首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Promoter elements important for basal and cyclic AMP (cAMP)-regulated expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene have been identified by analysis of a series of PEPCK promoter mutations in transfection experiments. Fusion genes containing wild-type and mutated PEPCK promoter sequences from -600 to +69 base pairs (bp) fused to the coding sequence for chloramphenicol acetyltransferase were studied. Internal deletion mutations that replaced specific bases with a 10-bp linker within the region from -129 bp to -18 bp of the PEPCK promoter were examined. In addition, wild-type and mutated DNA templates were used as probes in DNase I protection experiments to determine sites of protein-DNA interaction. The PEPCK promoter contains a binding site for nuclear factor 1-CAAT. Deletion of the 5' end of this binding site reduced the size of the DNase I footprint in this region but had no effect on promoter activity. In contrast, deletion or disruption of the 3' end of this binding site completely eliminated protein binding and reduced promoter activity by 50%. Deletion of core sequences of the cAMP regulatory element (CRE) resulted in loss of cAMP responsiveness and an 85% decrease in basal promoter activity, indicating that the CRE also functions as a basal stimulatory element. Mutation of the core sequence of the CRE resulted in loss of the DNase I footprint over the CRE. Internal deletions flanking the CRE showed no loss of induction by cAMP but did have reduced promoter activity. This delimits the CRE to an 18-bp region between nucleotides -100 and -82. Analysis of mutations that disrupted bases between the CRE and the initiation site identified a basal inhibitory element adjacent to a basal stimulatory element, both located just 3' of the CRE, as well as a basal stimulatory element coincident with the TATA consensus sequence centered at -27. These data demonstrate that several cis-acting elements are located within 130 nucleotides of the initiation site of the PEPCK gene and that the CRE is essential for both basal promoter activity and cAMP-regulated expression of this gene.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
P B Iynedjian 《Enzyme》1979,24(6):366-373
The cytosolic form of phosphoenolpyruvate carboxykinase (GTP; EC 4.1.1.32) from rat liver was purified by a procedure involving affinity chromatography on agarose-hydrazide-GTP. Phosphoenolpyruvate carboxykinase is retained quantitatively by the affinity medium in the presence of manganese and can be specifically eluted by a pulse of GTP. On the contrary, no binding to agarose-hydrazide-GTP occurs in the absence of manganese. This suggests that the affinity of the enzyme for GTP is enhanced by prior interaction with manganese. A combination of several conventional purification steps followed by affinity chromatography provides pure phosphoenolpyruvate carboxykinase in good yields. The final specific activity is 19 U/mg protein. The enzyme migrates as a single polypeptide of molecular weight 70,600 during electrophoresis on sodium dodecyl sulfate polyacrylamide gels.  相似文献   

13.
14.
15.
16.
17.
The mRNA that codes for phosphoenolpyruvate carboxykinase accounts for approximately 0.2% of the protein synthesized in H4IIEC3 hepatoma cells maintained for 24 h in serum-free medium containing N6,O2'-dibutyryl cAMP and theophylline. This value decreases to 0.04% within 3 h after the addition of insulin. Maximal effects are produced by 10(-10) M insulin, and half-maximal deinduction of both the relative rate of synthesis of P-enolpyruvate carboxykinase and mRNA coding for P-enolpyruvate carboxykinase activity occurs at approximately 2 X 10(-12) M insulin. Porcine proinsulin is 4% as potent as porcine insulin since half-maximal deinduction of mRNA coding for P-enolpyruvate carboxykinase occurs at 5 X 10(-11) M. The concentration of proinsulin required to inhibit 125I-insulin binding by 50% is 2 X 10(-7) M, as compared to 6 X 10(-9) M for insulin; thus, the decreased sensitivity of this deinduction to proinsulin parallels the decreased binding affinity H4IIEC3 cells have for proinsulin as compared to insulin. These data indicate that insulin regulates P-enolpyruvate carboxykinase synthesis through a receptor-mediated process, that the effect occurs when less than 2% of the insulin receptors are occupied, and that this effect is exerted prior to the level of mRNA translation.  相似文献   

18.
The gene for cytosolic phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) from the chicken was isolated from a recombinant library containing the chicken genome in phage lambda Charon 4A. The isolated clone, lambda PCK1cc, contains the complete gene for the enzyme as well as both 5' and 3' flanking sequences. The gene is approximately 8 kilobases in length divided into 8 exons, as demonstrated by restriction endonuclease mapping and DNA-RNA heteroduplex analysis. Southern blotting of chicken chromosomal DNA digested with various restriction enzymes shows a pattern predicted from the restriction map of lambda PCK1cc. The phosphoenolpyruvate carboxykinase gene is present as a single copy in the haploid chicken genome. The 5' region of the gene was defined by S1 nuclease mapping and by sequencing. Two mRNA species with discrete 5' ends were observed using S1 nuclease mapping. The ratio between the amounts of these multiple forms of mRNA is the same in chicken kidney and liver and is not affected by induction of the enzyme mRNA by cAMP. Examination of sequence homologies with the gene for rat cytosolic phosphoenolpyruvate carboxykinase indicates a putative control region contained in flanking sequences at the 5' end of the gene.  相似文献   

19.
20.
Isolated rat liver cells maintained in suspension culture for 4 to 5 h synthesize the gluconeogenic cytosolic enzyme phosphoenolpyruvate carboxykinase at a rate approximately 5-fold lower than the in vivo hepatic rate. Glucagon rapidly re-induces phosphoenolpyruvate carboxykinase synthesis in such cells. The rate of enzyme synthesis doubles in 40 min and plateaus at a level 6- to 13-fold higher than in control cells 120 min after glucagon addition at maximal concentration. Consistent with the presumed role of cyclic AMP as a mediator of enzyme induction, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, added simultaneously with glucagon, shifts the hormone dose-response curve 2 log units to the left. Moreover, cyclic AMP supplied exogenously to the cells mimics the inductive effect of glucagon. Total cellular RNA isolated from hepatocytes induced by glucagon contains an increased level of mRNA coding for phosphoenolpyruvate carboxykinase, as determined by translational assay. The kinetics and extent of the rise in mRNA level are adequate to explain the stimulation of enzyme synthesis. Although glucagon on its own induces a build-up of phosphoenolpyruvate carboxykinase mRNA and a commensurate stimulation of enzyme synthesis, the glucagon induction is very markedly amplified when the cells are first preincubated with dexamethasone. The glucocorticoid by itself, however, does not have any substantial effect on the level of phosphoenolpyruvate carboxykinase mRNA or on the rate of enzyme synthesis. Its role can therefore be characterized as permissive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号