首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a radioimmunoassay toward the COOH-terminal region of neurotensin, an immunoreactive and biologically active neurotensin-related peptide (NRP) has been isolated from pepsin-treated fractions of bovine, canine, human, and rat plasma. Bovine NRP was identified as H-Ile-Ala-Arg-Arg-His-Pro-Tyr-Phe-Leu-OH, which is similar in structure to both neurotensin and angiotensin I. Canine and human NRP also had the above amino acid composition, whereas that obtained from rat plasma had valine substituted for isoleucine. At their concentrations in pepsin-treated plasmas (2-6 microM) rat, human and canine NRP were shown to increase vascular permeability when injected intradermally into rats and to release histamine from rat mast cells in vitro. The pure peptides also cross-reacted very effectively at nanomolar concentrations in a radioreceptor assay for neurotensin. The protein(s) which liberated NRP upon pepsin treatment were purified about 7-fold and shown to behave like albumin during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, and high pressure liquid chromatography on muBondapak C4. In addition, the purified preparations were found to react with anti-albumin antisera during immunodiffusion. Although the amino acid sequence of NRP was not found in albumin, a partial sequence homology was noted for NRP and various segments of bovine albumin. Using V8 protease, glutamyl residues were shown to lie within 3-4 amino acids of each end of NRP, as also occurs for the related segments in albumin. These results suggest that a subset of albumin-related protein(s) could serve as precursor(s) to biologically active neurotensin-related peptide(s).  相似文献   

2.
A novel nonapeptide with neurotensin-like immunoreactivity was isolated from pepsin-treated human plasma by dialysis, ion-exchange chromatography and high performance reversed-phase liquid chromatography. The amino acid sequence was determined by automated gas-phase sequence analysis as Ile-Ala-Arg-Arg-His-Pro-Tyr-Phe-Leu. Sequence homology with human serum albumin and with the biologically active peptides neurotensin and angiotensin is demonstrated. The name proposed for this peptide is kinetensin.  相似文献   

3.
The present study demonstrates precursors of neurotensin-like immunoreactivity (NTLI) endogenous to human gastric tissue and plasma, and the existence of a gastric NTLI-generating enzyme system. The molecular size of the NTLI-precursors in plasma and gastric tissue were estimated by gel permeation chromatography to be ca 50,000-60,000 and 60,000-70,000 Da, respectively. The neurotensin-like peptide generated from the precursor was detected with a carboxyl-terminally directed antiserum but did not cross-react with an amino-terminally directed antiserum. A neurotensin-like peptide isolated from pepsin-treated human plasma was characterized by mass spectrometry and its amino acid sequence determined. This novel nonapeptide, referred to as kinetensin, failed to affect pentagastrin-stimulated acid secretion or blood pressure in the rat. Sequence homologies between neurotensin, kinetensin and proteins of the serum albumin family suggest a common evolutionary origin and raise questions regarding albumin-like proteins as precursors of regulatory peptides.  相似文献   

4.
Canine liver lysosomes were purified by sucrose discontinuous density gradient centrifugation and then ruptured by sonication to obtain the soluble fraction. This soluble lysosomal fraction, which contained a 25-fold increase in acid phosphatase activity per mg of total protein when compared with the original homogenate, was incubated with a subfraction (1.110 less than d less than 1.210 g/cm3, HDL3) of canine high density lipoproteins (HDL) at pH 3.8. HDL3 proteolysis by lysosomal proteases, measured as the release of peptides and amino acids by the ninhydrin reaction, followed hyperbolic curves with straight lines (r = 0.99) obtained on Lineweaver-Burk plots. Km calculated from the Lineweaver-Burk plot was 635 mug of HDL3 protein per 0.5 ml of incubation mixture. Optimum HDL3 proteolysis was observed from pH 3.8 to 4.5. Incubation with the other subcellular organelle fractions did not result in HDL3 proteolysis. To evaluate the effects of enzyme inhibitors, iodoacetate, p-chloromercuribenzoate (both specific for the endopeptidase, cathepsin B (EC 3.4.22.1)) and pepstatin (specific for the endopeptidase, cathepsin D (EC 3.4.23.5) were tested. Iodoacetate and p-chloromercuribenzoate inhibited HDL3 proteolysis 100% and bovine serum albumin proteolysis 65%. Pepstatin inhibited HDL3 proteolysis 45% and bovine serum albumin proteolysis 70%. The in vitro data presented support the hypothesis that hepatic lysosomes play an important role in HDL3 catabolism in the dog. Furthermore, results obtained from enzyme inhibition studies suggest that a specific lysosomal endopeptidase, cathepsin B, may play the key role in HDL3 proteolysis.  相似文献   

5.
Two novel peptides that inhibit cathepsin B were isolated from a tryptic and chymotryptic hydrolysate of human serum albumin, and designated as Cabin-A1 and -A2. Cabin-A1 and -A2 were purified by reversed-phase HPLC and identified as Ser-Leu-His-Thr-Leu-Phe and Phe-Gln-Asn-Ala-Leu, respectively. These peptides correspond to f(65-70) and f(403-407) of human serum albumin. Human albutensin A (Ala-Phe-Lys-Ala-Trp-Ala-Val-Ala-Arg), which corresponds to f(210-218), was also isolated as a potent cathepsin B inhibitor. Synthetic Cabin-A1, -A2, and human albutensin A showed dose-dependent inhibition of cathepsin B, with K(i) values of 2.4, 290, and 3.8 microM, respectively.  相似文献   

6.
Acid proteinases of granulomatous tissues in rats with carrageenin-induced inflammation released kinin from T-kininogen. By column chromatography on pepstatin-Sepharose 4B, two types of acid proteinase seems to be responsible for kinin release. One of the acid proteinase was identified as cathepsin D from SDS-polyacrylamide gel electrophoresis and Western-blot analysis, using anti-rat liver cathepsin D IgG. Cathepsin D alone could not release T-kinin, but T-kinin-containing peptides. The T-kinin-containing peptides were separated into two peptides by reverse-phase high-performance liquid chromatography. From determination of its amino acid composition and its immunoreactivity toward anti-bradykinin antiserum, one of the T-kinin-containing peptides was identified as T-kinin-Leu.  相似文献   

7.
R E Carraway  S P Mitra  K Muraki 《Peptides》1991,12(1):107-112
Lysates of isolated rat polymorphonuclear leukocytes and macrophages were found to generate xenopsin-related peptides when incubated with a liver extract used as a source of precursor. The lysosomal enzyme, cathepsin D, was also shown to display this property and to share with the lysate a similar pH dependence (optimum, approximately pH 3.5) and sensitivity to the acid protease inhibitor, pepstatin A (ID50: lysate, 10 nM; cathepsin D, 30 nM). When subjected to HPLC on mu-Bondapak C-18, the xenopsin-related peptides generated by the lysate eluted near to those formed by cathepsin D and when tested in a radioreceptor assay for neurotensin, they displayed similar cross-reactivities (peak 2, approximately 50%; peak 1, approximately 100%). These results indicate that cathepsin D from lysed granulocytes can process precursor protein(s) to form radioreceptor-active xenopsin-related peptides.  相似文献   

8.
Cathepsin B cleavage of Ii from class II MHC alpha- and beta-chains   总被引:1,自引:0,他引:1  
Class II MHC-associated invariant chain (Ii) might regulate binding of digested peptides to the Ag binding site (desetope) of class II MHC proteins by directly or allosterically blocking that site until cleavage and release of Ii from MHC alpha- and beta-chains at the time of peptide charging. We examined the cleavage and release of Ii from class II MHC alpha/beta Ii trimers by cathepsin B, which has been shown by others to colocalize with class II MHC molecules in intracellular compartments and to generate antigenic peptide fragments. Cathepsin B at pH 5.0 cleaved and released Ii from class II MHC alpha- and beta-chains. Cathepsin B digested Ii from alpha- and beta-chains in a dose-dependent fashion, yielding 23-, 21-, and 10-kDa fragments. Blockage of cathepsin B activity with leupeptin restored the 2D(nonequilibrium pH gradient gel electrophoresis/SDS) PAGE patterns of Ii and sialic acid-derivatized forms of Ii seen without the protease. The fragmentation pattern of cathepsin D treatment was different from that of cathepsin B, yielding 25-kDa intermediates.  相似文献   

9.
The N-terminal heparin/fibrin binding domain of human plasma fibronectin (pFN) contains a cryptic proteinase. The enzyme could be generated and activated in the presence of Ca2+ from the purified 70 kDa pFN fragment produced by cathepsin D digestion of pFN. In this work we cloned and expressed the serine proteinase, designated fibronectinase (Fnase), in E. coli. The recombinant pFN protein fragment was isolated from inclusion bodies, subjected to folding and autocatalytic degradation in the presence of Ca2+, and yielded an active enzyme capable of digesting fibronectin. Cleavage of pFN and the synthetic peptides Ac-I-E-G-K-pNA and Bz-I-E-G-R-pNA demonstrated identical specificity of the recombinant and the isolated fibronectinase. Further investigations of the substrate specificity revealed for the first time the muscle proteins actin and myosin as being substrates of fibronectinase. The enzyme can be inhibited by alpha1-proteinase inhibitor. In the context of induced cathepsin D release, e. g. from granulocytes under inflammatory conditions, these results indicate an increase in specific proteolytic potential against muscular proteins in dystrophic diseases by the release of cryptic fibronectinase.  相似文献   

10.
The degradation of native albumin by human spleen cathepsin D was inhibited by GSH, cysteine and cysteamine. The thiols existing physiologically also inhibited reduced-carboxymethylated albumin, indicating that these thiols react preferentially with the enzyme itself rather than the substrate. The inhibitions of native albumin proteolysis were dose-dependent. These effects of thiols which have not been observed in other animal cathepsin D, suggest an essential function for cathepsin D in the human spleen.  相似文献   

11.
The effect of synthetic leukotrienes on tracheal microvascular permeability   总被引:4,自引:0,他引:4  
The effect of synthetic leukotrienes (LT) C4, D4 and E4 on the permeability of the airway microvasculature to plasma albumin was quantitatively evaluated using an in situ guinea pig tracheal model. Vascular permeability was measured as extravascular albumin content by employing 125I-bovine serum albumin and, in order to correct for blood volume, 51Cr-erythrocytes were used. Intratracheal injection of synthetic LTC4, LTD4 and LTE4 (0.1-1000 ng) produced dose-dependent increases in tracheal extravascular albumin content. The leukotrienes were approximately 100-1000 fold more potent than histamine, although histamine did produce a greater maximal increase in extravascular albumin than the leukotrienes. Methacholine did not increase extravascular albumin content. The microvascular permeability effect of LTD4 was antagonized by FPL 55712 but not by mepyramine; conversely, the effect of histamine was antagonized by mepyramine and not by FPL 55712. Additionally, indomethacin did not alter the LTD4-induced increases in tracheal vascular permeability. These results suggest that the effect of LTD4 on tracheal microvascular permeability is directly mediated and is not the indirect result of cholinergic stimulation, histamine release or de novo synthesis of cyclooxygenase products.  相似文献   

12.
The thiol proteinase cathepsin H, isolated and purified from rat liver lysosomes, provokes acute inflammation characterized by the accumulation of polymorphonuclear leukocytes (PMN) when injected intracutaneously into newborn rats. We have examined the possibility that the accumulation of PMN at skin sites injected with cathepsin H is due, in part, to generation locally of C-derived chemotactic factors. We have found that cathepsin H acts in a concentration- and time-dependent fashion in whole human (and rat) EDTA-plasma to generate C5-derived peptides with chemotactic activity for PMN. Chemotactic activity was not generated in EDTA-plasma by either heat-inactivated cathepsin H or by a combination of active enzyme and a thiol proteinase inhibitor isolated from rat epidermis. Cathepsin H also acted in a concentration- and time-dependent fashion on isolated (functionally pure) human C5 to yield chemotactic activity for PMN as well as PMN lysosomal enzyme-releasing activity. Whereas 10 ng/ml cathepsin H generated significant chemotactic activity from isolated C5 (1000 CH50 U/ml), 7 to 10 micrograms/ml were required to generate chemotactic activity in whole EDTA-plasma. Cathepsin H not only was capable of generating biologically active, C5-derived peptides, but also was capable of degrading these peptides. Incubation of either whole EDTA-plasma or isolated C5 with high concentrations of cathepsin H (e.g., 25 micrograms/ml and 100 ng/ml, respectively) caused the rapid appearance of chemotactic activity followed by an equally rapid disappearance. PMN accumulated more rapidly in the skin of newborn rats injected with cathepsin H-treated C5 than in the skin of animals injected with cathepsin H alone. These data suggest that generation by cathepsin H of C-derived chemotactic activity contributes to the ability of this enzyme to induce dermal inflammation.  相似文献   

13.
Certain formyl dipeptides and tripeptides containing methionine released histamine from human basophils at concentrations of 10(-4) to 10(-7) M. However, N-formyl amino acids did not release histamine. Tripeptides, in general, were more active than dipeptides. An acyl group was required for histamine release although an N-terminal position for Met was not essential. Histamine release from human basophils by these peptides correlated well with their chemotactic activity for rabbit leukocytes.  相似文献   

14.
Kallistatin, a serpin that specifically inhibits human tissue kallikrein, was demonstrated to be cleaved at the Phe-Phe bond in its reactive site loop (RSL) by cathepsin D. Internally quenched fluorescent peptides containing the amino acid sequence of kallistatin RSL were highly susceptible to hydrolysis by cathepsin D. Surprisingly, these peptides were efficiently hydrolyzed at Phe-Phe bond, despite having Lys and Ser at P2 and P2' positions, respectively, which was reported to be very unfavorable for substrates for cathepsin D. Due to the importance of cathepsin D in several physiological and pathological processes, we took the peptide containing kallistatin RSL sequence, Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, as a reference substrate for a systematic specificity study of S3 to S3' protease subsites (EDDnp=N-[2,4-dinitrophenyl]-ethylenediamine and Abz=ortho-amino benzoic acid). We present in this paper some internally quenched fluorescent peptides that were efficient substrates for cathepsin D. They essentially differ from other previously described substrates by their higher kcat/Km values due, mainly, to low Km values, such as the substrate Abz-Ala-Ile-Ala-Phe-Phe-Ser-Arg-Gln-EDDnp (Km=0.27 microM, kcat=16.25 s(-1), kcat/Km=60185 microM(-1) x s(-1)).  相似文献   

15.
The family of aspartic proteinases includes several human enzymes that may play roles in both physiological and pathophysiological processes. The human lysosomal aspartic proteinase cathepsin D is thought to function in the normal degradation of intracellular and endocytosed proteins but has also emerged as a prognostic indicator of breast tumor invasiveness. Presented here are results from a continuing effort to elucidate the factors that contribute to specificity of ligand binding at individual subsites within the cathepsin D active site. The synthetic peptide Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu has proven to be an excellent chromogenic substrate for cathepsin D yielding a value of kcat/Km = 0.92 x 10(-6) s-1 M-1 for enzyme isolated from human placenta. In contrast, the peptide Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu and all derivatives with Ala-Lys in the P3-P2 positions are either not cleaved at all or cleaved with extremely poor efficiency. To explore the binding requirements of the S3 and S2 subsites of cathepsin D, a series of synthetic peptides was prepared with systematic replacements at the P2 position fixing either Ile or Ala in P3. Kinetic parameters were determined using both human placenta cathepsin D and recombinant human fibroblast cathepsin D expressed in Escherichia coli. A rule-based structural model of human cathepsin D, constructed on the basis of known three-dimensional structures of other aspartic proteinases, was utilized in an effort to rationalize the observed substrate selectivity.  相似文献   

16.
Calciferin, a new parathyroid hormone stimulating the release of cathepsins D and L (but not B) from isolated lysosomes, or the release of cathepsin D from erythrocytes or ghosts in vitro, elevated free cathepsin D in the blood, and at the same time stimulated DNA synthesis in the intact liver when it was injected into mice. Both calciferin and free cathepsin D in the blood (rats) were elevated concomitantly soon after 70% hepatectomy, reaching a peak around 5 hr. The cathepsin D-elevation was almost proportional to fractional hepatectomies. Cathepsin L (but not B), when injected intraperitoneally into mice, stimulated DNA synthesis and mitosis in the intact liver much like cathepsin D, the effect of which was reported earlier. In contrast to the mitogenic effects of calciferin or cathepsins (D and L) in vivo, only cathepsin L (but not cathepsin D or calciferin) in low concentrations appeared to stimulate DNA synthesis in the cultured liver cells, and also stimulated adenylate cyclase of isolated liver plasma membranes in vitro. Dibutyryl-cyclic AMP in concentrations lower than 10(-5) M also stimulated DNA synthesis in cultured liver cells.  相似文献   

17.
Angiostatin, a potent endogenous inhibitor of angiogenesis, is generated by cancer-mediated proteolysis of plasminogen. The culture medium of human prostate carcinoma cells, when incubated with plasminogen at a variety of pH values, generated angiostatic peptides and miniplasminogen. The enzyme(s) responsible for this reaction was purified and identified as procathepsin D. The purified procathepsin D, as well as cathepsin D, generated two angiostatic peptides having the same NH(2)-terminal amino acid sequences and comprising kringles 1-4 of plasminogen in the pH range of 3.0-6.8, most strongly at pH 4.0 in vitro. This reaction required the concomitant conversion of procathepsin D to catalytically active pseudocathepsin D. The conversion of pseudocathepsin D to the mature cathepsin D was not observed by the prolonged incubation. The affinity-purified angiostatic peptides inhibited angiogenesis both in vitro and in vivo. Importantly, procathepsin D secreted by human breast carcinoma cells showed a significantly lower angiostatin-generating activity than that by human prostate carcinoma cells. Since deglycosylated procathepsin D from both prostate and breast carcinoma cells exhibited a similar low angiostatin-generating activity, this discrepancy appeared to be attributed to the difference in carbohydrate structures of procathepsin D molecules between the two cell types. The seminal vesicle fluid from patients with prostate carcinoma contained the mature cathepsin D and procathepsin D, but not pseudocathepsin D, suggesting that pseudocathepsin D is not a normal intermediate of procathepsin D processing in vivo. The present study provides evidence for the first time that cathepsin D secreted by human prostate carcinoma cells is responsible for angiostatin generation, thereby causing the prevention of tumor growth and angiogenesis-dependent growth of metastases.  相似文献   

18.
1. Renin was purified 30 000-fold from rat kidneys by chromatography on DEAE-cellulose and SP-Sephadex, and by affinity chromatography on pepstatinyl-Sepharose. 2. The enzymatic properties of isorenin from rat brain, pseudorenin from hog spleen, cathepsin D from bovine spleen, and renin from rat kidneys were compared: Isorenin, pseudorenin and cathepsin D generate angiotensin from tetradecapeptide renin substrate with pH optima around 4.9, renin at 6.0. With sheep angiotensinogen as substrate, isorenin, pseudorenin and cathepsin D have similar pH profiles (pH optima at 3.9 and 5.5), in contrast to renin (pH optimum at 6.8). 3. The angiotensin-formation from tetradecapeptide by isorenin, pseudorenin and cathepsin D was inhibited by albumin, alpha-and beta-globulins. These 3 enzymes have acid protease activity at pH 3.2 with hemoglobin as the substrate. Renin is not inhibited by proteins and has no acid protease activity. 4. Renin generates angiotensin I from various angiotensinogens at least 100 000 times faster than isorenin, pseudorenin or cathepsin D, and 3000 000 times faster than isorenin when compared at pH 7.2 with rat angiotensinogen as substrate. 5. The 3 'non-renin' enzymes exhibit a high sensitivity to inhibition by pepstatin (Ki less than 5.10(-10) M), in contrast to renin (Ki approximately 6-10(-7) M), at pH 5.5. 6. It is concluded from the data that isorenin from rat brain and pseudorenin from hog spleen are closely related to, or identical with cathepsin D.  相似文献   

19.
The peptide F2L was previously characterized as a high-affinity natural agonist for the human formyl peptide receptor (FPR) 3. F2L is an acetylated 21-aa peptide corresponding with the N terminus of the intracellular heme-binding protein 1 (HEBP1). In the current work, we have investigated which proteases were able to generate the F2L peptide from its precursor HEBP1. Structure-function analysis of F2L identified three amino acids, G(3), N(7), and S(8), as the most important for interaction of the peptide with FPR3. We expressed a C-terminally His-tagged form of human HEBP1 in yeast and purified it to homogeneity. The purified protein was used as substrate to identify proteases generating bioactive peptides for FPR3-expressing cells. A conditioned medium from human monocyte-derived macrophages was able to generate bioactivity from HEBP1, and this activity was inhibited by pepstatin A. Cathepsin D was characterized as the protease responsible for HEBP1 processing, and the bioactive product was identified as F2L. We have therefore determined how F2L, the specific agonist of FPR3, is generated from the intracellular protein HEBP1, although it is unknown in which compartment the processing by cathepsin D occurs in vivo.  相似文献   

20.
Peptide neurotransmitters function as key intercellular signaling molecules in the nervous system. These peptides are generated in secretory vesicles from proneuropeptides by proteolytic processing at dibasic residues, followed by removal of N- and/or C-terminal basic residues to form active peptides. Enkephalin biosynthesis from proenkephalin utilizes the cysteine protease cathepsin L and the subtilisin-like prohormone convertase 2 (PC2). Cathepsin L generates peptide intermediates with N-terminal basic residue extensions, which must be removed by an aminopeptidase. In this study, we identified cathepsin H as an aminopeptidase in secretory vesicles that produces (Met)enkephalin (ME) by sequential removal of basic residues from KR-ME and KK-ME, supported by in vivo knockout of the cathepsin H gene. Localization of cathepsin H in secretory vesicles was demonstrated by immunoelectron microscopy and immunofluorescence deconvolution microscopy. Purified human cathepsin H sequentially removes N-terminal basic residues to generate ME, with peptide products characterized by nano-LC-MS/MS tandem mass spectrometry. Cathepsin H shows highest activities for cleaving N-terminal basic residues (Arg and Lys) among amino acid fluorogenic substrates. Notably, knockout of the cathepsin H gene results in reduction of ME in mouse brain. Cathepsin H deficient mice also show a substantial decrease in galanin peptide neurotransmitter levels in brain. These results illustrate a role for cathepsin H as an aminopeptidase for enkephalin and galanin peptide neurotransmitter production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号