首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-month-old healthy seedlings of a true mangrove, Bruguiera parviflora, raised from propagules in normal nursery conditions were subjected to varying concentrations of NaCl for 45 d under hydroponic culture conditions to investigate the defence potentials of antioxidative enzymes against NaCl stress imposed oxidative stress. Changes in the activities of the antioxidative enzymes catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR) and superoxide dismutase (SOD) were assayed in leaves to monitor the temporal regulation. Among the oxidative stress triggered chemicals, the level of H2O2 was significantly increased while total ascorbate and total glutathione content decreased. The ratio of reduced to oxidized glutathiones, however, increased due to decreased levels of oxidized glutathione in the leaf tissue. Among the five antioxidative enzymes monitored, the APX, POX, GR and SOD specific activities were significantly enhanced at high concentration (400 mM NaCl), while the catalase activities declined, suggesting both up and downregulations of antioxidative enzymes occurred due to NaCl imposed osmotic and ionic stress. Analysis of the stress induced alterations in the isoforms of CAT, APX, POX, GR and SOD revealed differential regulations of the isoforms of these enzymes. In B. parviflora one isoform of each of Mn-SOD and Cu/Zn-SOD while three isoforms of Fe-SOD were observed by activity staining gel. Of these, only Mn-SOD and Fe-SOD2 content was preferentially elevated by NaCl treatment, whereas isoforms of Cu/Zn-SOD, Fe-SOD1 and Fe-SOD3 remained unchanged. Similarly, out of the six isoforms of POX, the POX-1,-2,-3 and -6 were enhanced due to salt stress but the levels of POX-4 and -5 remained same as in control plants suggesting preferential upregulation of selective POX isoforms. Activity staining gel revealed only one prominent band of APX and this band increased with increased salt concentration. Similarly, two isoforms of GR (GR1 and GR2) were visualized on activity staining gel and both these isoforms increased upon salt stress. In this mangrove four CAT-isoforms were identified, among which the prominent CAT-2 isoform level was maximally reduced again suggesting differential downregulation of CAT isoforms by NaCl stress. The results presented in this communication are the first report on the resolutions of isoforms APX, POX and GR out of five antioxidative enzymes studied in the leaf tissue of a true mangrove. The differential changes in the levels of the isoforms due to NaCl stress may be useful as markers for recognizing salt tolerance in mangroves. Further, detailed analysis of the isoforms of these antioxidative enzymes is required for using the various isoforms as salt stress markers. Our results indicate that the overproduction of H2O2 by NaCl treatment functions as a signal of salt stress and causes upregulation of APX, POX, GR and deactivations of CAT in B. parviflora. The concentrations of malondialdehyde, a product of lipid peroxidation and lipoxygenase activity remained unchanged in leaves treated with different concentrations of NaCl, which again suggests that the elevated levels of the antioxidant enzymes protect the plants against the activated oxygen species thus avoiding lipid peroxidation during salt stress.  相似文献   

2.
Chickpea plants were subjected to salt stress for 48 h with 100 mM NaCl, after 50 days of growth. Other batches of plants were simultaneously treated with 0.2 mM sodium nitroprusside (NO donor) or 0.5 mM putrescine (polyamine) to examine their antioxidant effects. Sodium chloride stress adversely affected the relative water content (RWC), electrolyte leakage and lipid peroxidation in leaves. Sodium nitroprusside and putrescine could completely ameliorate the toxic effects of salt stress on electrolyte leakage and lipid peroxidation and partially on RWC. No significant decline in chlorophyll content under salt stress as well as with other treatments was observed. Sodium chloride stress activated the antioxidant defense system by increasing the activities of peroxidase (POX), catalase (CAT) superoxide dismutase (SOD) and ascorbate peroxidase (APX). However no significant effect was observed on glutathione reductase (GR) and dehydro ascorbate reductase (DHAR) activities. Both putrescine and NO had a positive effect on antioxidant enzymes under salt stress. Putrescine was more effective in scavenging superoxide radical as it increased the SOD activity under salt stress whereas nitric oxide was effective in hydrolyzing H2O2 by increasing the activities of CAT, POX and APX under salt stress.  相似文献   

3.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species, ROS)和主要抗氧化酶—— 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)和谷胱甘肽还原酶(glutathione reductase, GR)活性的影响。结果表明, 与对照相比, PEG处理明显提高了叶子和根中丙二醛(malondialdehyde, MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似, 但抗氧化酶活性在2种器官中表现不完全相同, 叶子中CAT的活性在对照和处理中无显著差异, 但在根中差异明显, 表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用, 而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶, 表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

4.
Caper (Capparis ovata Desf.) is a perennial shrub (xerophyte) and drought resistant plant which is well adapted to Mediterranean Ecosystem. In the present study we investigated the plant growth, relative water content (RWC), chlorophyll fluorescence (FV/FM), lipid peroxidation (TBA-reactive substances content) as parameters indicative of oxidative stress and antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT) and glutathione reductase (GR) in relation to the tolerance to polyethylene glycol mediated drought stress in C. ovata seedlings. For induction of drought stress, the 35 days seedlings were subjected to PEG 6000 of osmotic potential −0.81 MPa for 14 days. Lipid peroxidation increased in PEG stressed seedlings as compared to non-stressed seedlings of C. ovata during the experimental period. With regard to vegetative growth, PEG treatment caused decrease in shoot fresh and dry weights, RWC and FV/FM but decline was more prominent on day 14 of PEG treatment. Total activity of antioxidative enzymes SOD, APX, POX, CAT and GR were investigated in C. ovata seedlings under PEG mediated drought. Induced activities of SOD, CAT and POX enzymes were high and the rate of increment was higher in stressed seedling. APX activity increased on both days of PEG treatment, however, increase in GR activity was highest on day 14 of drought stress. We concluded that increased drought tolerance of C. ovata is correlated with diminishing oxidative injury by functioning of antioxidant system at higher rates under drought stress.  相似文献   

5.
The role of mannitol as an osmoprotectant, a radical scavenger, a stabilizer of protein and membrane structure, and protector of photosynthesis under abiotic stress has already been well described. In this article we show that mannitol applied exogenously to salt-stressed wheat, which normally cannot synthesize mannitol, improved their salt tolerance by enhancing activities of antioxidant enzymes. Wheat seedlings (3 days old) grown in 100 mM mannitol (corresponding to −0.224 MPa) for 24 h were subjected to 100 mM NaCl treatment for 5 days. The effect of exogenously applied mannitol on the salt tolerance of plants in view of growth, lipid peroxidation levels, and activities of antioxidant enzymes in the roots of salt-sensitive wheat (Triticum aestivum L. cv. Kızıltan-91) plants with or without mannitol was studied. Although root growth decreased under salt stress, this effect could be alleviated by mannitol pretreatment. Peroxidase (POX) and ascorbate peroxidase (APX) activities increased, whereas superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities decreased in Kızıltan-91 under salt stress. However, activities of antioxidant enzymes such as SOD, POX, CAT, APX, and GR increased with mannitol pretreatment under salt stress. Although root tissue extracts of salt-stressed wheat plants exhibited only nine different SOD isozyme bands of which two were identified as Cu/Zn-SOD and Mn-SOD, mannitol treatment caused the appearance of 11 different SOD activity bands. On the other hand, five different POX isozyme bands were determined in all treatments. Enhanced peroxidation of lipid membranes under salt stress conditions was reduced by pretreatment with mannitol. We suggest that exogenous application of mannitol could alleviate salt-induced oxidative damage by enhancing antioxidant enzyme activities in the roots of salt-sensitive Kızıltan-91.  相似文献   

6.
In the present study, we evaluated the protective effect of nitric oxide(NO) against senescence of rice leaves enhanced by water deficit. Dehydration(DH), polyethylene glycol (PEG) and sorbitol (ST) treatments were used toinducewater deficit. Senescence of rice leaves was determined by the decrease ofprotein content. NO donors[N-tert-butyl--phenylnitrone (PBN), sodiumnitroprusside (SNP), 3-morpholinosydnonimine (SIN-1), and ascorbic acid +NaNO2] were effective in inhibiting senescence of dehydrated andPEG-treated rice leaves, but had no effect on senescence of ST-treated riceleaves. PEG or DH resulted in a marked increase in malondialdehyde (MDA)contentand decrease in superoxide dismutase (SOD) activity, but ST had no effect onMDAcontent and SOD activity. Treatment with NO donors caused a reduction of PEG-and DH-induced increase in MDA content and decrease in SOD activity. Theprotective effect of NO donors on promotion of senescence, increase in lipidperoxidation and decrease in SOD activity induced by PEG and DH was reversed by2-(4-carboxy-2-phenyl)-4,4,5,5- tetra-methylinmidazoline-1-oxyl-3-oxide, a NOspecific scavenger, suggesting that the protective effect of NO donors isattributed to NO released. The inhibition of PEG- and DH- enhanced senescenceofrice leaves by NO is most likely mediated through increasing SOD activity anddecrease in lipid peroxidation.  相似文献   

7.
The effect of exogenously applied glycinebetaine (GB) on the alleviation of damaging effects of NaCl treatment was studied in view of relative water content (RWC), malondialdehyde content, and the activity of some antioxidant enzymes in two rice (Oryza sativa L.) cultivars differing in salt tolerance (salt-tolerant Pokkali and--sensitive IR-28), comparatively. Both cultivars took up exogenously applied GB through their roots and accumulated it to considerable levels. Leaf RWC of both cultivars under salt treatment showed an increase with GB application. The activities of superoxide dismutase (SOD), ascorbate peroxidase (AP), catalase (CAT), and glutathione reductase (GR) increased in leaves of Pokkali, but peroxidase (POX) activity decreased under salinity. In IR-28, the activities of SOD, AP and POX increased, whereas CAT and GR decreased upon exposure to salt treatment. When compared to the salt-treated group alone, GB application decreased the activities of SOD, AP, CAT, and GR in Pokkali, whereas it increased the activities of CAT and AP in IR-28 under salinity. However, the activity of POX in IR-28 under salinity showed a decrease with GB application compared to the NaCl group. In addition, lipid peroxidation levels of both cvs. under salt treatment showed a decrease with GB treatment. Therefore, we conclude that GB protects both rice seedlings from salinity-induced oxidative stress.  相似文献   

8.
We studied the effects of different concentrations of mercury (0.0 to 100 μM) on growth and photosynthetic efficiency in rice plants treated for 21 d. In addition, we investigated how this metal affected the malondialdehyde (MDA) content as well as the activity of five antioxidant enzymes — superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), guaiacol peroxidase (POD), and catalase (CAT). Photosynthetic efficiency (Fμ/Fm) and seedling growth decreased as the concentration of Hg was increased in the growth media. Plants also responded to Hg-induced oxidative stress by changing the levels of their antioxidative enzymes. Enhanced lipid peroxidation was observed in both leaves and roots that had been exposed to oxidative stress, with leaves showing higher enzymatic activity. Both SOD and APX activities increased in treatments with up to 50 μM Hg, then decreased at higher concentrations. In the leaves, both CAT and POD activities increased gradually, with CAT levels decreasing at higher concentrations. In the roots, however, CAT activity remained unchanged while that of POD increased a bit more than did the control for concentrations of up to 10 μM Hg. At higher Hg levels, both CAT and POD activities decreased. GR activity increased in leaves exposed to no more than 0.25 μM Hg, then decreased gradually. In contrast, its activity was greatly inhibited in the roots. Based on these results, we suggest that when rice plants are exposed to different concentrations of mercury, their antioxidative enzymes become involved in defense mechanisms against the free radicals that are induced by this stress.  相似文献   

9.
Cadmium toxicity of rice leaves is mediated through lipid peroxidation   总被引:8,自引:0,他引:8  
Oxidative stress, in relation to toxicity of detached rice leaves,caused by excess cadmium was investigated. Cd content inCdCl2-treated detached rice leaves increased with increasingdurationof incubation in the light. Cd toxicity was followed by measuring the decreasein chlorophyll and protein. CdCl2 was effective in inducing toxicityand increasing lipid peroxidation of detached rice leaves under both light anddark conditions. These effects were also observed in rice leaves treated withCdSO4, indicating that the toxicity was indeed attributed to cadmiumions. Superoxide dismutase (SOD), ascorbate peroxidase (APOD), and glutathionereductase (GR) activities were reduced by excess CdCl2 in the light.The changes in catalase and peroxidase activities were observed inCdCl2-treated rice leaves after the occurrence of toxicity in thelight. Free radical scavengers reduced CdCl2-induced toxicity and atthe same time reduced CdCl2-induced lipid peroxidation and restoredCdCl2-decreased activities of SOD, APOD, and GR in the light. Metalchelators (2,2-bipyridine and 1,10-phenanthroline) reducedCdCl2 toxicity in rice leaves in the light. The reduction ofCdCl2 toxicity by 2,2-bipyridine (BP) is closely associatedwith a decrease in lipid peroxidation and an increase in activities ofantioxidative enzymes. Furthermore, BP-reduced toxicity of detached riceleaves,induced by CdCl2, was reversed by adding Fe2+ orCu2+, but not by Mn2+ or Mg2+.Reduction of CdCl2 toxicity by BP is most likely mediated throughchelation of iron. It seems that toxicity induced by CdCl2 mayrequire the participation of iron.  相似文献   

10.
In excess, iron can induce the production and accumulation of reactive oxygen species (ROS), causing oxidative stress. The objective of this work was to evaluate the impact of toxic concentrations of iron (Fe) on the antioxidative metabolism of young Eugenia uniflora plants. Forty-five-day-old plants grown in Hoagland nutrient solution, pH 5.0, were treated with three Fe concentrations, in the form of FeEDTA, during three periods of time. At the end of the treatment, the plants were harvested and relative growth rate, iron content, lipid peroxidation and enzymes and metabolites of the antioxidative metabolism were determined. Iron-treated plants showed higher iron contents, reduced relative growth rates and iron toxicity symptoms in both leaves and roots. There was an increase in lipid peroxidation with increasing Fe, only in the leaves. The enzymatic activities of superoxide dismutase (SOD) and glutathione reductase (GR) increased with increasing Fe concentration and treatment exposure time. The activities of catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APX) also increased with increasing Fe concentration but decreased with increasing treatment exposure time. Glutathione peroxidase activity (GPX) decreased with increasing Fe concentration and exposure time. The ascorbate (AA) and reduced glutathione (GSH) contents and the AA/DHA and GSH/GSSG ratios, in general, increased with increasing Fe concentration and treatment exposure time. The results indicate that under toxic levels of Fe, young E. uniflora plants suffer increased oxidative stress, which is ameliorated through changes in the activities of antioxidative enzymes and in the contents of the antioxidants AA and GSH.  相似文献   

11.
Plants of spring wheat (Triticum aestivum L. cv. Saxana) were grown during the autumn. Over the growth phase of three leaves (37 d after sowing), some of the plants were shaded and the plants were grown at 100 (control without shading), 70, and 40 % photosynthetically active radiation. Over 12 d, chlorophyll (Chl) and total protein (TP) contents, rate of CO2 assimilation (P N), maximal efficiency of photosystem 2 photochemistry (FV/FP), level of lipid peroxidation, and activities of antioxidative enzymes ascorbate peroxidase (APX) and glutathione reductase (GR) were followed in the 1st, 2nd, and 3rd leaves (counted according to their emergence). In un-shaded plants, the Chl and TP contents, P N, and FV/FP decreased during plant ageing. Further, lipid peroxidation increased, while the APX and GR activities related to the fresh mass (FM) decreased. The APX activity related to the TP content increased in the 3rd leaves. The plant shading accelerated senescence including the increase in lipid peroxidation especially in the 1st leaves and intensified the changes in APX and GR activities. We suggest that in the 2nd and 3rd leaves a degradation of APX was slowed down, which could reflect a tendency to maintain the antioxidant protection in chloroplasts of these leaves.  相似文献   

12.
To access contributions of inductive responses of the antioxidant enzymes in the resistance to salt stress, activities of the enzymes were determined in the rice (Oryza sativaL. cv. Dongjin) plant. In the leaves of the rice plant, salt stress preferentially enhanced the content of H2O2 as well as the activities of the superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase specific to guaiacol, whereas it induced the decrease of catalase activity. On the other hand, salt stress had little effect on the activity levels of glutathione reductase (GR). In order to analyze the changes of antioxidant enzyme isoforms against salt stress, plant extracts were subjected to native PAGE. Leaves of the rice plant had two isoforms of Mn-SOD and five isoforms of Cu/Zn-SOD. Fe-SOD isoform was not observed in the activity gels. Expression of Cu/Zn-1, -2, and Mn-SOD-2 isoforms was preferentially enhanced by salt stress. Seven APX isoforms were presented in the leaves of the rice plants. The intensities of APX-4 to -7 were enhanced by salt stress, whereas those of APX-1 to -3 were minimally in changed response to salt stress. There were seven GR isoforms in the leaves of rice plants. Levels of activity for most GR isoforms did not change in the stressed plants compared to the control plants. On the other hand, the levels of activity for most antioxidant enzymes changed little in the roots of stressed plants compared to the control plants. These results collectively suggest that SOD leads to the overproduction of hydrogen peroxide in the leaves of rice plants subjected to salt stress: The overproduction of hydrogen peroxide functions as the signal of salt stress, which induces the induction of specific APX isoforms but not specific GR isoforms under catalase deactivation.  相似文献   

13.
The changes in plant growth, relative water content (RWC), stomatal conductance, lipid peroxidation and antioxidant system in relation to the tolerance to salt stress were investigated in salt-tolerant Plantago maritima and salt-sensitive Plantago media. The 60 days old P. maritima and P. media seedlings were subjected to 0, 100 and 200 mM NaCl for 7 days. Reduction in shoot length was higher in P. media than in P. maritima after exposure to 200 mM NaCl, but 100 mM NaCl treatment did not show any effect on shoot length of P. maritima. Shoot dry weight decreased in P. media and did not change in P. maritima. Two hundred millimolar NaCl treatment had no effect on leaf RWC in P. maritima, but it was reduced in P. media. Salt stress caused reduction in stomatal conductance being more pronounced in P. media than in P. maritima. Activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2) decreased in P. media with increasing salinity. Ascorbate peroxidase (APX; EC 1.11.1.11) activity in leaves of P. media was increased and showed no change under 100 and 200 mM NaCl, respectively. However, activities of CAT, APX and GR increased under 200 mM NaCl while their activities did not change under 100 mM NaCl in P. maritima. SOD activity in leaves of P. maritima increased with increasing salinity. Concomitant with this, four SOD activity bands were identified in leaves of P. maritima, two bands only were observed in P. media. Peroxidase (POX; EC 1.11.1.7) activity increased under both salt concentrations in P. maritima, but only under 200 mM NaCl in P. media. Confirming this, five POX activity bands were identified in leaves of P. maritima, but only two bands were determined in P. media. Malondialdehyde levels in the leaves increased under salt stress in P. media but showed no change and decreased in P. maritima at 100 and 200 mM NaCl, respectively. These results suggest that the salt-tolerant P. maritima showed a better protection mechanism against oxidative damage caused by salt stress by its higher induced activities of antioxidant enzymes than the salt-sensitive P. media.  相似文献   

14.
The effect of B toxicity on antioxidant responses of soybean (Glycine max) cv. Athow was investigated by growing plants for 43 days at 0.2 (control), 2 and 12 mg B kg?1. At the end of the treatment period, shoot growth, lipid peroxidation level, the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), and their isoenzymes in leaves were measured. Boron concentration in leaves was significantly increased by the increasing levels of B treatment from 43 to 522 mg kg?1, and shoot dry matter was depressed at 12 mg B kg?1. Significant increases in SOD, CAT, and APX activities were determined in leaves under 12 mg B kg?1; however, GR activities were decreased while POX activity was unchanged. Increased enzymic antioxidant activity arose from a combination of newly formed isoenzymes and activation of existing isoenzymes. By contrast, SOD and GR activities were decreased by 2 mg B kg?1 concentration as compared to the control groups while POX activity was increased and the activity of CAT did not change. Malondialdehyde content increased under 2 mg B kg?1 but decreased under 12 mg B kg?1. These results suggest that higher antioxidant activity observed under 12 than at 2 mg B kg?1 provided higher free radical-scavenging capacity, and thus a lower level of lipid peroxidation in Athow. While the induction of increased antioxidant activity was related to internal boron levels, the signaling and coordination of responses remain unclear.  相似文献   

15.
Antioxidative responses of Calendula officinalis under salinity conditions.   总被引:10,自引:0,他引:10  
To gain a better insight into long-term salt-induced oxidative stress, some physiological parameters in marigold (Calendula officinalis L.) under 0, 50 and 100 mM NaCl were investigated. Salinity affected most of the considered parameters. High salinity caused reduction in growth parameters, lipid peroxidation and hydrogen peroxide accumulation. Under high salinity stress, a decrease in total glutathione and an increase in total ascorbate (AsA + DHA), accompanied with enhanced glutathione reductase (GR, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activities, were observed in leaves. In addition, salinity induced a decrease in superoxide dismutase (SOD, EC 1.15.1.1) and peroxidase (POX, EC 1.11.1.7) activities. The decrease in dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activities suggests that other mechanisms play a major role in the regeneration of reduced ascorbate. The changes in catalase (CAT, EC 1.11.1.6) activities, both in roots and in leaves, may be important in H2O2 homeostasis.  相似文献   

16.
Antioxidant enzymes are related to the resistance to various abiotic stresses including salinity. Barley is relatively tolerant to saline stress among crop plants, but little information is available on barley antioxidant enzymes under salinity stress. We investigated temporal and spatial responses of activities and isoform profiles of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), and glutathione reductase (GR) to saline stress in barley seedlings treated with 200 mM NaCl for 0, 1, 2, 5 days, respectively. In the control plant, hydrogen peroxide content was about 2-fold higher in the root than in the shoot. Under saline stress, hydrogen peroxide content was decreased drastically by 70% at 2 d after NaCl treatment (DAT) in the root. In the leaf, however, the content was remained unchanged by 2 DAT and increased about 14 % at 5 DAT. In general, the activities of antioxidant enzymes were increased in the root and shoot under saline stress. But the increase was more significant and consistent in the root. The activities of SOD, CAT, APX, POX, and GR were increased significantly in the root within 1 DAT, and various elevated levels were maintained by 5 DAT. Among the antioxidant enzymes, CAT activity was increased the most drastically. The significant increase in the activities of SOD, CAT, APX, POX, and GR in the NaCl-stressed barley root was highly correlated with the increased expression of the constitutive isoforms as well as the induced ones. The hydrogen peroxide content in the root.  相似文献   

17.
Liang  Yongchao  Hu  Feng  Yang  Maocheng  Yu  Jianhe 《Plant and Soil》2003,257(2):407-416
Rice (Oryza sativa L.) cultivation under non-flooded conditions using polyethylene film as ground mulching materials, namely plastic film-mulching cultivation system (PFMCS), is an alternative to the conventional rice cultivation system in regions where rainfall and fresh water resources are limited. Two-year field trials (1998–1999) were performed in this study to investigate the growth-stage-dependent changes in activities of antioxidative enzymes and lipid peroxidation in leaves of rice subjected to mulching with plastic film or kraft paper and zero mulching under non-flooded conditions compared with continuously flooded treatment. Significantly higher activities of peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) but lower concentration of malondialdehyde (MDA) were observed in mulching treatments than in zero mulching treatment at all growth stages in the drier growing season (1999). The concentration of MDA was significantly higher especially at late growth stages in zero mulching treatment than in the other treatments. In contrast, essentially no significant difference existed in the activities of the major antioxidant enzymes (except POD) or in the concentration of MDA between any two treatments in the wetter growing season (1998). This change tendency of antioxidant enzyme activity and MDA level over two contrasting growing seasons was in line with both soil and leaf moisture status, and rice yields of different treatments. These results strongly suggest that plastic film-mulching treatment or paper mulching treatment significantly alleviated oxidative damages induced by water-deficit stress in rice. The efficacy of ground-mulching-induced enhancement of antioxidative defense to drought stress is discussed with respect to water deficit status in both soils and rice plants.  相似文献   

18.
Hydrogen peroxide (H2O2) is considered a signal molecule inducing cellular stress. Both heat shock (HS) and Cd can increase H2O2 content. We investigated the involvement of H2O2 in HS- and Cd-mediated changes in the expression of ascorbate peroxidase (APX) and glutathione reductase (GR) in leaves of rice seedlings. HS treatment increased the content of H2O2 before it increased activities of APX and GR in rice leaves. Moreover, HS-induced H2O2 production and APX and GR activities could be counteracted by the NADPH oxidase inhibitors dipehenylene iodonium (DPI) and imidazole (IMD). HS-induced OsAPX2 gene expression was associated with HS-induced APX activity but was not regulated by H2O2. Cd-increased H2O2 content and APX and GR activities were lower with than without HS. Cd did not increase the expression of OsAPX and OsGR without HS treatment. Cd increased H2O2 content by Cd before it increased APX and GR activities without HS. Treatment with DPI and IMD effectively inhibited Cd-induced H2O2 production and APX and GR activities. Moreover, the effects of DPI and IMD could be rescued with H2O2 treatment. H2O2 may be involved in the regulation of HS- and Cd-increased APX and GR activities in leaves of rice seedlings.  相似文献   

19.
Shi Q  Bao Z  Zhu Z  He Y  Qian Q  Yu J 《Phytochemistry》2005,66(13):1551-1559
The effects of exogenous silicon (Si) on plant growth, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase, and concentrations of ascorbate and glutathione were investigated in cucumber (Cucumis sativus L.) plants treated with excess manganese (Mn) (600 microM). Compared with the treatment of normal Mn (10 microM), excess Mn significantly increased H2O2 concentration and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances. The leaves showed apparent symptoms of Mn toxicity and the plant growth was significantly inhibited by excess Mn. The addition of Si significantly decreased lipid peroxidation caused by excess Mn, inhibited the appearance of Mn toxicity symptoms, and improved plant growth. This alleviation of Mn toxicity by Si was related to a significant increase in the activities of SOD, APX, DHAR and GR and the concentrations of ascorbate and glutathione.  相似文献   

20.
甲基乙二醛(MG)是一种在植物中具有多种功能的新型信号分子.为探究MG对板栗幼苗干旱胁迫的影响,以两年生'黄棚'板栗幼苗为试材,通过聚乙二醇(PEG)模拟干旱胁迫并进行MG及其清除剂N-乙酰半胱氨酸(NAC)处理,分析板栗幼苗叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号