首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Examples of using monoclonal antibodies (MAb) for studying the fibrin polymerization mechanism are considered. MAb with epitopes situated in the fibrin polymerization sites or in the recognition sites of enzymes thrombin, plasminogen, and factor XIII, which are the functional partners of fibrin, are primarily discussed. The MAb to epitopes in various regions of A, B, and polypeptide chains of the functionally important E, D, and C domains of fibrin are successively described.  相似文献   

2.
Kinetics of inhibition of fibrin monomer polymerization produced by Fab fragments prepared from immunochemically purified monospecific antibodies to the surface epitopes of different domains of fibrinogen molecule has been correlated with electron microscopic observations of resulting specimens. Fab fragments prepared from anti FgD antisera were the most efficient inhibitors of thrombin-catalysed conversion of fibrinogen to fibrin; polymerization of fibrin monomers as detected spectrophotometrically was abolished at 2:1 molar ratio of anti FgD Fab fragments to fibra monomer. These Fab fragments acting as a steric hindrance of polymerization sites inhibited the first stage of fibrin monomer aggregation. Interaction of Fab fragments derived from antibodies specific for alpha 239-476 with corresponding segment of fibrinogen molecule resulted in a weak inhibition of fibrin monomer polymerization. However, fibrin obtained in the presence of these Fab fragments was significantly modified and showed no periodicity. This observation may suggest that anti alpha 239-476 Fab impaired the course of the second stage of fibrin monomer polymerization, i.e. lateral association of fibrin fibrils.  相似文献   

3.
Antigenic variants of vesicular stomatitis virus (VSV) serotypes New Jersey and Indiana (VSV-NJ, VSV-Ind) were selected by using a panel of monoclonal antibodies (MAb) specific for the major surface glycoprotein (G-protein). The reactivity of antigenic variants with the panel of MAb confirmed observations made by competitive binding assays that four distinct antigenic sites (A-D)NJ on the VSV-NJ G-protein and four partially overlapping sites (A, B1, B2, C)Ind on the VSV-Ind G-protein are involved in virus neutralization. Furthermore, subregions within the A epitopes of both serotypes were detected by variant analysis. The frequency of variation at most epitopes was 1 in 10(5) for VSV-NJ and 1 in 10(6) for VSV-Ind. The A3 and C determinants of VSV-Ind, however, defined by MAb that exhibited overlap in binding to other epitopes, appeared to be relatively invariant. Multiple mutations may be necessary to abolish antibody binding at these sites. Overlap of the C group of anti-VSV-Ind MAb with the A epitopes was assigned to the A2 subregion, because variants selected with A2 MAb show reduced binding of C MAb. Heterogeneous antisera from a primary immune response could detect differences in reactivity between variants at the A epitopes and wild-type VSV-NJ or VSV-Ind, suggesting the A epitope is immunodominant. Hyperimmune sera could detect a small difference between ANJ and BNJ variants compared to wild-type VSV-NJ, but could not distinguish between VSV-Ind variants and wild-type VSV-Ind.  相似文献   

4.
Phe-pro-arg-chloromethyl ketone-inhibited alpha-thrombin [FPR alpha-thr] retains its fibrinogen recognition site (exosite 1), augments fibrin/fibrinogen [fibrin(ogen)] polymerization, and increases the incorporation of fibrin into clots. There are two 'low-affinity' thrombin-binding sites in each central E domain of fibrin, plus a non-substrate 'high affinity' gamma' chain thrombin-binding site on heterodimeric 'fibrin(ogen) 2' molecules (gamma(A), gamma'). 'Fibrin(ogen) 1' (gamma(A), gamma(A)) containing only low-affinity thrombin-binding sites, showed concentration-dependent FPR alpha-thr enhancement of polymerization, thus indicating that low-affinity sites are sufficient for enhancing polymerization. FPR gamma-thr, whose exosite 1 is non-functional, did not enhance polymerization of either fibrin(ogen)s 1 or 2 and DNA aptamer HD-1, which binds specifically to exosite 1, blocked FPR alpha-thr enhanced polymerization of both types of fibrin(ogen) (1>2). These results showed that exosite 1 is the critical element in thrombin that mediates enhanced fibrin polymerization. Des B beta 1-42 fibrin(ogen) 1, containing defective 'low-affinity' binding sites, was subdued in its FPR alpha-thr-mediated reactivity, whereas des B beta 1-42 fibrin(ogen) 2 (gamma(A), gamma') was more reactive. Thus, the gamma' chain thrombin-binding site contributes to enhanced FPR alpha-thr mediated polymerization and acts through a site on thrombin that is different from exosite 1, possibly exosite 2. Overall, the results suggest that during fibrin clot formation, catalytically-inactivated FPR alpha-thr molecules form non-covalently linked thrombin dimers, which serve to enhance fibrin polymerization by bridging between fibrin(ogen) molecules, mainly through their low affinity sites.  相似文献   

5.
Functional domains on the recombinant interferon-alpha 2 (rIFN-alpha 2) molecule, which are involved in antiviral and NK enhancing activities, have been defined by immunochemical mapping with MAb, and their relationship with the IFN cellular receptor binding site has been studied. With 20 different anti-IFN-alpha 2 MAb selected by their binding to 125I-labeled IFN and by immunoprecipitation of the 20 Kd IFN molecule, we have defined three spatially separated epitopes (designated as sites A, B, and C) and two partially overlapping antigenic determinants on the IFN-alpha 2 molecule. Functional relation of IFN-alpha 2 A, B, and C epitopes have been determined by assaying the effect of various anti-IFN MAb on IFN-mediated biologic activities. MAb directed to sites A and B neutralized the antiviral activity of IFN. Furthermore, the MAb specific for site B displayed a neutralizing potency threefold higher than MAb directed to site A. Site B was also involved in the enhancing activity of IFN on NK-mediated cell cytotoxicity, whereas site A was not. MAb directed to site C partially affected the IFN-boosted NK activity but did not neutralize the IFN antiviral activity. Inhibition studies of 125I-IFN binding to human U-937 myelomonocytic cells by anti-IFN MAb demonstrated that MAb directed to site B blocked different IFN biologic functions by preventing its binding to the cellular receptor, whereas MAb directed to sites A and C caused no inhibition and partial inhibition of this binding, respectively.  相似文献   

6.
The formation of a fibrin clot occurs through binding of putative complementary sites, called fibrin polymerization sites, located in the NH2- and COOH-terminal domains of fibrin monomer molecules. In this study, we have investigated the structure of the NH2-terminal fibrin polymerization site by using fibrinogen-derived peptides and fragments. Fibrinogen was digested with Crotalus atrox protease III, to two major molecular species: a Mr 325,000 derivative (Fg325) and a peptide of Mr 5000. The peptide and its thrombin-cleavage product were purified by ion-exchange and reverse-phase HPLC; the authenticity of the B beta 1-42 and beta 15-42 peptides, respectively, was confirmed by amino acid sequencing. Since Fg325 had decreased thrombin coagulability, we addressed the question of whether the peptide B beta 1-42 contained a fibrin polymerization site. In order to identify and map the site, the peptides B beta 1-42 and beta 15-42 were tested for their ability to inhibit fibrin monomer polymerization. In addition the following peptides prepared by chemical synthesis were also tested: beta 15-18, beta 15-26, beta 24-42, beta 40-54, beta 50-55, and alpha 17-19-Pro. While B beta 1-42 had no inhibitory activity, the peptide devoid of fibrinopeptide B, beta 15-42, was a strong inhibitor. The peptides beta 15-18, beta 15-26, and beta 15-42 decreased the rate of fibrin polymerization by 50% at a molar excess of the peptide to fibrin monomer of 500, 430, and 50, respectively. The peptides beta 24-42, beta 40-54, and beta 50-55 were inactive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Fragments D1 and DD, plasmic degradation products of human fibrinogen and cross-linked fibrin, respectively, originate from the COOH-terminal domain of the parent molecule. Since a specific binding site for fibrin resides in the COOH-terminal region of the gamma chain, the primary structure of the two fragments was compared and their affinity for fibrin monomer measured. Fragments D1 and DD contained the same segments of the three fibrinogen chains, corresponding to the sequences alpha 105-206, beta 134-461, and gamma 63-411. Fragment DD had a double set of the same chain remnants. Fragments D1 and DD inhibited polymerization of fibrin monomer in a dose-dependent manner; 50% inhibition occurred at a molar ratio of fragment to monomer of 1:1 and 0.5:1, respectively. To prevent fibrin monomer polymerization and render it suitable for binding studies in the liquid phase, fibrinogen was decorated with Fab fragments isolated from rabbit antibodies to human fragment D1. Fibrinogen molecules decorated with 6 molecules of this Fab fragment did not clot after incubation with thrombin, and the decorated fibrin monomer could be used to measure binding of fragments D1 and DD in a homogeneous liquid phase. The data analyzed according to the Scatchard equation and a double-reciprocal plot gave a dissociation constant of 12 nM for fragment D1 and 38 nM for fragment DD. There were two binding sites/fibrin monomer molecule for each fragment. After denaturation in 5 M guanidine HCl, the inhibitory function on fibrin polymerization was irreversibly destroyed. Denatured fragments also lost binding affinity for immobilized fibrin monomer. The preservation of the native tertiary structure in both fragments was essential for the expression of polymerization sites in the structural D domain.  相似文献   

8.
In this short historical review the records about foundation and research activity of the Department of Structure and Function of Protein--school of V. A. Belitser, Member of the National Academy of Sciences of Ukraine are presented. V. A. Belitser was the founder and indispensable chief of the department since the date of its creation (1944) till 1987. The main research interests (1975-1987) of the department were focused at the investigation of structure, biological function of the fibrinogen-fibrin system, mechanisms of the network assembly and of the fibrin fibers structure. Studying the molecular mechanisms of the fibrin fiber assembly, it was shown that the specificity of the building structure was shown is determined by the specific reactive sites with strong affinity of the molecules. The activity of the sites was investigated on protein molecules as well as the fragments. The physical nature of the bonds created by the active sites, that appearing during in the process of fibrinogen activation by thrombin, was revealed. Examination of the fibrin assembly in cooperation with electronmicroscopists and studies of the complex formation between active fragments and fibrin monomer were summarized. Both the fibrin monomer polymerization and protofibril lateral association are presented as two stages in the assembly of the fibrin network. In the research of the domain fibrinogen structure the specific sites of the fibrin assembly in each of the domains were found. COOH-terminal regions of the A alpha-chains play independent part in the fibrinogen and fibrin. That is why it is relevant to consider them as alpha C-domains. In the free fibrinogen molecules (in solution) these domains are responsible for globular shape, they are linked to domains D intramolecularly. When fibrin assembly takes place, alpha C-domains play significant carriage role in fibrin molecules interaction, linking to domains D intermolecularly. The model of the fibrinogen molecule structure and the general scheme of the fibrin fibers network formation were proposed. Physico-chemical basics of a biological structure assembly were elucidated using the process of the fibrin self-assembly as an example. Much attention was devoted to the problems of practical medicine. The quantitative methods of fibrinogen, soluble fibrin and active fibrin/fibrinogen fragments estimation in blood plasma were developed.  相似文献   

9.
Two monomeric fibrin forms differing in a set of polymerization sites (fibrin desAA and fibrin-desAABB) are inhibited to a different extent by tetrapeptide Gly-Pro-Arg-Pro which simulates a moiety of polymerization site E1. The lesser sensitivity of fibrin-desAABB polymerization to the inhibiting tetrapeptide is due to the presence of active site E2 in it. A shape of the concentration dependence curve of the inhibitory effect of tetrapeptide Gly-Pro-Arg-Pro on the polymerization of both fibrin types is similar to the previously found curve for fibrinogen and its fragments--specific inhibitors of polymerization. Ca2+ intensifies inhibition of fibrin-desAABB polymerization by tetrapeptide Gly-Pro-Arg-Pro twice as much as that of fibrin-desAA evidently due to the peptide blockage of sites D2. An increase of the ionic strength from 0.15 to 0.3 enhances the inhibitory effect of the tetrapeptide on polymerization of two monomeric fibrin forms.  相似文献   

10.
Murine monoclonal antibodies 9C3, 7B1, and 9E9 have been obtained using native human fibrinogen as the antigen. The antibodies reacted with the epitopes in the COOH-terminal domain of the A alpha chain. Fragmentation of the A alpha chain with plasmin, and, as in the case of the 9E9 epitope, with V8 protease, followed by isolation of the smallest reacting peptides, allowed the localization of the epitopes for 9C3, 7B1, and 9E9 to the amino acid sequences of alpha 240-268, alpha 425-440, and alpha 541-574, respectively. All three monoclonal antibodies strongly inhibited the rate of fibrin polymer assembly from monomers, both in the purified system and in the human plasma. The mechanism of this strong inhibition implied a rapid formation of fibrin protofibrils, followed by capping with IgG molecules of protofibrils containing approximately ten monomers. These observations demonstrated that certain regions in the COOH terminus of the alpha chain may play an important role in the assembly of a fibrin clot, presumably being involved in lateral aggregation of protofibrils.  相似文献   

11.
Nine murine monoclonal antibodies (MAb) to the envelope proteins of feline leukemia virus (FeLV) are described. Eight MAb are directed to epitopes of the same molecular species of gp70 and the other MAb is directed to the p15E moiety. Six of the gp70 epitopes are discrete; two are closely associated or overlapping. Four anti-gp70 MAb (2 of IgG2A and 2 of IgG2B subclasses) were directly cytotoxic for FeLV-producer lymphoma cells with cat or with rabbit complement (C). Another MAb (IgG2B), which was not cytotoxic alone, specifically and synergistically increased the cytotoxic effects of both IgG2A MAb. Cytotoxic anti-gp70 MAb also had virus-neutralizing capacity; one MAb recognized a determinant common to all FeLV subgroups (A, B, and C), the others recognized gp70 epitopes not present on subgroup A but common to both B and C subgroups. Competitive inhibition of MAb binding was employed to map spatial distributions of the epitopes, and the results fitted a molecule shaped as an incomplete loop. According to the model, epitopes involved with cytotoxic and virus neutralizing antibody functions were closely associated; the region involved is approximately in the center of the molecule, and it contains epitopes that are variably expressed among individual isolates of FeLV derived from different cat lymphoma cell lines.  相似文献   

12.
The time dependence of the release of fibrinopeptides from fibrinogen was studied as a function of the concentration of fibrinogen, thrombin, and Gly-Pro-Arg-Pro, an inhibitor of fibrin polymerization. The release of fibrinopeptides during fibrin assembly was shown to be a highly ordered process. Rate constants for individual steps in the formation of fibrin were evaluated at pH 7.4, 37 degrees C, gamma/2 = 0.15. The initial event, thrombin-catalyzed proteolysis at Arg-A alpha 16 to release fibrinopeptide A (kcat/Km = 1.09 X 10(7) M-1s-1) was followed by association of the resulting fibrin I monomers. Association of fibrin I was found to be a reversible process with rate constants of 1 X 10(6) M-1s-1 and 0.064 s-1 for association and dissociation, respectively. Assuming random polymerization of fibrin I monomer, the equilibrium constant for fibrin I association (1.56 X 10(7) M-1) indicates that greater than 80% of the fibrin I protofibrils should contain more than 10 monomeric units at 37 degrees C, pH 7.4, when the fibrin I concentration is 1.0 mg/ml. Association of fibrin I monomers was shown to result in a 6.5-fold increase in the susceptibility of Arg-B beta 14 to thrombin-mediated proteolysis. The 6.5-fold increase in the observed specificity constant from 6.5 X 10(5) M-1s-1 to 4.2 X 10(6) M-1s-1 upon association of fibrin I monomers and the rate constant for fibrin association indicates that most of the fibrinopeptide B is released after association of fibrin I monomers. The interaction between a pair of polymerization sites in fibrin I dimer was found to be weaker than the interaction of fibrin I with Gly-Pro-Arg-Pro and weaker than the interaction of fibrin I with fibrinogen.  相似文献   

13.
Five monoclonal antibodies (MAb), 7D4, 4C3, 6C3, 4D3, and 3C5, were produced in mice immunized with high buoyant density embryonic chick bone marrow proteoglycans (PGs) as antigen. All of these MAb recognized epitopes in native chick bone marrow and cartilage PGs which could be selectively removed by chondroitinase ABC and chondroitinase AC II, indicating that their epitopes were present in chondroitin sulfate glycosaminoglycans (GAGs). These MAb recognized epitopes present in purified cartilage PGs obtained from a wide variety of different vertebrate species. However, none of the new MAb detected epitopes in Swarm rat chondrosarcoma PG. On the basis of these results, we propose that these MAb recognize novel epitopes located in chondroitin sulfate/dermatan sulfate glycosaminoglycan (CS/DS GAG) chains, representing at least four and possibly five different structures. Immunocytochemical studies have shown that the epitopes identified by these new MAb are differentially distributed in tissues. All of these MAb immunocytochemically detected epitopes in embryonic chick cartilage and bone marrow. Three of them (4C3, 7D4, and 6C3) recognized epitopes in adult human skin. All three detected epitopes in the epidermis, one (6C3) strongly detected epitopes in the papillary dermis, and two (4C3, 7D4) detected epitopes in the reticular dermis. Immunostaining patterns in skin using the new MAb directed against native CS/DS structures were distinctly different from those obtained using MAb against the common CS isomers. The distribution of these CS epitopes in functionally distinct domains of different tissues implies that these structures have functional and biological significance.  相似文献   

14.
Neisserial lipooligosaccharides (LOSs) are a family of complex cell surface glycolipids. We used mass spectrometry techniques (electrospray ionization, collision-induced dissociation, and multiple step), combined with fluorophore-assisted carbohydrate electrophoresis monosaccharide composition analysis, to determine the structure of the two low-molecular-mass LOS molecules (LOSI and LOSII) expressed by Neisseria subflava 44. We determined that LOSI contains one glucose on both the alpha and beta chains. LOSII is structurally related to LOSI and differs from it by the addition of a hexose (either glucose or galactose) on the alpha chain. LOSI and LOSII were able to bind monoclonal antibody (MAb) 25-1-LC1 when analyzed by Western blotting experiments. We used a set of genetically defined Neisseria gonorrhoeae mutants that expressed single defined LOS epitopes and a group of Neisseria meningitidis strains that expresses chemically defined LOS components to determine the structures recognized by MAb 25-1-LC1. We found that extensions onto the beta-chain glucose of LOSI block the recognition by this MAb, as does further elongation from the LOSII alpha chain. The LOSI structure was determined to be the minimum structure that is recognized by MAb 25-1-LC1.  相似文献   

15.
Calcium ions occupy low (n congruent to 10; Kd congruent to 1 mM) and high (n = 3; Kd congruent to 1 microM) affinity sites on fibrinogen and facilitate fibrin monomer polymerization. We have previously localized two of the three high affinity Ca2+ sites to gamma 311-gamma 336. However, optimal enhancement of fibrin monomer polymerization occurs only at physiological millimolar Ca2+ concentrations which are two orders of magnitude higher than the concentration required for occupancy of the high affinity Ca2+-binding sites. In this study, we show that removal of fibrinogen sialic acid residues results in loss of low affinity Ca2+-binding sites. Clotting of asialofibrinogen appears to be Ca2+-independent and results in fiber bundles thicker in diameter than normal fibrin bundles as determined by turbidometry and scanning and transmission electron microscopy. By using a Ca2+-sensitive electrode, free sialic acid is shown to bind Ca2+ (Kd congruent to 1 mM). These observations suggest that the high affinity fibrinogen D-domain Ca2+-binding sites may play a role in the tertiary structure of the D-domain, whereas, sialic acid residues are low affinity sites whose occupancy by Ca2+ at physiological calcium concentration facilitates fibrin polymerization.  相似文献   

16.
Interaction of fibrinogen and its derivatives with fibrin   总被引:1,自引:0,他引:1  
The binding between complementary polymerization sites of fibrin monomers plays an essential role in the formation of the fibrin clot. One set of polymerization sites involved in the interaction of fibrin monomers is believed to pre-exist in fibrinogen, while the complementary set of binding sites is exposed after the cleavage of fibrinopeptides from fibrinogen. The polymerization sites present in fibrinogen and its derivatives mediate their binding to fibrin. Although the binding of fibrinogen and its derivatives to fibrin have been qualitatively studied, there has been no systematic, quantitative investigation of their interaction with forming or preformed clots. In the present study, the binding of fibrinogen and fragments DD, D1, and E1 was measured using a sonicated suspension of plasminogen- and thrombin-free human cross-linked fibrin as a model of a preformed clot. Dissociation constants of 0.056, 0.19, and 2.44 microM, and the number of binding sites corresponding to 0.10, 0.21, and 0.13/fibrin monomer unit of fibrin polymer were found for fibrinogen, fragment DD, and fragment D1, respectively. Fragment E1 did not bind to sonicated noncross-linked or cross-linked fibrin suspensions. However, it was bound to forming fibrin clots as well as to fibrin-Celite, suggesting that the binding sites on fibrin involved in the interaction with fragment E1 may have been altered upon sonication. Affinity chromatography of various fibrinogen derivatives on a fibrin-Celite column showed that only part of the bound fragment DD was displaced by arginine, whereas fragments D1 and E1 were completely eluted under the same conditions. The results indicate that interaction of fibrinogen with the preformed fibrin clots is characterized by affinity in the nanomolar range and that binding between fibrin monomers, in the process of clot formation, could be characterized by even a higher affinity.  相似文献   

17.
Conversion of fibrinogen into fibrin results in the exposure of cryptic interaction sites and modulation of various activities. To elucidate the mechanism of this exposure, we tested the accessibility of the Aalpha148-160 and gamma312-324 fibrin-specific epitopes that are involved in binding of plasminogen and its activator tPA, in several fragments derived from fibrinogen (fragment D and its subfragments) and fibrin (cross-linked D-D fragment and its noncovalent complex with the E(1) fragment, D-D. E(1)). Neither D nor D-D bound tPA, plasminogen, or anti-Aalpha148-160 and anti-gamma312-324 monoclonal antibodies, indicating that their fibrin-specific epitopes were inaccessible. The Aalpha148-160 epitope became exposed only upon proteolytic removal of the beta- and gamma-modules from D. At the same time, both epitopes were accessible in the D-D.E(1) complex, indicating that the DD.E interaction resulted in their exposure. This exposure was reversible since the dissociation of the D-D.E(1) complex made the sites unavailable, while reconstitution of the complex made them exposed. The results indicate that upon fibrin assembly, driven primarily by the interaction between complementary sites of the D and E regions, the D regions undergo conformational changes that cause the exposure of their plasminogen- and tPA-binding sites. These changes may be involved in the regulation of fibrin assembly and fibrinolysis.  相似文献   

18.
Eight monoclonal antibodies (MAb) of IgG2a isotype that were produced against human melanomas were tested for tumor growth-inhibiting properties in nude mice injected with human melanoma cells of various origins. Four of the eight MAb inhibited growth of these tumors, and all four of these antibodies reacted in antibody-dependent macrophage-mediated cytotoxicity (ADMC) assays in vitro. The MAb that were inactive in vivo also did not react in these assays in vitro. The number of antibody-binding sites per cell on the tumor cell surface was significantly higher for tumoricidal MAb as compared to unreactive MAb. On the other hand, the percentage of tumor cells binding the MAb and the binding affinity to these cells were the same for the two groups of MAb. Also, tumoricidal and nontumoricidal MAb bound with similar affinity and antibody density to Fc receptors on macrophages. The importance of the number of antibody sites on the tumor cell surface for tumor destruction by MAb was confirmed by the demonstration of tumoricidal effects of mixtures of MAb that were by themselves not tumoricidal. MAb binding to different molecules on melanoma cells were complementary in ADMC, whereas MAb directed to the same molecule but to different epitopes were not.  相似文献   

19.
Human lymphocyte function-associated antigen (LFA)-1, a heterodimeric lymphocyte surface glycoprotein of 177,000 and 95,000 relative molecular weight has been implicated to function in the cytotoxic T lymphocyte (CTL) effector mechanism. Seven mouse hybridoma lines producing monoclonal antibodies (MAb) reactive with this structure were studied. Three unique and 3 partially over-lapping epitopes on human LFA-1 were defined by competitive cross inhibition binding assays using biosynthetically labeled anti-LFA-1 MAb. In contrast, of five rat antimouse LFA-1 MAb, all five recognized a common or shared epitope. An HLA-B7 specific human CTL line expressed 1.1 X 10(5) LFA-1 sites per cell with a direct saturation binding assay. Human CTL expressed two to four times more LFA-1 than peripheral blood lymphocytes or B and T lymphoblastoid cell lines. Titration of each of the anti-LFA-1 MAb in a 51chromium release cytolytic assay revealed quantitative differences in the ability of the different anti-LFA-1 MAb to block cytolysis indicating distinct functional and antigenic epitopes exist on the human LFA-1 molecule. Anti-LFA-1 MAb reversibly inhibited the CTL reaction by slowing the initial rate of cytolysis. These results suggest anti-LFA-1 MAb inhibit CTL function by specific blockade of a functionally relevant molecule.  相似文献   

20.
The article reviews the literature and authors' own data on the role of Ca ions in blood coagulation, namely, in the process of the formation of highly ordered fibrin clot. It has been shown that the main role of Ca2+ is the timely formation and stabilization of fibrin polymerization sites at all successive stages of the fibrin polymerization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号