共查询到20条相似文献,搜索用时 0 毫秒
1.
Chondroitin sulfate and heparan sulfate proteoglycans of PC12 pheochromocytoma cells 总被引:4,自引:0,他引:4
D C Gowda B Goossen R K Margolis R U Margolis 《The Journal of biological chemistry》1989,264(19):11436-11443
We have isolated and characterized the cell-associated and secreted proteoglycans synthesized by a clonal line of rat adrenal medullary PC12 pheochromocytoma cells, which have been extensively employed for the study of a wide variety of neurobiological processes. Chondroitin sulfate accounts for 70-80% of the [35S] sulfate-labeled proteoglycans present in PC12 cells and secreted into the medium. Two major chondroitin sulfate proteoglycans were detected with molecular sizes of 45,000-100,000 and 120,000-190,000, comprising 14- and 105-kDa core proteins and one or two chondroitin sulfate chains with an average molecular size of 34 kDa. In contrast to the chondroitin sulfate proteoglycans, one major heparan sulfate proteoglycan accounts for most of the remaining 20-30% of the [35S] sulfate-labeled proteoglycans present in the PC12 cells and medium. It has a molecular size of 95,000-170,000, comprising a 65-kDa core protein and two to six 16-kDa heparan sulfate chains. Both the chondroitin sulfate and heparan sulfate proteoglycans also contain O-glycosidically linked oligosaccharides (25-28% of the total oligosaccharides) and predominantly tri- and tetraantennary N-glycosidic oligosaccharides. Proteoglycans produced by the original clone of PC12 cells were compared with those of two other PC12 cell lines (B2 and F3) that differ from the original clone in morphology, adhesive properties, and response to nerve growth factor. Although the F3 cells (a mutant line derived from B2 and reported to lack a cell surface heparan sulfate proteoglycan) do not contain a large molecular size heparan sulfate proteoglycan species, there was no significant difference between the B2 and F3 cells in the percentage of total heparan sulfate released by mild trypsinization, and both the B2 and F3 cells synthesized cell-associated and secreted chondroitin sulfate and heparan sulfate proteoglycans having properties very similar to those of the original PC12 cell line but with a reversed ratio (35:65) of chondroitin sulfate to heparan sulfate. 相似文献
2.
R K Margolis J A Ripellino B Goossen R Steinbrich R U Margolis 《Biochemical and biophysical research communications》1987,145(3):1142-1148
After biosynthetic labeling of sulfated glycoproteins in rat and goldfish brain and PC12 pheochromocytoma cells with sodium [35S]sulfate, it was observed that all of the bands reactive with the HNK-1 antibody on immunoblots of sodium dodecyl sulfate-polyacrylamide gels corresponded with sulfate-labeled proteins detected by fluorography. These results support data from other studies, which indicate that the HNK-1 epitope is a 3-sulfo-glucuronic acid residue. In addition to its presence in a wide range of nervous tissue glycoproteins, the HNK-1 epitope was also detected in chromaffin granule membranes, chondroitinase ABC, and in chondroitin sulfate proteoglycans of brain, cartilage, and chondrosarcoma. However, it is not present in the heparan sulfate proteoglycan of brain, or in either of two chondroitin sulfate/dermatan sulfate proteoglycans in the chromaffin granule matrix. 相似文献
3.
4.
Heparan sulfate and chondroitin sulfate proteoglycans inhibit E-selectin binding to endothelial cells 总被引:3,自引:0,他引:3
E-selectin is a cell adhesion molecule involved in the initial rolling and adhesion of leukocytes to the endothelium during inflammation. In addition, in vitro studies have suggested that an interaction between E-selectin and binding sites such as sialyl Lewis X-containing oligosaccharides on endothelial cells may be important for angiogenesis. In order to investigate the binding of E-selectin to endothelial cells, we developed an ELISA assay using chimeric E-selectin-Ig molecules and endothelial cells fixed on poly-L-lysine coated plates. Our results indicate that E-selectin-Ig binds to both bovine capillary endothelial cells and human dermal microvascular endothelial cells in a calcium-dependent and saturable manner. The binding is inhibited markedly by heparin and by syndecan-1 ectodomain, and moderately by chondroitin sulfate, but not by sialyl Lewis X-containing oligosaccharides. These results suggest that heparan sulfate and chondroitin sulfate proteoglycans on endothelial cells are potential ligands for E-selectin. 相似文献
5.
6.
Kokenyesi R 《Journal of cellular biochemistry》2001,83(2):259-270
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells. 相似文献
7.
Emerging studies have revealed new roles for the neural extracellular matrix in neuropathologies. The structure of this matrix is unusual and uniquely enriched in chondroitin sulfate proteoglycans, particularly those of the lectican family. Historically, lecticans have attracted considerable interest in the normal and injured brain for their prominent roles as inhibitors of cellular motility, neurite extension and synaptic plasticity. However, these molecules are structurally heterogeneous, have distinct expression patterns and mediate unique interactions, suggesting that they might have other functions in addition to their traditional role as chemorepulsants. Here, we review recent work demonstrating unique modifications and structural microheterogeneity of the lecticans in the diseased CNS, which might relate to novel roles of these molecules in neuropathologies. 相似文献
8.
1. The interaction of isolated rat hepatocytes with exogenous 3H-labeled chondroitin-4-sulfate and dermatan sulfate and with biosynthetically 35S-labeled proteoglycans secreted by cultured rat liver fat-storing cells has been studied. 2. All ligands are bound by hepatocytes in a concentration-dependent manner. Scatchard-plot analysis of the data revealed the existence of high- and low-affinity binding modes. 3. The cell-bound exogenous [3H]glycosaminoglycans could be displaced by each unlabeled ligand and by heparin, whereas displacement of the endogenous material was less effective. 4. Binding of all ligands to hepatocytes increased with time. For the exogenous glycosaminoglycans the two- to threefold amount was retained at 37 degrees C as compared to 4 degrees C; it was markedly reduced by pretreatment of the cells with trypsin. 5. Degradation of the exogenous ligands could be detected neither for the cell-bound fraction nor for the free glycosaminoglycans in the culture medium. 6. The binding of the ligands to hepatocytes is viewed as a cell-matrix interaction. Its possible pathobiochemical relevance in liver fibrosis or neoplasia is discussed. 相似文献
9.
Infection with Plasmodium falciparum during pregnancy leads to the selective adherence of infected red blood cells (IRBCs) in the placenta causing placental malaria. The IRBC adherence is mediated through the chondroitin 4-sulfate (C4S) chains of unusually low-sulfated chondroitin sulfate proteoglycans (CSPGs) in the placenta. To study the structural interactions involved in C4S-IRBC adherence, various investigators have used CSPGs from different sources. Since the structural characteristics of the polysaccharide chains in CSPGs from various sources differ substantially, the CSPGs are likely to differentially bind IRBCs. In this study, the CSPG purified from bovine trachea, a CSPG form of human recombinant thrombomodulin (TM-CSPG), two CSPG fractions from bovine cornea, and the CSPGs of human placenta, the natural receptor, were studied in parallel for their IRBC binding characteristics. The TM-CSPG and corneal CSPG fractions could bind IRBCs at significantly higher density compared to the placental CSPGs. However, the avidity of IRBC binding by TM-CSPG was considerably low compared to placental CSPGs. The corneal CSPGs have substantially higher binding strengths. The bovine tracheal CSPG bound IRBCs at much lower density and exhibited significantly lower avidity than the placental CSPGs. These data demonstrated that the bovine tracheal CSPG and TM-CSPG are not ideal for studying the fine structural interactions involved in the IRBC adherence to the placental C4S, whereas the bovine corneal CSPGs are better alternatives to the placental CSPGs for determining these interactions. 相似文献
10.
Chondroitin and chondroitin sulfates belong to the family of glycosaminoglycans. They are most widely distributed in animal tissues, where they are involved in structural functions and in cell-cell communication. Their basic structures consist of a disaccharidic repeating unit of beta-D-glucuronic acid (GlcA) and 2-acetamido-2-deoxy-beta-D-galactose (GalNAc), this latter being sulfated at different positions. Molecular mechanics has been applied to calculate the adiabatic energy maps for each of the constituting disaccharides of chondroitin, chondroitin 4-sulfate, and chondroitin 6-sulfate using the MM3 force field. Based on these maps, higher levels of structural organization have been simulated. On one hand, the disordered state is studied through a Metropolis-based algorithm; the resulting chains present a behavior of semirigid polymers, with an order of stiffness: chondroitin 4-sulfate > chondroitin > chondroitin 6-sulfate. On the other hand, the exploration of the stable ordered forms leads to numerous helical conformations of comparable energies. Several of these conformations correspond to the experimentally observed ones. The ability of coordination with cations has also been explored, resulting in a preferential stereospecificity for calcium ions when compared to sodium ions. 相似文献
11.
Inhibition of neural crest cell migration by aggregating chondroitin sulfate proteoglycans is mediated by their hyaluronan-binding region. 总被引:6,自引:0,他引:6
We have recently shown that the large hyaluronan-aggregating chondroitin sulfate proteoglycan from cartilage (PG-LA) is unfavorable as a substrate for neural crest cell migration in vitro and that this macromolecule inhibits cell dispersion on fibronectin substrates when included in the medium (R. Perris and S. Johansson, 1987, J. Cell Biol. 105, 2511-2521). In this study we present data on the specificity of the migration-repressing activity of PG-LA and data on the molecular mechanisms by which the proteoglycan might impair neural crest cell motility. Soluble PG-LA potently impaired cell migration on substrates of laminin/laminin-nidogen, vitronectin, and collagen types I, III, IV, and VI. When tested in solid-phase binding assays, PG-LA bound avidly to substrates of collagen types I-III and V. Conversely, minimal amounts of the proteoglycan bound to substrates of laminin-nidogen, vitronectin, collagen types IV and VI, and fibronectin or to a proteolytic fragment encompassing its cell-binding domain (105 kDa). Preincubation of these substrates with soluble PG-LA prior to plating of the cells had no effect on their locomotory behavior. These results indicate that PG-LA affects neural crest cell movement primarily through an interaction with the cell surface, rather than by association with the cell motility-promoting substrate molecules. The molecular interaction of soluble PG-LA with neural crest cells was further examined by analyzing the effects of isolated domains of the proteoglycan on cell migration on fibronectin. Addition of chondroitin sulfate chains, the core protein free of glycosaminoglycans, the isolated hyaluronan-binding region (HABr), or a proteolytic fragment corresponding to the keratan sulfate-enriched domain of the PG-LA to neural crest cells migrating on fibronectin or the 105-kDa fibronectin fragment had no significant effect on their motility. After reduction and alkylation, PG-LA was considerably less efficient in perturbing cell movement on fibronectin substrates and virtually ineffective in altering migration on the 105-kDa fragment. In the presence of hyaluronan fragments of 16-30 monosaccharides in length, or an antiserum against the HABr, the migration repressing activity of PG-LA was reduced in a dose-dependent fashion. Furthermore, the inhibitory action of PG-LA was significantly reduced by treatment of the cells with Streptomyces hyaluronidase.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
12.
Conditioning of native substrates by chondroitin sulfate proteoglycans during cardiac mesenchymal cell migration 下载免费PDF全文
《The Journal of cell biology》1986,103(6):2475-2487
It is generally proposed that embryonic mesenchymal cells use sulfated macromolecules during in situ migration. Attempts to resolve the molecular mechanisms for this hypothesis using planar substrates have been met with limited success. In the present study, we provide evidence that the functional significance of certain sulfated macromolecules during mesenchyme migration required the presence of the endogenous migratory template; i.e., native collagen fibrils. Using three-dimensional collagen gel lattices and whole embryo culture procedures to produce metabolically labeled sulfated macromolecules in embryonic chick cardiac tissue, we show that these molecules were primarily proteoglycan (PG) in nature and that their distribution was class specific; i.e., heparan sulfate PG, the minor labeled component (15%), remained pericellular while chondroitin sulfate (CS) PG, the predominately labeled PG (85%), was associated with collagen fibrils as "trails" of 50-60-nm particles when viewed by scanning electron microscopy. Progressive "conditioning" of collagen with CS-PG inhibited the capacity of the template to support subsequent cell migration. Lastly, metabolically labeled, PG-derived CS chains were compared with respect to degree of sulfation in either the C-6 or C-4 position by chromatographic separation of chondroitinase AC digestion products. Results from temporal and regional comparisons of in situ-labeled PGs indicated a positive correlation between the presence of mesenchyme and an enrichment of disaccharide-4S relative to that from regions lacking mesenchyme (i.e., principally myocardial tissue). The suggestion of a mesenchyme-specific CS-PG was substantiated by similarly examining the PGs synthesized solely by cardiac mesenchymal cells migrating within hydrated collagen lattice in culture. These data were incorporated into a model of "substratum conditioning" which provides a molecular mechanism by which secretion of mesenchyme-specific CS-PGs not only provides for directed and sustained cell movement, but ultimately inhibits migration of the cell population as a whole. 相似文献
13.
Proteoglycans were extracted from nuclease-digested sonicates of 10(9) rat basophilic leukemia (RBL-1) cells by the addition of 0.1% Zwittergent 3-12 and 4 M guanidine hydrochloride and were purified by sequential CsCl density gradient ultracentrifugation, DE52 ion exchange chromatography, and Sepharose CL-6B gel filtration chromatography under dissociative conditions. Between 0.3 and 0.8 mg of purified proteoglycan was obtained from approximately 1 g initial dry weight of cells with a purification of 200-800-fold. The purified proteoglycans had a hydrodynamic size range of Mr 100,000-150,000 and were resistant to degradation by a molar excess of trypsin, alpha-chymotrypsin, Pronase, papain, chymopapain, collagenase, and elastase. Amino acid analysis of the peptide core revealed a preponderance of Gly (35.4%), Ser (22.5%), and Ala (9.5%). Approximately 70% of the glycosaminoglycan side chains of RBL-1 proteoglycans were digested by chondroitinase ABC and 27% were hydrolyzed by treatment with nitrous acid. Sephadex G-200 chromatography of glycosaminoglycans liberated from the intact molecule by beta-elimination demonstrated that both the nitrous acid-resistant (chondroitin sulfate) and the chondroitinase ABC-resistant (heparin/heparan sulfate) glycosaminoglycans were of approximately Mr 12,000. Analysis of the chondroitin sulfate disaccharides in different preparations by amino-cyano high performance liquid chromatography revealed that 9-29% were the unusual disulfated disaccharide chondroitin sulfate di-B (IdUA-2-SO4----GalNAc-4-SO4); the remainder were the monosulfated disaccharide GlcUA----GalNAc-4-SO4. Subpopulations of proteoglycans in one preparation were separated by anion exchange high performance liquid chromatography and were found to contain chondroitin sulfate glycosaminoglycans whose disulfated disaccharides ranged from 9-49%. However, no segregation of subpopulations without both chondroitin sulfate di-B and heparin/heparan sulfate glycosaminoglycans was achieved, suggesting that RBL-1 proteoglycans might be hybrids containing both classes of glycosaminoglycans. Sepharose CL-6B chromatography of RBL-1 proteoglycans digested with chondroitinase ABC revealed that less than 7% of the molecules in the digest chromatographed with the hydrodynamic size of undigested proteoglycans, suggesting that at most 7% of the proteoglycans lack chondroitin sulfate glycosaminoglycans.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
14.
Chondroitin sulfate proteoglycans (CSPGs) are the major class of proteoglycans synthesized by mouse uterine stroma in vitro (Jacobs, A. L., and Carson, D. D. (1991). J. Biol. Chem. 266, 15,464-15,473). In the present study, stromal CSPGs were isolated and examined with regard to their ability to bind to specific extracellular matrix (ECM) components. Of a variety of ECM components tested, only collagen type I formed stable complexes with stromal CSPGs in both solid phase and solution binding assays. Proteolytic digestion of the CSPGs did not affect binding and suggested that the protein cores did not participate directly in binding. Furthermore, free chondroitin sulfate polysaccharides do not compete effectively in the binding assays. Therefore, interactions with multiple CS chains and/or the higher charge density afforded by intact CSPGs appear to be required for retention by collagen type I. Intact CSPGs were examined for their ability to modulate embryo attachment and outgrowth in vitro on fibronectin- or collagen type I-coated surfaces. In both cases, intact CSPGs, but not their constituent protein cores or polysaccharides, inhibited both the rate and the extent of outgrowth formation. In addition, embryo outgrowth on stromal ECM was enhanced by predigestion with chondroitinase. Addition of exogenous CSPG markedly retarded embryo outgrowth on stromal matrix. Collectively, these data indicate that stromal cell-derived CSPGs are retained by collagen type I in the stromal interstitial ECM where these molecules may attenuate trophoblast invasive behavior. 相似文献
15.
J Aikawa M Isemura H Munakata N Ototani C Kodama N Hayashi K Kurosawa K Yoshinaga K Tada Z Yosizawa 《Biochimica et biophysica acta》1986,883(1):83-90
A chondroitin sulfate proteoglycan fraction was prepared from the 3 M MgCl2 extract of porcine aortas by DEAE-cellulose chromatography, followed by gel filtration through Sepharose CL-4B. Affinity chromatography of the fraction with antithrombin III-agarose yielded two chondroitin sulfate proteoglycans of a non-binding (proteoglycan IA) and binding (proteoglycan IB) nature. Proteoglycans IA and IB were different from each other in molecular size, in proportion of the protein relative to the polysaccharide portion, and in size of the chondroitin sulfate chain. They were also distinguished immunochemically. These data indicate that the intima-media of the aorta contains at least two distinct species of chondroitin sulfate proteoglycan. 相似文献
16.
U Rauch P Gao A Janetzko A Flaccus L Hilgenberg H Tekotte R K Margolis R U Margolis 《The Journal of biological chemistry》1991,266(22):14785-14801
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
17.
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix in the CNS that inhibit axonal regeneration after CNS injury. Signaling pathways in neurons triggered by CSPGs are still largely unknown. In this study, using well-characterized in vitro assays for neurite outgrowth and neurite guidance, we demonstrate a major role for myosin II in the response of neurons to CSPGs. We found that the phosphorylation of myosin II regulatory light chains is increased by CSPGs. Specific inhibition of myosin II activity with blebbistatin allows growing neurites to cross onto CSPG-rich areas and increases the length of neurites of neurons growing on CSPGs. Using specific gene knockdown, we demonstrate selective roles for myosin IIA and IIB in these processes. Time lapse microscopy and immunocytochemistry demonstrated that CSPGs also inhibit cell adhesion and cell spreading. Inhibition of myosin II selectively accelerated neurite initiation without altering cell adhesion and spreading on CSPGs. 相似文献
18.
Isolation of the major chondroitin sulfate/dermatan sulfate and heparan sulfate proteoglycans from embryonic chicken retina 总被引:1,自引:0,他引:1
J E Morris 《Archives of biochemistry and biophysics》1984,235(1):127-140
A technique is presented for the preparation of three major proteoglycans from 14-day embryonic chicken retinas following their culture overnight with [35S]sulfate and either [3H]glucosamine or [3H]serine. Homogenization of the tissue in saline permitted extraction of heterogeneous soluble proteoglycans separately from most of the heparan sulfate proteoglycans. The latter were extracted from the 140,000g pellet with 0.5% Triton X-100 in 8 M urea. The medium plus the saline and urea-detergent extracts were separated from low-molecular-weight contaminants, and fractionated into two peaks of radioactivity on Sephacryl S-300 in saline with 3 M urea and 0.5% Triton X-100. The proteoglycans were isolated directly from these fractions on DEAE-Sephacel, and subjected to ultrafiltration concentration and then further purification on cesium chloride density gradient centrifugation in 4 M guanidine hydrochloride. A further step involving cetylpyridinium chloride precipitation was examined, but it resulted in essentially no further purification. The fractionations separated a large chondroitin sulfate/dermatan sulfate proteoglycan from the culture medium that was excluded from S-300 and of low buoyant density; a large heparan sulfate proteoglycan from the urea-detergent extract that was also excluded from S-300 and of low buoyant density; and two smaller and possibly related heparan sulfate proteoglycans. One was found in the medium and showed low to intermediate buoyant density; the other was isolated from the urea-detergent extract and showed a significantly higher buoyant density, associated with a lower protein content. The saline extract contained both of the two larger proteoglycans and only minor amounts of the smaller molecules. 相似文献
19.
Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules 总被引:8,自引:10,他引:8 下载免费PDF全文
《The Journal of cell biology》1993,120(3):815-824
Ng-CAM and N-CAM are cell adhesion molecules (CAMs), and each CAM can bind homophilically as demonstrated by the ability of CAM-coated beads (Covaspheres) to self-aggregate. We have found that the extent of aggregation of Covaspheres coated with either Ng-CAM or N-CAM was strongly inhibited by the intact 1D1 and 3F8 chondroitin sulfate proteoglycans of rat brain, and by the core glycoproteins resulting from chondroitinase treatment of the proteoglycans. Much higher concentrations of rat chondrosarcoma chondroitin sulfate proteoglycan (aggrecan) core proteins had no significant effect in these assays. The 1D1 and 3F8 proteoglycans also inhibited binding of neurons to Ng-CAM when mixtures of these proteins were adsorbed to polystyrene dishes. Direct binding of neurons to the proteoglycan core glycoproteins from brain but not from chondrosarcoma was demonstrated using an assay in which cell-substrate contact was initiated by centrifugation, and neuronal binding to the 1D1 proteoglycans was specifically inhibited by the 1D1 monoclonal antibody. Different forms of the 1D1 proteoglycan have been identified in developing and adult brain. The early postnatal form (neurocan) was found to bind neurons more effectively than the adult proteoglycan, which represents the C-terminal half of the larger neurocan core protein. Our results therefore indicate that certain brain proteoglycans can bind to neurons, and that Ng-CAM and N-CAM may be heterophilic ligands for neurocan and the 3F8 proteoglycan. The ability of these brain proteoglycans to inhibit adhesion of cells to CAMs may be one mechanism to modulate cell adhesion and migration in the nervous system. 相似文献
20.
Faggian J Fosang AJ Zieba M Wallace MJ Hooper SB 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(2):R784-R792
We have examined whether changes in versican levels, or in the sulfation pattern of its chondroitin sulfate (CS) side chains, are associated with the reduction in perialveolar tissue volumes that characterize lung maturation in late-gestation fetal sheep. Lung tissue was collected from fetuses [90-142 days gestational age (GA)] and lambs (2 wk after term birth). The level and distribution of versican and CS glycosaminoglycans (GAG) were determined using immunohistochemistry, whereas fluorophore-assisted carbohydrate electrophoresis was used to determine changes in CS sulfation patterns. Versican was the predominant CS-containing proteoglycan in the lung and decreased from 19.9 +/- 2.7 arbitrary units at 90 days GA to 6.0 +/- 0.5 arbitrary units at 142 days GA, in close association (P < 0.05) with the reduction in tissue volumes (from 66.0 +/- 4.6 to 25.3 +/- 1.5% at 142 days); similar reductions occurred for both chondroitin-6-sulfate and chondroitin-4-sulfate CS side chains. Hyaluronic acid levels decreased from 3,168 +/- 641 pmol/microg GAG at 90 days GA to 126 +/- 9 pmol/microg GAG at 142 days GA, and the predominant sulfated disaccharide changed from Delta-di-6S at 90 days GA to Delta-di-4S at term. These data indicate that structural development of the lung is closely associated with marked changes in versican levels and the microstructure of CS side chains in perisaccular/alveolar lung tissue. 相似文献