首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of the leaf canopy of corn seedlings (Zea mays L.) to atmospheric CO2 levels ranging from 100 to 800 μl/l decreased nitrate accumulation and nitrate reductase activity. Plants pretreated with CO2 in the dark and maintained in an atmosphere containing 100 μl/l CO2 accumulated 7-fold more nitrate and had 2-fold more nitrate reductase activity than plants exposed to 600 μl/l CO2, after 5 hours of illumination. Induction of nitrate reductase activity in leaves of intact corn seedlings was related to nitrate content. Changes in soluble protein were related to in vitro nitrate reductase activity suggesting that in vitro nitrate reductase activity was a measure of in situ nitrate reduction. In longer experiments, levels of nitrate reductase and accumulation of reduced N supported the concept that less nitrate was being absorbed, translocated, and assimilated when CO2 was high. Plants exposed to increasing CO2 levels for 3 to 4 hours in the light had increased concentrations of malate and decreased concentrations of nitrate in the leaf tissue. Malate and nitrate concentrations in the leaf tissue of seven of eight corn genotypes grown under comparable and normal (300 μl/l CO2) environments, were negatively correlated. Exposure of roots to increasing concentrations of potassium carbonate with or without potassium sulfate caused a progressive increase in malate concentrations in the roots. When these roots were subsequently transferred to a nitrate medium, the accumulation of nitrate was inversely related to the initial malate concentrations. These data suggest that the concentration of malate in the tissue seem to be related to the accumulation of nitrate.  相似文献   

2.
Nitrate reduction in roots and shoots of 7-day-old barley seedlings, and 9-day-old corn seedlings was investigated. The N-depleted seedlings were transferred for 24 h or 48 h of continuous light to a mixed nitrogen medium containing both nitrate and ammonium. Total nitrate reduction was determined by 15N incorporation from 15NO3, translocation of reduced 15N from the roots to the shoots was estimated with reduced 15N from 15NH4+ assimilation as tracer, and the translocation from the shoots to the roots was measured on plants grown with a split root system. A model was proposed to calculate the nitrate reduction by roots from these data. For both species, the induction phase was characterized by a high contribution of the roots which accounted for 65% of the whole plant nitrate reduction in barley, and for 70% in corn. However, during the second period of the experiment, once this induction process was finished, roots only accounted for 20% of the whole plant nitrate reduction in barley seedlings, and for 27% in corn. This reversal in nitrate reduction localization was due to both increased shoot reduction and decreased root reduction. The pattern of N exchanges between the organs showed that the cycling of reduced N through the plant was important for both species. In particular, the downward transport of reduced N increased while nitrate assimilation in roots decreased. As a result, when induction was achieved, the N feeding of the roots appeared to be highly dependent on translocation from the leaves.  相似文献   

3.
The effects of CO2-limited photosynthesis on 15NO3 uptake and reduction by maize (Zea mays, DeKalb XL-45) seedlings were examined in relation to concurrent effects of CO2 stress on carbohydrate levels and in vitro nitrate reductase activities. During a 10-hour period in CO2-depleted air (30 microliters of CO2/ per liter), cumulative 15NO3 uptake and reduction were restricted 22 and 82%, respectively, relative to control seedlings exposed to ambient air containing 450 microliters of CO2 per liter. The comparable values for roots of decapitated maize seedlings, the shoots of which had previously been subjected to CO2 stress, were 30 and 42%. The results demonstrate that reduction of entering nitrate by roots as well as shoots was regulated by concurrent photosynthesis. Although in vitro nitrate reductase activity of both tissues declined by 60% during a 10-hour period of CO2 stress, the remaining activity was greatly in excess of that required to catalyze the measured rate of 15NO3 reduction. Root respiration and soluble carbohydrate levels in root tissue were also decreased by CO2 stress. Collectively, the results indicate that nitrate uptake and reduction were regulated by the supply of energy and carbon skeletons required to support these processes, rather than by the potential enzymatic capacity to catalyze nitrate reduction, as measured by in vitro nitrate reductase activity.  相似文献   

4.
Two experiments were conducted to evaluate the effects of phenotypicrecurrent selection for high and low post-anthesis leaf-laminain vivo NRA on nitrate uptake, nitrate partitioning and in vitroNRA of seedling roots and leaves. In Experiment 1, intact plantsof cycle 0, 4, and 6 of the high and low NRA strains were grownon NH4-N for 11 d, then exposed to 1.0 mol m–3 KNO3, andcultures sampled at 6 h and 28 h (induction and post-inductionperiods). Nitrate uptake, tissue nitrate concentration and invitro NRA were determined. The pattern of response to selectionin seedling leaf NRA was similar to that observed for in vivoNRA of field grown plants. Leaf NRA increased between 6 h and28 h. Root NRA was not affected by selection or sampling time.Treatments differed in total fresh weight but not in reductionor uptake of nitrate per unit weight, indicating a lack of correspondencebetween NRA and reduction and supporting the idea that concomitantreduction by NR is not obligatorily linked to nitrate influxin the intact plant. In Experiment 2, dark-grown plants of cycle 0, and 6 of thehigh and low NRA strains were cultured without N, detopped onday 6, transferred the following day to 0-75 mol m–3 KNO3and sampled at 6 h and 28 h. In contrast to Experiment 1, selectionpopulations differed in nitrate reduction and root NRA, whichby 28 h reached higher average levels than root NRA of intactplants. Translocation and reduction were inversely related amongstrains within each sampling time. The high level of translocationin detopped plants of the low NRA strain was difficult to reconcilewith its low leaf NRA level of Experiment 1. It is suggestedthat nitrate transport in detopped roots is altered relativeto the intact system in a way which permits greater NRA inductionand nitrate reduction. The results indicate that nitrate partitioningby detopped root systems should be interpreted with caution. Key words: Zea, nitrate reductase activity, nitrate uptake, nitrate reduction, nitrate partitioning, selection  相似文献   

5.
Summary Mesembryanthemum crystallinum L., an inducible crassulacean acid metabolism (CAM) plant, was grown for approximately 5 weeks following germination in well-watered, non-saline soil in a controlled-environment chamber. During this time, plants were characterized by C3 photosynthetic carbon metabolism. After the initial 5 weeks, CAM was induced by a combination of high soil salinity and reduced soil water content. One group of plants was allowed to engage in CAM by being continuously exposed to normal CO2-containing air (about 350–400 ppm). A second group of plants was deprived of ambient CO2 each night (12 h dark period) until completion of their life cycle, thereby minimizing potential carbon gain via dark CO2 fixation. The capacity to express CAM under conditions of drought and salinity stress markedly improved reproductive success: plants kept in normal CO2-containing air produced about 10 times more seeds than plants kept in CO2-free air during dark periods. Seeds from plants deprived of ambient CO2 overnight had more negative 13C values than seeds from plants kept in normal air.  相似文献   

6.
Low CO(2) Prevents Nitrate Reduction in Leaves   总被引:13,自引:8,他引:5       下载免费PDF全文
The correlation between CO2 assimilation and nitrate reduction in detached spinach (Spinacia oleracea L.) leaves was examined by measuring light-dependent changes in leaf nitrate levels in response to mild water stress and to artificially imposed CO2 deficiency. The level of extractable nitrate reductase (NR) activity was also measured. The results are: (a) In the light, detached turgid spinach leaves reduced nitrate stored in the vacuoles of mesophyll cells at rates between 3 and 10 micromoles per milligram of chlorophyll per hour. Nitrate fed through the petiole was reduced at similar rates as storage nitrate. Nitrate reduction was accompanied by malate accumulation. (b) Under mild water stress which caused stomatal closure, nitrate reduction was prevented. The inhibition of nitrate reduction observed in water stressed leaves was reversed by external CO2 concentrations (10-15%) high enough to overcome stomatal resistance. (c) Nitrate reduction was also inhibited when turgid leaves were kept in CO2-free air or at the CO2-compensation point or in nitrogen. (d) When leaves were illuminated in CO2-free air, activity of NR decreased rapidly. It increased again, when CO2 was added back to the system. The half-time for a 50% change in activity was about 30 min. It thus appears that there is a rapid inactivation/activation mechanism of NR in leaves which couples nitrate reductase to net photosynthesis.  相似文献   

7.
Seven day old wheat and maize seedlings were exposed to 1300 or 2000 microeinsteins per square meter per second photosynthetically active radiation in CO2-free air for 3 hours with either 1% O2 in N2 or N2-only and then returned to normal air of 340 microliters per liter CO2, 21% O2 in N2. Activity of the ribulose bisphosphate carboxylase and amount of the substrate, ribulose 1,5-bisphosphate, were measured during and following the CO2-free treatments as was photosynthetic CO2 fixation. Photoinhibition of photosynthesis was observed only with wheat seedlings following the N2 only treatment. During the CO2-free treatments, the levels of RuBP rose during all experiments except when wheat was photoinhibited. The activity of the ribulose bisphophate carboxylase, measured directly upon grinding the leaves, declined during the CO2-free conditions. The carboxylase total activity increased in minutes in the leaf during and following the CO2-free treatments. The specific activities of the wheat carboxylase went from 0.16 to 1.06 micromoles CO2 fixed per milligram protein per minute while the maize carboxylase varied from 0.05 to 0.36 micromole CO2 fixed per millogram protein per minute. This suggests that in these seedlings considerable inactive carboxylase must be stored in a form not activatable in extracts by CO2 and Mg2+. Possible mechanisms of regulation of photosynthesis by the ribulose bisphosphate carboxylase must consider not only the amount of active enzyme, but the amount of enzyme which the plant can make activatable upon demand.  相似文献   

8.
S. C. Wong 《Oecologia》1979,44(1):68-74
Summary Cotton and maize plants were grown under full sunlight in glass houses containing normal ambient partial pressure of CO2 (330±20 bar) and enriched partial pressure of CO2 (640 ±15 bar) with four levels of nitrogen nutrient. In 40 day old cotton plants grown in high CO2, there was a 2-fold increase in day weight and a 1.6-fold increase in leaf area compared with plants grown in ambient CO2. In 30 day old maize plants there was only 20% increase in dry weight in plants grown in 640 bar CO2 compared with plants grown in 330 bar and no significant increase in leaf area. In both species, at both CO2 treatments, dry weight and leaf area decreased in similar proportion with decreased nitrogen nutrient.The increase of leaf area in cotton plants at high CO2 caused a reduction of total nitrogen on a dry weight basis. In cotton assimilation rate increased 1.5 fold when plants were grown with high nitrogen and high CO2. The increase was less at lower levels of nitrate nutrient. There was a 1.2 fold increase in assimilation rate in maize grown at high CO2 with high nitrate nutrient.Cotton and maize grown in high CO2 had a lower assimilation rate in ambient CO2 compared to plants grown in normal ambient air. This difference was due to the reduction in RuBP carboxylase activity. Water use efficiency was doubled in both cotton and maize plants grown at high CO2 in all nutrient treatments. However, this increase in water use efficiency was due primarily to reduced transpiration in some treatments and to increased assimilation in others. These data show that plant responses to elevated atmospheric partial pressure of CO2 depend on complex of partially compensatory processes which are not readily predictable.  相似文献   

9.
In Ankistrodesmus braunii, in the absence of CO2, i.e. in CO2-free air or N2, photosynthetic nitrate uptake and nitrate reduction were inhibited, especially at low pH. Under such conditions, glucose stimulated nitrate uptake and reduction to almost the same level in the pH range between 6 and 8.5. CO2 at 0.03% effected an intermediate pH dependence of nitrate uptake; saturating CO2 concentration (more than 1%) eliminated the pH dependence, as did glucose, but the rates were enhanced compared with glucose. Glucose and, even more, CO2, drastically reduced the release of nitrite and ammonia to the medium, the stoichiometry between alkalinization of the medium and nitrate uptake (OH/NO3) approached 1.  相似文献   

10.
Seedlings of Schima superba were exposed to both ambient (375 ppm) and 720 ppm levels of CO2 in combination with two incubation temperatures (25/20, 30/25°C, day/night) for a six-month period. Net height growth of seedlings was enhanced in the early period of exposure to high levels of CO2. However, when seedlings were exposed for a longer period of time to this high concentration, net height growth was inhibited. Decreased photosynthetic rate with elevated CO2 was observed when measured in the ambient CO2 over a long-term exposure of 6 months. In contrast, a significant increase in photosynthesis was noted for seedlings exposed to higher incubation temperature in either ambient or 720 ppm CO2 concentrations. The response of CO2 assimilation to internal Ci was indicated by the lower sensitivity in seedlings grown in elevated CO2 concentration. Though this response could also be found in a higher sensitivity in seedlings grown at higher temperature, the seedlings grown in normal conditions (ambient CO2 and temperature) were still more sensitive to CO2 assimilation response to internal Ci. This experiment suggests that: (1) exposure of seedlings to higher CO2 levels for longer periods may lead to a decrease in seedling height growth and photosynthetic rate, as well as decreasing sensitivity to changing internal CO2 concentrations; (2) the optimum temperature for photosynthesis of seedlings grown in an elevated CO2 concentration was higher than that for seedlings grown in ambient concentration.  相似文献   

11.
Our previous work indicated that salinity caused a shift in the predominant site of nitrate reduction and assimilation from the shoot to the root in tomato plants. In the present work we tested whether an enhanced supply of dissolved inorganic carbon (DIC, CO2+ HCO3) to the root solution could increase anaplerotic provision of carbon compounds for the increased nitrogen assimilation in the root of salinity-stressed Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were grown in hydroponic culture with 0 or 100mM NaCl and aeration of the root solution with either ambient or CO2-enriched air (5000 μmol mol?1). The salinity-treated plants accumulated more dry weight and higher total N when the roots were supplied with CO2-enriched aeration than when aerated with ambient air. Plants grown with salinity and enriched DIC also had higher rates of NO?3 uptake and translocated more NO?3 and reduced N in the xylem sap than did equivalent plants grown with ambient DIC. Incorporation of DIC was measured by supplying a 1 -h pulse of H14CO?3 to the roots followed by extraction with 80% ethanol. Enriched DIC increased root incorporation of DIC 10-fold in both salinized and non-salinized plants. In salinity-stressed plants, the products of dissolved inorganic 14C were preferentially diverted into amino acid synthesis to a greater extent than in non-salinized plants in which label was accumulated in organic acids. It was concluded that enriched DIC can increase the supply of N and anaplerotic carbon for amino acid synthesis in roots of salinized plants. Thus enriched DIC could relieve the limitation of carbon supply for ammonium assimilation and thus ameliorate the influence of salinity on NO?3 uptake and assimilation as well as on plant growth.  相似文献   

12.
The observation that exposure of the leaf canopy to increasing concentrations of CO2 (100-400 μl/l) decreases the influx of nitrate to the leaf blades, but not to the roots or stalks (largely leaf sheaths), was reconfirmed using 15NO3. Decreases in leaf nitrate supply were associated with decreases in induction of nitrate reductase, thus supporting the view that the influx of nitrate to a tissue is a major factor in regulation of the level of nitrate reductase. The whole plant 15N distribution data show that the CO2 effects were due to decreased influx of nitrate into the leaf blade rather than CO2-enhanced nitrate reduction. The decreases in nitrate accumulation by the leaf blade with increases in CO2 concentration were only partially accounted for by differences in transpiration. Because the initial malate concentration of root tissue (detopped plants) had no subsequent effect on nitrate uptake, it seems unlikely that high levels of malate induced by CO2 were responsible for the exclusion of nitrate from the leaf blades.  相似文献   

13.
We examined diurnal fluctuations in acquisition and partitioning of recently assimilated 14CO2, and in subsequent allocation and partitioning to roots of loblolly pine (Pinus taeda L.) seedlings. Nonmycorrhizal seedlings were grown under optimal nutrient conditions in continuously flowin solution culture. Shoots of 15-week-old loblolly pine seedlings were labeled with 14CO2 for 30 min at four separate labeling times: 1000, 1200, 1400 and 1600 h. Six whole plant harvests were conducted during a 48 h chase period, i.e. 0, 4, 8 12, 24 and 48 h after the end of the labeling and evacuation periods. Although assimilation of 14CO2 was constant between 1000 and 1400 h, there were significant differences in partitioning of 14C-labeled assimilate in needles of all age classes. The highest percentage of recently assimilated 14CO2 in the ethanol-soluble fraction of photosynthesizing tissue was observed near the beginning and end of the photoperiod. Partitioning of 14C in the ethanol-soluble fraction declined between the 1000 and 1400 h labeling eriods, and was accompanied by an increase in partitioning of recently assimilated 14CO2 toward starch and a decrease in respiratory losses. These data suggest that most of the 14CO2 assimilated at 1000 h was used to support shoot metabolic activities and possibly restore soluble sugar reserves. Peak starch accumulation in needles during the 1400 h labeling period, concomitant with minimal respiratory loss, indicated that photosynthate production exceeded demand and export out of source leaves. A possible feedback regulation of photosynthesis by starch and/or sugar accumulation may be responsible for the observed decline in assimilation of 14CO2 during the 1600 h labeling period. Net accumulation of recently assimilated 14CO2 in roots was correlated with assimilation rate of 14CO2, but independent of partitioning of recently assimilated carbon in photosynthetic tissue. However, the percentage of total seedling 14C allocated to roots was essentially the same throughout the 48 h chase, regardless of time of labeling and assimilation rate. The data suggest a strong diurnal regulation of starch and soluble sugars synthesized from recently assimilated carbon in needles of loblolly pine seedlings that was independent of assimilation rate. Allocation and transport of recently assimilated carbon to roots of loblolly pine seedlings were not subject to short-term fluctuations in supply and demand.  相似文献   

14.
Both Chlorella pyrenoidosa and Chlorella vulgaris grow equally well at 20°C aerated with ordinary air or mixtures of air with 5 or 12 per cent CO2 (5 klux continuous light). Whereas C. vulgaris relatively rapidly adapts to a higher CO2 tension, adaptation takes about 24 hours for C. pyrenoidosa. In Chlorella vulgaris pH in the range 3.6–7.6 has no apparent influence on the rate of photosynthesis in experiments having a duration of two hours. This is true both for algae grown aerated by ordinary air and for algae grown with a mixture of 5 per cent CO2 in air. The adaptation time must be short. In Chlorella pyrenoidosa the same is found for algae in ordinary air, whereas an influence of pH is seen in some experiments where the aeration was by 5 per cent CO2 in air. As is to be expected, the rate of photosynthesis in C. pyrenoidosa during the first two hours is very much influenced by the concentration of free CO2. The highest rate is found at the CO2 concentration at which the algae had been growing previously. The influence on the rate of photosynthesis in C. vulgaris is very much less, although in principle the same. The investigation of the corresponding influence on the rate of respiration is complicated by considerable variation from one series to another. In C. vulgaris this is particularly of importance. In C. pyrenoidosa, the highest rate of respiration is generally found at the CO2-concentration at which the alga had been growing before the experiment. It seems probable that variations between similar series is due to the fact that the algae were grown in continuous light but with dilution with fresh culture medium when the optical density had reached a certain magnitude. Algae grown in this way are neither synchronized nor non-synchronized.Our thanks are due to the Danish State Research Foundation for financial support.  相似文献   

15.
Summary The effect of exogenous KNO3, the terminal acceptor of electrons in oxygen-free medium, on mitochondrial ultrastructure and on the growth rate of 4-day-old rice coleoptiles under strictly anoxic conditions was studied. Exogenous nitrate (10 mM) did not exert any significant effect on the growth rate of coleoptiles of intact seedlings compared to their growth in KNO3-free medium. Anaerobic incubation of detached coleoptiles in KNO3-free medium for 48 h resulted in the complete destruction of mitochondrial and other cell membranes. In the presence of KNO3, no mitochondrial-membrane destruction was observed even after 48 h anoxia although the mitochondrial ultrastructure was modifed. Cristae were arranged in parallel rows and elongated dumbbell-shaped mitochondria appeared in some cells. The data obtained indicate a protective role of exogenous nitrate as electron acceptors in oxygen-free medium. The results of the present investigation are discussed and compared with reports of either markedly damaging or favorable effects of exogenous nitrate on the growth, metabolism, and energetics of rice and other plants under hypoxic and anoxic conditions.  相似文献   

16.
Phase-sequence studies showed that light, ethylene, and high temperature each enhanced germination of redroot pigweed (Amaranthus retroflexus L.) seeds when given during the first 24 hours of seed imbibition. Responses were maximal during the first 12 hours. After 48 hours all three stimuli given together caused 75% germination but each alone was ineffective. The main influence of water potential on seed germination occurred at about 24 hours, but the influence of CO2 extended into the second and third days. Germination was reduced by water stress (−4 bars) or CO2-free air, but ethylene reversed the reduction even when administered after several days incubation. This suggested that environmental and hormonal factors affected redroot pigweed seeds at two distinct stages in the sequence of germination events.  相似文献   

17.
W. A. Laing  B. J. Forde 《Planta》1971,98(3):221-231
Summary A tracer technique was used to measure photorespiration in Amaranthus lividus, soybean and corn. Under a light intensity of 40 Wm-2 (400–700 nm) efflux of tracer carbon dioxide from Amaranthus into air was comparable to that from soybean over a 30-min period and 10 times that from corn. Initial rates of efflux of tracer into air from Amaranthus were higher than from soybean and 9 times that from corn. Efflux of CO2 from Amaranthus over 30 min in 120 Wm-2 was only 5 times that of corn and the initial rate was only one third that of soybean. Though total efflux from soybean was similar at the two light intensities, the initial rate was slightly higher under 120 Wm-2. For Amaranthus and soybean, pure oxygen doubled total efflux of CO2 and substantially increased the initial rate compared with CO2-free air whereas there was no effect on corn. A comparison of the light and dark curves suggests that light and dark respiration had different substrates. The results are interpreted in terms of the recycling of photorespiratory CO2.  相似文献   

18.
Nitrate uptake and assimilation were examined in intact 18 days old wheat (Triticum aestivum, cv Capitole) seedlings either permanently grown on nitrate (high-N seedlings) or N-stressed by transfer to an 0 N-solution for the final 7 days (low-N seedlings). The N-stressed seedlings were characterized by a lower organic N content (2.5 mg instead of 4.9 mg per seedling) and an increased root dry weight.The seedlings received 15NO3K for 7 h in the light. Nitrate uptake was 2.8 times higher in low-N than in high-N seedlings. The assimilation rate was 35 and 16 μmol NO3?·h?1· g?1 dry weight respectively. Partitioning of NO3? to reduction and assimilation was the very same in both kinds of seedlings. The results support the view that 50 % of the nitrate reduction in Triticum aestivum, cv Capitole could be achieved in the roots.The present observations are interpreted as evidence that factors closely associated with the seedling N-status may have a major role in regulating NO3? uptake and assimilation. In low-N seedlings, the high amount of carbohydrates in roots may add its stimulus to the specific inducing effect of nitrate whereas in high-N seedlings, excess of nitrate or amino-acids may set the pace by negative feedback control.  相似文献   

19.
Both carbon dioxide and ethylene can affect the rate of root elongation. Carbon dioxide can also promote ethylene biosynthesis by enhancing the activity of 1-aminocylopropane-1-carboxylic acid (ACC) oxidase. Since the amount of CO2 in the soil air, and in the atmosphere surrounding roots held in enclosed containers, is known to vary widely, we investigated the effects of varying CO2 concentrations on ethylene production by excised and intact sunflower roots (Helianthus annuus L. cv. Dahlgren 131). Seedlings were germinated in an aeroponic system in which the roots hung freely in a chamber and were misted with nutrient solution. This allowed for treatment, manipulation and harvest of undamaged and minimally disturbed roots. While exposure of excised roots to 0.5% CO2 could produce a small increase in ethylene production (compared to roots in ambient CO2), CO2 concentrations of 2% and above always inhibited ethylene evolution. This inhibition of ethylene production by CO2 was attributed to a reduction in the availability of ACC: however, elevated CO2 had no effect on ACC oxidase activity. ACC levels in excised roots were depressed by CO2 at a concentration of 2% (as compared to ambient CO2), but n-malonyl-ACC (MACC) levels were not affected. Treating intact roots with 2% CO2 inhibited elongation by over 50%. Maximum inhibition of elongation occurred 1 h after the CO2 treatment began, but elongation rates returned to untreated values by 6 h. Supplying these same intact roots with 2% CO2 did not alter ethylene evolution. Thus, in excised sunflower roots 2% CO2 treatment reduces ethylene evolution by lowering the availability of ACC. Intact seedlings respond differently in that 2% CO2 does not affect ethylene production in roots. These intact roots also temporarily exhibit a significantly reduced rate of elongation in response to 2% CO2.  相似文献   

20.
During the period November to March a threefold increase in CO2 concentration had only a small effect on the growth rate of tomato seedlings, variety Eurocross B. Although net assimilation rates were increased, some inhibitory effects of increased CO2 concentration on leaf growth were found when the seedlings were very small. The increase in dry weight was equivalent to that made in a few days by plants grown with naturally occurring amounts of CO2. There was no increase in the rate of flower initiation. Using supplementary illumination for 17 hr. per day with high-pressure mercury vapour lamps made it possible to produce in November-December seedlings similar to those grown during March-April with natural illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号