首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation by both parents is a common parental behaviour in many avian species. Biparental incubation is expected if the survival prospects of offspring are greatly raised by shared care, relative to the costs incurred by each parent. We investigated this proposition in the Kentish plover Charadrius alexandrinus, in which both parents incubate the clutch, but one parent (either the male or the female) usually deserts after hatching of the eggs. We carried out a mate‐removal and food supplementation experiment to reveal both the role of the sexes and food abundance in maintaining biparental incubation by removing either the male or the female from the nest for a short period of time. In some nests we provided supplementary food for the parent that remained at the nest to reduce the costs of incubation, whereas other nests were left unsupplemented. Although males spent more time on incubation after their mate had been removed, females’ incubation did not change. Notwithstanding the increased male incubation, total nest attentiveness was lower at uniparental nests than at biparental controls. However, incubation behaviour was not influenced by food supplementation. We conclude that offspring desertion during incubation is apparently costly in the Kentish plover, and this cost cannot be ameliorated with supplementary food.  相似文献   

2.
We analysed video-sequences of undisturbed parental provisioning behaviour on 12 nests of common redstart (Phoenicurus phoenicurus). In 4 of the 12 nests, chicks were fed by a single parent only. We compared provisioning rate of chicks, time spent on the nest and food allocation rules between nests with uniparental and biparental care and between male and female parents in biparental nests. In nests with a single parent, the frequency of feeding visits per parent was higher than in biparental nests. As a result, the rate of food provisioning of chicks was similar in uniparental and biparental nests. The food allocation rules did not differ between uniparental and biparental nests. In biparental nests, male and female provisioning behaviour was similar though with two exceptions: males had a strong preference for feeding chicks in front positions in the nest and females spent a longer time on the nest after feeding. We conclude that single common redstart parents are able to compensate fully for the absence of the other parent through increased provisioning efforts, and that in biparental nests, males and females contribute equally to the provisioning of the young.  相似文献   

3.
Birds exhibit a wide diversity of breeding strategies. During incubation or chick‐rearing, parental care can be either uniparental, by either the male or the female, or biparental. Understanding the selective pressures that drive these different strategies represents an exciting challenge for ecologists. In this context, assigning the type of parental care at the nest (e.g. biparental or uniparental incubation strategy) is often a prerequisite to answering questions in evolutionary ecology. The aim of this study was to produce a standardized method unequivocally to assign an incubation strategy to any Sanderling Calidris alba nest found in the field by monitoring nest temperature profiles. Using drops of >3 °C in nest temperature (recorded with thermistors) to distinguish incubation and recess periods, we showed that the number of recesses and the total duration of these recesses from 09:00 to 17:00 h UTC allowed us reliably (99.1% after 24 h and 100% when monitoring the nest for at least 4 days) to assign the incubation strategy at the nest for 21 breeding adults (14 nests). Monitoring nest temperature for at least 24 h is an effective method to assign an incubation strategy without having to re‐visit nests, thereby saving time in the field and minimizing both disturbance and related increase in predation risk of clutches. Given the advantages of our method, we suggest that it should be used more widely in studies that aim to document incubation strategies and patterns in regions where ambient temperatures are at least 3 °C below the median nest temperature.  相似文献   

4.
Parental incubation behavior largely influences nest survival, a critical demographic process in avian population dynamics, and behaviors vary across species with different life history breeding strategies. Although research has identified nest survival advantages of mixing colonies, behavioral mechanisms that might explain these effects is largely lacking. We examined parental incubation behavior using video‐monitoring techniques on Alcatraz Island, California, of black‐crowned night‐heron Nycticorax nycticorax (hereinafter, night‐heron) in a mixed‐species colony with California gulls Larus californicus and western gulls L. occidentalis. We first quantified general nesting behaviors (i.e. incubation constancy, and nest attendance), and a suite of specific nesting behaviors (i.e. inactivity, vigilance, preening, and nest maintenance) with respect to six different daily time periods. We employed linear mixed effects models to investigate environmental and temporal factors as sources of variation in incubation constancy and nest attendance using 211 nest days across three nesting seasons (2010–2012). We found incubation constancy (percent of time on the eggs) and nest attendance (percent of time at the nest) were lower for nests that were located < 3 m from one or more gull nest, which indirectly supports the predator protection hypothesis, whereby heterospecifics provide protection allowing more time for foraging and other self‐maintenance activities. To our knowledge, this is the first empirical evidence of the influence of one nesting species on the incubation behavior of another. We also identified distinct differences between incubation constancy and nest attentiveness, indicating that these biparental incubating species do not share similar energetic constraints as those that are observed for uniparental species. Additionally, we found that variation in incubation behavior was a function of temperature and precipitation, where the strength of these effects was dependent on the time of day. Overall, these findings strengthen our understanding of incubation behavior and nest ecology of a colonial‐nesting species.  相似文献   

5.
6.
Black‐throated Sparrows (Amphispiza bilineata) are common breeding birds throughout the desert regions of North America and can be considered nest‐site generalists. Information about how spatial (e.g., vegetation) and temporal factors influence nest survival of these sparrows is lacking throughout their range. Our objective was to examine the spatial and temporal factors associated with nest survival of Black‐throated Sparrows at the nest and nest‐patch scales in the predator‐rich environment of the northern Chihuahuan Desert of New Mexico. We used a logistic‐exposure model fit within a Bayesian framework to model the daily survival probability of Black‐throated Sparrow nests. Predation was the leading cause of nest failure, accounting for 86% of failed nests. We found evidence of negative associations between nest survival and both vegetative cover above nests and shrub density within 5 m of nests. We found no support for other habitat covariates, but did find strong evidence that daily survival rate was higher earlier in the breeding season and during the egg‐laying stage. A decline in nest survival later in the breeding period may be due to increased predator activity due to warmer ambient temperatures, whereas lower survival during the incubation and nestling stages could be a result of increased activity at nests. A generalist approach to nest‐site selection may be an adaptive response to the presence of a diverse assemblage of nest predators that results in the reduced influence of spatial factors on nest survival for Black‐throated Sparrows.  相似文献   

7.
The female nutrition hypothesis posits that provisioning intensity of incubating females by their mates may depend on female needs and ensure proper incubation and a corresponding high hatching and breeding success of breeding pairs. Here, we have handicapped female pied flycatchers Ficedula hypoleuca at the beginning of incubation by clipping two primaries on each wing and filmed nests during incubation and later nestling provisioning to estimate male involvement in incubation feeding at the nest and in offspring care. Incubation feeding was more frequent at late nests. Correcting for this seasonal effect, incubation feeding was significantly affected by treatment and twice as high at experimental as at control nests. There was no effect of the experiment on female incubation attendance. The handicap did not result in any effect on hatching and breeding success, nestling growth and male or female provisioning and mass at the end of the nestling period. Males adjust their incubation feeding activity at the nest to female energetic requirements during incubation.  相似文献   

8.
Nest survival may vary throughout the breeding season for many bird species, and the nature of this temporal variation can reveal the links between birds, their predators, and other components of the ecosystem. We used program Mark to model patterns in nest survival within the breeding season for shorebirds nesting on arctic tundra. From 2000 to 2007, we monitored 521 nests of five shorebird species and found strong evidence for variation in nest survival within a nesting season. Daily nest survival was lowest in the mid-season in 5 of 8 years, but the timing and magnitude of the lows varied. We found no evidence that this quadratic time effect was driven by seasonal changes in weather or the abundance of predators. Contrary to our prediction, the risk of predation was not greatest when the number of active shorebird nests was highest. Although nest abundance reached a maximum near the middle of the breeding season, a daily index of shorebird nest activity was not supported as a predictor of nest survival in the models. Predators’ access to other diet items, in addition to shorebird nests, may instead determine the temporal patterns of nest predation. Nest survival also displayed a positive, linear relationship with nest age; however, this effect was most pronounced among species with biparental incubation. Among biparental species, parents defended older nests with greater intensity. We did not detect a similar relationship among uniparental species, and conclude that the stronger relationship between nest age and both nest defence and nest survival for biparental species reflects that their nest defence is more effective.  相似文献   

9.
Direct benefits of female mate choice may concern female fertility and fecundity but also physiological status. In birds with biparental care, males may contribute to improve the condition and health of their pair‐mates through help in constructing nests, incubation or incubation feeding and nestling provisioning. They may also reduce harassment of females by non‐pair males. A consequence of these male activities could be expressed in terms of oxidative damage, which may depend on metabolic effort and social stress. Here, we have related male contribution to parental and territorial duties to female oxidative status in the pied flycatcher Ficedula hypoleuca, a species where preferred males present darker dorsal plumage and, in Iberian populations, a large white forehead patch. Darker males were paired with females with high incubation attendance and reduced nestling provisioning rates, which may lead to reduced female exertion. These males owned nest boxes at which there were fewer visits by non‐pair males. Although females paired with dark mates worked less hard, they were able to raise more fledglings. Female oxidative damage measured as malondialdehyde (MDA) level in plasma declined with increasing incubation attendance and male incubation feeding. Moreover, levels of MDA in females declined with both darkness of male dorsal plumage and male forehead patch size when controlling for female forehead patch size and male age. The effect of male plumage darkness was especially strong. Females paired with middle‐aged males (2–3 yr) showed reduced levels of MDA compared with those paired with 1‐yr‐old and more than 3‐yr‐old males. Male age could not explain the effects of male attractiveness. Females paired with attractive males were more successful in reproduction while suffering reduced oxidative damage, possibly mediated by help during incubation and nestling rearing from their pair‐mates. Although correlative, the evidence suggests direct benefits of females paired with more attractive males.  相似文献   

10.
ABSTRACT The value of egg coloration as crypsis, once accepted as a general principle, has recently been questioned because most experiments have failed to show that egg coloration deters predation. The nest‐crypsis hypothesis postulates that, among species that build conspicuous nests, selection for egg crypsis is relaxed or absent because visually searching predators detect nests prior to eggs. I tested the nest‐crypsis hypothesis using the large, relatively conspicuous nests of American Robins (Turdus migratorius), and eggs that differed markedly in color that were collected from the nests of Red‐winged Blackbirds (Agelaius phoeniceus), Brewer's Blackbirds (Euphagus cyanocephalus), and Yellow‐headed Blackbirds (Xanthocephalus xanthocephalus). Each nest (N= 22) received a clutch of each species during three sequential predation trials that were 16 d in duration. The order of clutch presentation was randomized for each nest. Survival trends for Brewer's and Yellow‐headed Blackbirds were similar, and higher than those for clutches of Red‐winged Blackbirds. By the end of trials, overall survival of the three clutch types was roughly equivalent. However, clutches of Red‐winged Blackbird eggs, the most conspicuous egg type to the human eye, were discovered sooner by predators. Because the experimental design controlled for effects of nest crypsis, nest location, and nest size, this difference in egg survival can be attributed to differences in egg pigmentation. Thus, my results support a role for egg coloration as camouflage in conspicuous nests.  相似文献   

11.
The sexes’ share in parental care and the social mating system in a marked population of the single‐brooded Lesser Spotted Woodpecker Dendrocopos minor were studied in 17 woodpecker territories in southern Sweden during 10 years. The birds showed a very strong mate fidelity between years; the divorce rate was 3.4%. In monogamous pairs, the male provided more parental care than the female. The male did most of the nest building and all incubation and brooding at night. Daytime incubation and brooding were shared equally by the sexes, and biparental care at these early breeding stages is probably necessary for successful breeding. In 42% of the nests, however, though still alive the female deserted the brood the last week of the nestling period, whereas the male invariably fed until fledging and fully compensated for the absent female. Post‐fledging care could not be quantified, but was likely shared by both parents. Females who ceased feeding at the late nestling stage resumed care after fledging. We argue that the high premium on breeding with the same mate for consecutive years and the overall lower survival of females have shaped this male‐biased organisation of parental care. In the six years with best data, most social matings were monogamous, but 8.5% of the females (N=59) exhibited simultaneous multi‐nest (classical) polyandry and 2.9% of the males (N=68) exhibited multi‐nest polygyny. Polyandrous females raised 39% more young than monogamous pairs. These females invested equal amounts of parental care at all their nests, but their investment at each nest was lower than that of monogamous females. The polyandrously mated males fully compensated for this lower female investment. Polygynous males invested mainly in their primary nest and appeared to be less successful than polyandrous females. Polyandry and polygyny occurred only when the population sex ratio was biased, and due to strong intra‐sexual competition this is likely a prerequisite for polygamous mating in Lesser Spotted Woodpeckers.  相似文献   

12.
ABSTRACT Incubation feeding, where males feed their mates, is a common behavior in birds and may improve female condition, nest attentiveness, and nesting success. We used behavioral observations and a temporary mate removal experiment to test the female nutrition hypothesis for incubation feeding by male Scarlet Tanagers (Piranga olivacea). All males (N= 20) were observed incubation feeding and fed females both at the nest (x? 1.36 trips/h) and away from the nest (x? 20.1 trips/h). Male feeding rate off‐nest was negatively correlated with the duration of female foraging bouts and positively correlated with the total time females spent incubating per hour. Eggs were predated at seven of 19 (37%) nests, but nest survival during incubation was not related to either female incubation behavior or male feeding rate. During temporary removal experiments (N= 12), female Scarlet Tanagers remained on the nest significantly longer and did not have longer foraging bouts. An unexpected outcome of the removal experiments was a dramatic change in female vocal behavior. All 12 experimental females gave chik‐burr calls during the male‐removal experiments (x? bout length = 11.7 min), but during normal observation periods only six of 20 females at the incubation stage gave chik‐burr calls (x? bout length = 0.7 min, N= 20). Our results suggest that female tanagers likely gain nutritional benefits from incubation feeding, but male feeding may not improve immediate reproductive success. Nine of 54 (17%) nestlings in five of 17 broods (29%) were extra‐pair young (EPY), indicating that males could potentially benefit from incubation feeding via mate retention and fidelity as well as, or instead of, through immediate gains in reproductive success. Our study indicates that females benefit from incubation feeding and do not simply passively accept food from their mates, but instead may influence male feeding rates through direct (e.g., mate following and vocalizing) and indirect (the threat of mate abandonment or cuckoldry) means.  相似文献   

13.
Incubating common eiders (Somateria mollissima) insulate their nests with down to maintain desirable heat and humidity for their eggs. Eiderdown has been collected by Icelandic farmers for centuries, and down is replaced by hay during collection. This study determined whether down collecting affected the female eiders or their hatching success. We compared the following variables between down and hay nests: incubation temperature in the nest, incubation constancy, recess frequency, recess duration, egg rotation and hatching success of the clutch. Temperature data loggers recorded nest temperatures from 3 June to 9 July 2006 in nests insulated with down (n = 12) and hay (n = 12). The mean incubation temperatures, 31.5 and 30.7°C, in down and hay nests, or the maximum and minimum temperatures, did not differ between nest types where hatching succeeded. Cooling rates in down, on average 0.34°C/min and hay nests 0.44°C/min, were similar during incubation recesses. Females left their nests 0–4 times every 24 h regardless of nest type, for a mean duration of 45 and 47.5 min in down and hay nests, respectively. The mean frequency of egg rotation, 13.9 and 15.3 times every 24 h, was similar between down and hay nests, respectively. Hatching success adjusted for clutch size was similar, 0.60 and 0.67 in down and hay nests. These findings indicate that nest down is not a critical factor for the incubating eider. Because of high effect sizes for cooling rate and hatching success, we hesitate to conclude that absolutely no effects exist. However, we conclude that delaying down collection until just before eggs hatch will minimize any possible effect of down collection on females.  相似文献   

14.
Nest attendance during incubation is characterized by an inequitable division of labor in house sparrows, Passer domesticus, with females spending more time at the nest than males. Previous research has shown that if male contributions are reduced experimentally via testosterone (T) implants, females compensate partially for those reductions, consistent with predictions from most models of negotiated biparental care. In this study, we attempted to identify the cues and contexts generating partial compensation, using data from both unmanipulated parents and pairs with T‐males. Both males and females of this species sometimes leave the nest before their mate returns to relieve them, and we found that these unrelieved departures by unmanipulated individuals occur when partners are on lengthy recesses. Females compensated partially for long male recesses by marginally extending their bouts; most females also slightly reduced their next recess. By contrast, when males left before their mate returned, they left earlier than when they waited for the female. Neither males nor females adjusted their recess lengths after returning to the nest and discovering that their partner was absent. More pronounced changes in nest attendance of unmanipulated parents occurred in the context of ‘visits’, when individuals returned to the nest but then left without relieving their mate. Such visits effectively prolonged the bout of the on‐duty partner and extended the visitor’s recess. Analyses of behavior of T‐males and their mates revealed that T‐males had significantly longer recesses than control males, and that their mates, in turn, had elevated rates of unrelieved departures. T‐males also visited their on‐duty mates more often than control males, whereas female visits to T‐males were rare. Collectively, the predicted changes in female nest attendance associated with lengthy male recesses and male and female visits account reasonably well for the compensatory response of females paired to T‐males. The majority of female compensation was attributable to changes in visit behavior, however, suggesting that much of the negotiation over nest attendance in this species occurs during direct interactions between mates.  相似文献   

15.
Increasing nest survival by excluding predators is a goal of many bird conservation programs. However, new exclosure projects should be carefully evaluated to assess the potential risks of disturbance. We tested the effectiveness of predator exclosure fences (hereafter, fences) for nests of critically endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) at a dry prairie site (Three Lakes; 2015–2018) and a pasture site (the Ranch; 2015–2016) in Osceola County, Florida, USA. We installed fences at nests an average of 8 days after the start of incubation, and nest abandonment after fence installation was rare (2 of 149 installations). Predation was the leading cause of failure for unfenced nests at both sites (48–73%). At Three Lakes, nest cameras revealed that mammals and snakes were responsible for 61.5% and 38.5% of predation events, respectively, at unfenced nests. Fences reduced the daily probability of predation (0.016 for fenced nests vs. 0.074 for unfenced nests). The probability that a fenced nest would survive from discovery to fledging was more than double that of unfenced nests (60.4% vs. 27.7%). However, we found no difference in daily nest survival at the Ranch between the year before nests were fenced (2015; 0.874) and the year when all but one nest were fenced (2016; 0.867) because red imported fire ants (Solenopsis invicta) were responsible for 86% of predation events at fenced nests at the Ranch. The use of cameras at fenced nests revealed that site‐specific differences in nest predators explained variation in fence efficiency between sites. Our fence design may be useful for other species of grassland birds, but site‐specific predator communities and species‐specific response of target bird species to fences should be assessed before installing fences at other sites.  相似文献   

16.
In avian cooperative breeding systems, many benefits obtained by social pairs from the presence of helpers have been uncovered. However, until now, the factors that determine the type of assistance helpers provide and the responses of social pairs have not been well illustrated. We examined the contribution of helpers to cooperative groups and the relevant responses of dominant pairs in the azure‐winged magpie Cyanapica cyana which breeds on the Tibetan Plateau. We used the capture–mark–recapture method to identify helpers. Results showed that helpers were mostly the yearling sons of dominant pairs. They mainly contributed to the cooperative group in three ways, courtship‐feeding the incubation female, provisioning the brood, and defending the nest. For responses of dominant pairs, we unexpectedly found that clutch size was not influenced by the presence of helpers at the nest. However, cooperative groups had higher brood feeding rates than biparental nests and their feeding pattern also differed to that of the latter. Consequently, nestlings in cooperative groups had larger fledging body mass than that in biparental nests. By examining reasons for nest failure, we revealed that conspecific nest‐raiding contributed to more nest failure than any other natural predators. Because of the contribution of helpers in defending against both predators and conspecific nest‐raiders, cooperative groups had higher survival rate than biparental nests. Thus, our findings suggest that in a highly‐clumped nesting pattern, factors concerning the risk of nest predation, rather than that influencing food supply, play an important role in determining helper effects and responses of aided dominant pairs.  相似文献   

17.
András Liker  Tamás Székely 《Ibis》1999,141(4):608-614
Parental behaviour of monogamous and polygynous Lapwings was studied during incubation and brood care. Both parents attended the nest in 86% of monogamous pairs ( n = 29 pairs). In 14% of pairs, only the male parent continued incubation until the eggs hatched, whereas the female deserted the clutch before or at the end of incubation. There was a clear division of parental roles during incubation. Females spent more time incubating (64% of time) than their mates (27%), whereas males spent more time defending the nest (3%) than females (>1%). Time spent incubating did not differ between monogamous and polygynous males. However, polygynous females spent more time incubating (primary females: 95%; secondary females: 97%) than monogamous females. Biparental care was the most common pattern of post-hatching care, although in some broods either the male or the female parent deserted before the chicks fledged. Division of sex roles was less pronounced in brood care than during incubation. Females spent more time brooding (21%) than males (3%), and females attended their chicks more closely than males. Nevertheless, males and females spent similar amounts of time defending the brood from predators and conspecifics. We suggest that the apparent division of parental roles may be explained by sexual selection, i.e. the remating opportunities for male Lapwings might be reduced if they increase their share in incubation. However, the different efficiency of care provision, for example in ability to defend offspring, may also influence the roles of the sexes in parental care.  相似文献   

18.
The effect of biparental inbreeding on the conditions governing the evolution of selfing is examined using recursions in mating-type frequencies. Sibmating in combination with random outcrossing influences two key determinants of the adaptive value of selfing: 1) the meiotic cost of biparental reproduction and 2) the level of inbreeding depression due to deleterious mutations. Biparental inbreeding serves to maintain biparental reproduction by increasing relatedness between parents and their biparentally derived offspring and introduces the possibility of an optimal mating system that incorporates both modes of reproduction. Biparental inbreeding serves to promote uniparental reproduction by reducing the relative inbreeding depression suffered by uniparental offspring. The net effect of these two antagonistic trends depends upon the extent to which mutational load accounts for differences in the numbers of the two types of offspring. A brief summary of the empirical literature suggests that: 1) biparental inbreeding may occur in populations exhibiting mixed mating systems; 2) while inbreeding depression represents an important factor, it does not account entirely for differences in offspring number between the two modes of reproduction.  相似文献   

19.
Abstract The jacky dragon, Amphibolurus muricatus (White, ex Shaw 1790) is a medium sized agamid lizard from the southeast of Australia. Laboratory incubation trials show that this species possesses temperature‐dependent sex determination. Both high and low incubation temperatures produced all female offspring, while varying proportions of males hatched at intermediate temperatures. Females may lay several clutches containing from three to nine eggs during the spring and summer. We report the first field nest temperature recordings for a squamate reptile with temperature‐dependent sex determination. Hatchling sex is determined by nest temperatures that are due to the combination of daily and seasonal weather conditions, together with maternal nest site selection. Over the prolonged egg‐laying season, mean nest temperatures steadily increase. This suggests that hatchling sex is best predicted by the date of egg laying, and that sex ratios from field nests will vary over the course of the breeding season. Lizards hatching from eggs laid in the spring (October) experience a longer growing season and should reach a larger body size by the beginning of their first reproductive season, compared to lizards from eggs laid in late summer (February). Adult male A. muricatus attain a greater maximum body size and have relatively larger heads than females, possibly as a consequence of sexual selection due to male‐male competition for territories and mates. If reproductive success in males increases with larger body size, then early hatching males may obtain a greater fitness benefit as adults, compared to males that hatch in late summer. We hypothesize that early season nests should produce male‐biased sex ratios, and that this provides an adaptive explanation for temperature‐dependent sex determination in A. muricatus.  相似文献   

20.
Nest protection against intruders is an indispensable component of avian parental care. In species with biparental care, both mates should evolve nest defence behaviour to increase their reproductive success. In most host-parasite systems, host females are predicted to have more important roles in nest defence against brood parasites, because they typically are primarily responsible for clutch incubation. Male antiparasitic behaviour, on the other hand, is often underestimated or even not considered at all. Here we investigated sex-specific roles in four aspects of great reed warbler (Acrocephalus arundinaceus) nest defence against a brood parasite—the cuckoo (Cuculus canorus), namely (1) mobbing, (2) nest attendance/guarding, (3) nest checking and (4) egg ejection. Using dummy experiments, simulating brood parasitism and by video-monitoring of host nests we found that males took the key roles in cuckoo mobbing and nest guarding, while females were responsible for nest checking and egg ejection behaviours. Such partitioning of parental roles may provide a comprehensive clutch protection against brood parasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号