp. Although collagen fibrils are known to be present between odontoblasts, the existence of von Korff fibers has remained controversial. This may be because their continuity between the dentin matrix and the pulp has not been demonstrated ultrastructurally. In this study we have examined the odontoblast layer in the middle to apical regions of perfusion-fixed permanent canine teeth of cats by using transmission electron microscopy. Ultrathin sections of demineralized specimens revealed frequent bundles of collagen fibrils 1) entering the odontoblast layer from the predentin, 2) present between odontoblast cell bodies, and 3) passing from between the odontoblasts into the pulp. The question of continuity of these bundles from the predentin, across the odontoblast layer into the pulp was examined in ultrathin serial sections. Unbroken continuity of a collagen bundle from the predentin between the odontoblasts into the pulp was established in a reconstruction of one series of 22 serial sections and was very strongly suggested by a number of other series in which the numbers of available sections restricted their full visibility. This investigation has shown, therefore, that classical von Korff fibers are present and that these fibers are present in fully erupted teeth with closed apices, i.e., at a time when secondary circumpulpal dentinogenesis is in progress. The findings call for a reexamination of the question of von Korff fibers during mantle dentinogenesis and primary circumpulpal dentinogenesis. Resolution of their existence at the earlier stages of dentinogenesis should be possible by using the ultrathin serial-sectioning technique.  相似文献   

17.
The role of forebrain noradrenaline in seizures induced by the convulsant drug Metrazol was examined in animals pretreated with injections of 6-hydroxydopamine into the fibers of the ascending noradrenergic bundles. A consistent potentiation of the duration and intensity of the seizures was found in the noradrenaline-depleted animals.  相似文献   

18.
Three-dimensional arrangement of the smooth muscle bundles of the outer layer of the vas deferens musculature in mammals (guinea-pigs, rats and mice) was examined under the scanning electron microscope (SEM) after removal of fibrous connective tissue elements. Muscle fibers of all examined animals formed bundles. In the guinea-pig, similar sized bundles extended longitudinally along the tubular vas deferens and branched to anastomose with branches of neighboring bundles to create a net which was regular in form. In the rat, longitudinal muscle bundles constituted an outer layer in the form of a net, which was roughly enmeshed with variously-sized, transverse or oblique bundles in anastomosis with underlying longitudinal bundles. In the mouse, longitudinal bundles of irregular thickness branched into many small bundles and anastomosed not only with neighboring bundles to create an irregular net. In both the rat and the mouse there were bundles extending over many other bundles to anastomose with them at a far point. Junctional structures were well developed between neighboring fibers. Myofibrils were represented as thin streaks on muscle fiber surfaces. Varicosed nerve fibers existed between muscle fibers and in narrow cytoplasmic grooves in all the examined animal species. The findings are discussed in correlation with electrophysiological data.  相似文献   

19.
C S Wink  E M Hill 《Acta anatomica》1988,132(4):321-323
This study reports the effects of dichloromethylene biphosphonate (Cl2MBP), an inhibitor of bone remodeling, on femoral expansion in four groups of adult male rats; (1) sham-operated controls; (2) sham operated + injections of Cl2MBP; (3) castrated (osteoporotic), and (4) castrated + injections of Cl2MBP. After controlling for body weight, analyses of covariance revealed significant differences in total femoral width between animals that had received Cl2MBP and those that had not. The results indicated that Cl2MBP treatment retarded femoral expansion in both castrated and normal adult male rats.  相似文献   

20.
Bovine corneal endothelial cells deposit an extracellular matrix in short-term cultures, which contains various morphologically distinct structures when analysed by electron microscopy after negative staining. Amongst these were long-spacing fibers with a 150 nm periodicity, which appeared also to be assembled into more complex hexagonal lattices. Another structure was fine filaments, 10-40 nm in diameter, which occasionally exhibited 67 nm periodic cross-striation. Non-striated 10-20 nm filaments sometimes formed radially oriented bundles arranged in networks and fuzzy granular material was associated with the filaments in the bundles. Often, these bundles extended into solitary filaments, 10-20 nm in diameter, with a smooth surface. In addition, amorphous patches were seen, which contained dense aggregates of fibrillar and granular material. In longer-term cultures, some of the structures coalesced to form large fibrillar bundles. By using specific antibodies to various extracellular matrix components and immunolabeling with gold some of these structures could be identified as to their protein composition. Whereas fibronectin antibodies labeled a variety of structures--fine filaments with granular materials, radially oriented bundles, patchy amorphous aggregates and small granular material scattered throughout the background--type III collagen antibody predominantly labeled filaments with periodic banding (10-40 nm in diameter). A small amount of type III specific labeling was also observed over the networks of radially oriented fibrils and fine filaments associated with granular material. Type IV collagen and laminin antibodies localized in areas of the patchy amorphous aggregates. Type VI collagen antibodies, on the other hand, labeled fine filaments and the gold particles showed a pattern of 100 nm periodicity. Many of the fine 10-20 nm filaments exhibited a tubular appearance on cross-section, but they were not reactive with any of the antibodies used. Also negative were the long-spacing fibers and assemblies--including hexagonal lattices--containing this structural element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号