首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To test the hypothesis that communities with higher diversity have more predictable properties by examining patterns of community structure along a species richness gradient. Location Trinidad and Tobago (11°00 N, 61°00 W), on the South American continental shelf, opposite the Orinoco River delta, north‐east Venezuela. Methods We used quantile regressions to investigate how three total abundance, absolute and relative dominance measures – numerical abundance, biomass and energy use, respectively – change across a species richness gradient. We investigated which allocation rule best mimics community assembly in this species richness gradient by examining the abundance of the dominant species and comparing it with predictions of niche apportionment models. Results All measures of total abundance increase on average across the gradient, but the upper limit remains constant. On average, absolute dominance is constant, but the distance between the upper and lower limits decreases along the gradient. Relative dominance decreases with species richness. Observed dominance patterns are best described by Tokeshi's random fraction model. Main conclusions Our results show that both total abundance and absolute dominance become increasingly variable as biodiversity decreases. Consequently, our study suggests that ecosystem properties are less predictable when biodiversity is lower.  相似文献   

2.
Primary productivity is intimately linked with biodiversity and ecosystem functioning. Much of what is known today about such relationship has been based on the manipulation of species richness. Other facets of biodiversity, such as functional diversity, have been neglected within this framework, particularly in freshwater systems. We assess the adequacy of different diversity measures, from species richness and evenness, to functional groups richness and functional diversity indices, to predict primary productivity in 19 tropical reservoirs of central Brazil, built to generate hydroelectric energy. We applied linear mixed models (and model selection based on the Akaike’s information criterion) to achieve our goal, using chlorophyll-a concentration as a surrogate for primary productivity. A total of 412 species were collected in this study. Overall we found a positive relation between productivity and diversity, with functional evenness representing the only exception. The most parsimonious models never included functional group classifications, with at least one continuous measure of functional diversity being present in many models. The best model included only species richness and explained 24.1% of variability in productivity. We therefore advise the use of species richness as an indicator of productivity in tropical freshwater environments. However, since the productivity–diversity relationship is known to be scale dependent, we recommend the use of continuous measures of functional diversity in future biodiversity and ecosystem functioning studies, in order to be certain that all functional differences between communities are being accounted for.  相似文献   

3.
井冈山自然保护区蛾类多样性及人为干扰的影响   总被引:1,自引:0,他引:1  
《环境昆虫学报》2014,(5):679-686
对井冈山自然保护区蛾类群落的多样性及其受人为干扰的影响进行了研究。结果显示:(1)人为干扰导致井冈山自然保护区蛾类群落构成有较大差别,严重干扰导致蛾类科数明显降低;物种数和个体数呈现出随着人为干扰加强而降低的趋势;蛾类各优势科在不同人为干扰样点的相对多度存在差异。(2)人为干扰导致蛾类主要科的物种数和个体数变化不同:尺蛾科、夜蛾科、毒蛾科和舟蛾科的物种数和个体数在人为干扰下降低;轻度和中度干扰导致螟蛾科和天蛾科的物种数和个体数升高,重度干扰下物种数和个体数降低;人为干扰导致灯蛾科的物种数和苔蛾科的个体数升高。(3)人为干扰导致蛾类群落Shannon多样性指数、Pielou均匀度指数降低,Berger-Parker优势度指数升高。(4)人为干扰对蛾类群落的物种数和个体数的时间动态影响较大,对Shannon指数和Pielou均匀度指数时间动态影响较小,导致Berger-Parker优势度指数时间波动幅度增大。(5)人为干扰导致样点间蛾类群落相似性较低。  相似文献   

4.
Diversity has two basic components: richness, or number of species in a given area, and evenness, or how relative abundance or biomass is distributed among species. Previously, we found that richness and evenness can be negatively related across plant communities and that evenness can account for more variation in Shannon’s diversity index (H′) than richness, which suggests that relationships among diversity components can be complex. Non-positive relationships between evenness and richness could arise due to the effects of migration rate or local species interactions, and relationships could vary depending on how these two processes structure local communities. Here we test whether diversity components are equally or differentially affected over time by changes in seed density (and associated effects on established plant density and competition) in greenhouse communities during the very early stages of community establishment. In our greenhouse experiment, we seeded prairie microcosms filled with bare field soil at three densities with draws from a mix of 22 grass and forb species to test if increased competition intensity or seedling density would affect the relationships among diversity components during early community establishment. Increased seed density treatments caused diversity components to respond in a different manner and to have different relationships with time. Richness increased linearly with seed density early in the experiment when seedling emergence was high, but was unrelated to density later in the experiment. Evenness decreased log-linearly with seed densities on all sampling dates due to a greater dominance by Rudbeckia hirta with higher densities. Early in the experiment, diversity indices weakly reflected differences in richness, but later, after the competitive effects of Rudbeckia hirta became more intense, diversity indices more strongly reflected differences in evenness. This suggests that species evenness and diversity indices do not always positively covary with richness. Based on these results, we suggest that evenness and richness can be influenced by different processes, with richness being more influenced by the number of emerging seedlings and evenness more by species interactions like competition. These results suggest that both diversity components should be measured in plant diversity studies whenever it is possible.  相似文献   

5.
To develop a better understanding of how biodiversity loss and productivity are related, we need to consider ecologically realistic rarity (i.e. reduced evenness and increased dominance) and extinction (i.e. reduced richness) scenarios. Furthermore, we need to identify and better understand the factors that influence species and community yielding behaviors because the general conditions for overyielding are the same as those for coexistence. We established experimental tallgrass prairie plots in Iowa to determine how two ecologically realistic rarity–extinction scenarios influenced aboveground net primary productivity (ANPP) and disassembly. Equal‐mass seedlings of six tallgrass prairie species were transplanted into field plots to establish realistic declining species evenness (high, medium, low) and richness (4, 1) treatments. Across declining evenness treatments, the relative abundance of the ubiquitous tall species Andropogon gerardii increased, the relative abundance of the tall species Salvia azurea was constant, and the relative abundance of two short (dissimilar height scenario) or two tall species (tall scenario) decreased. Monocultures of Andropogon represented a continuation of this trend until there was complete dominance by Andropogon and extinction of all other species. Our treatments also allowed us to test if variation in plant height contributes to the complementarity effect. Niche partitioning in plant height was not positively related to complementarity. The effects of declining species evenness and richness on the diversity–productivity relationship were different for these two ecologically realistic rarity–extinction scenarios. Specifically, as diversity declined across treatments, ANPP and the selection effects decreased in tall communities, but not in dissimilar communities. Additionally, differences between these two scenarios revealed that decreased species yielding behavior is associated with two tallgrass prairie extinction risk factors, rarity and short height. The differences between these scenarios demonstrate the importance of incorporating the known patterns of diversity declines into future studies.  相似文献   

6.
广西马尾松林植物功能多样性与生产力的关系   总被引:1,自引:0,他引:1  
探索植物多样性与生产力的关系可为森林经营与管理提供科学基础。本研究以广西4个地区的马尾松(Pinus massoniana)人工林群落为研究对象, 通过计算物种多样性、功能多样性和功能优势值, 运用相关分析、自动线性建模和方差划分等方法, 分析了多样性与生产力的关系。研究发现, 生产力与物种丰富度、Shannon指数、功能丰富度、功能均匀度极显著正相关(P < 0.01), 与物种均匀度、功能多样性、功能离散度、功能团个数、坡向显著正相关(P < 0.05), 与林龄极显著负相关(P < 0.01), 4个功能多样性参数和4个物种多样性参数两两之间皆为显著正相关; 未发现初始生物量制约生产力的提高; 方差划分最优模型中, 功能多样性参数效应、功能优势值效应和林龄效应分别解释生产力方差的56%、43%和33%, 功能多样性参数效应和功能优势值效应重叠部分高达27%; 生态位互补效应主要由功能丰富度和功能均匀度产生, 选择效应主要由生长型优势值产生; 生长型优势值为灌木的样地生产力较高, 次优种或过渡种对生态系统功能也有重要作用。以生产力为响应变量的自动线性建模最佳子集包括重要性由大到小的5个因素: 林龄、生长型优势值、功能丰富度、功能均匀度、功能团个数。建议维护森林功能多样性, 加强林下叶层植物保护, 用好功能重要的物种, 通过林下叶层的补偿性光合作用和生长竞争, 有效地提高生产力和生物多样性。  相似文献   

7.
本文以云南被子植物蔷薇分支为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨了物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,对生物多样性的重点保护区域进行识别。结果显示:云南被子植物蔷薇分支的物种密度与系统发育多样性、特有种密度、受威胁物种密度均呈显著正相关,云南南部和西北部是物种丰富度与系统发育多样性最为丰富的区域;就云南整体而言,蔷薇分支的标准化系统发育多样性较低;云南南部、东南部、西北部是蔷薇分支的重点保护区域。  相似文献   

8.
Question: Does long‐term grazing exclusion affect plant species diversity? And does this effect vary with long‐term phytomass accumulation across a regional productivity gradient? Location: Lowland grassy ecosystems across the state of Victoria, southeast Australia. Methods: Floristic surveys and phytomass sampling were conducted across a broad‐scale productivity gradient in grazing exclusion plots and adjacent grazed areas. Differences in species richness, evenness and life‐form evenness between grazed and ungrazed areas were analysed. The environmental drivers of long‐term phytomass accumulation were assessed using multiple linear regression analysis. Results: Species richness declined in the absence of grazing only at the high productivity sites (i.e. when phytomass accumulation was >500 g m?2). Species evenness and life‐form evenness also showed a negative relationship with increasing phytomass accumulation. Phytomass accumulation was positively associated with both soil nitrogen and rainfall, and negatively associated with tree cover. Conclusions: Competitive dominance is a key factor regulating plant diversity in productive grassy ecosystems, but canopy disturbance is not likely to be necessary to maintain diversity in less productive systems. The results support the predictions of models of the effects of grazing on plant diversity, such as the dynamic equilibrium model, whereby the effects of herbivory are context‐dependent and vary according to gradients of rainfall, soil fertility and tree cover.  相似文献   

9.
Recent advances in the research field of ‘biodiversity-ecosystem functioning’ have successfully begun to reconcile the apparent controversy on relationships between productivity and species richness. By unifying new advances into a single framework, I propose a 3D graphical model connecting the relationships among resource availability, species richness, and ‘community productivity.’ An emergent pattern from this model predicts that the effect of species richness on community productivity is maximized at intermediate levels of resource availability. This model will contribute to better understanding the relationships among environment, biodiversity, and ecosystem functioning.  相似文献   

10.
Anthropogenic activities have accelerated the rate of global loss of biodiversity, making it more important than ever to understand the structure of biodiversity hotspots. One current focus is the relationship between species richness and aboveground biomass (AGB) in a variety of ecosystems. Nonetheless, species diversity, evenness, rarity, or dominance represent other critical attributes of biodiversity and may have associations with AGB that are markedly different than that of species richness. Using data from large trees in four environmentally similar sites in the Luquillo Experimental Forest of Puerto Rico, we determined the shape and strength of relationships between each of five measures of biodiversity (i.e., species richness, Simpson's diversity, Simpson's evenness, rarity, and dominance) and AGB. We quantified these measures of biodiversity using either proportional biomass or proportional abundance as weighting factors. Three of the four sites had a unimodal relationship between species richness and AGB, with only the most mature site evincing a positive, linear relationship. The differences between the mature site and the other sites, as well as the differences between our richness–AGB relationships and those found at other forest sites, highlight the crucial role that prior land use and severe storms have on this forest community. Although the shape and strength of relationships differed greatly among measures of biodiversity and among sites, the strongest relationships within each site were always those involving richness or evenness.  相似文献   

11.
Several multi-year biodiversity experiments have shown positive species richness–productivity relationships which strengthen over time, but the mechanisms which control productivity are not well understood. We used experimental grasslands (Jena Experiment) with mixtures containing different numbers of species (4, 8, 16 and 60) and plant functional groups (1–4; grasses, legumes, small herbs, tall herbs) to explore patterns of variation in functional trait composition as well as climatic variables as predictors for community biomass production across several years (from 2003 to 2009). Over this time span, high community mean trait values shifted from the dominance of trait values associated with fast growth to trait values suggesting a conservation of growth-related resources and successful reproduction. Increasing between-community convergence in means of several productivity-related traits indicated that environmental filtering and exclusion of competitively weaker species played a role during community assembly. A general trend for increasing functional trait diversity within and convergence among communities suggested niche differentiation through limiting similarity in the longer term and that similar mechanisms operated in communities sown with different diversity. Community biomass production was primarily explained by a few key mean traits (tall growth, large seed mass and leaf nitrogen concentration) and to a smaller extent by functional diversity in nitrogen acquisition strategies, functional richness in multiple traits and functional evenness in light-acquisition traits. Increasing species richness, presence of an exceptionally productive legume species (Onobrychis viciifolia) and climatic variables explained an additional proportion of variation in community biomass. In general, community biomass production decreased through time, but communities with higher functional richness in multiple traits had high productivities over several years. Our results suggest that assembly processes within communities with an artificially maintained species composition maximize functional diversity through niche differentiation and exclusion of weaker competitors, thereby maintaining their potential for high productivity.  相似文献   

12.
Biodiversity has been declining in many areas, and there is great interest in determining whether this decline affects ecosystem functioning. Most biodiversity—ecosystem functioning studies have focused on the effects of species richness on net primary productivity. However, biodiversity encompasses both species richness and evenness, ecosystem functioning includes other important processes such as decomposition, and the effects of richness on ecosystem functioning may change at different levels of evenness. Here, we present two experiments on the effects of litter species evenness and richness on litter decomposition. In the first experiment, we varied the species evenness (three levels), identity of the dominant species (three species), and micro-topographic position (low points [gilgais] or high points between gilgais) of litter in three-species mixtures in a prairie in Texas, USA. In a second experiment, we varied the species evenness (three levels), richness (one, two, or four species per bag), and composition (random draws) of litter in a prairie in Iowa, USA. Greater species evenness significantly increased decomposition, but this effect was dependent on the environmental context. Higher evenness increased decomposition rates only under conditions of higher water availability (in gilgais in the first experiment) or during the earliest stages of decomposition (second experiment). Species richness had no significant effect on decomposition, nor did it interact with evenness. Micro-topographic position and species identity and composition had larger effects on decomposition than species evenness. These results suggest that the effects of litter species diversity on decomposition are more likely to be manifested through the evenness component of diversity than the richness component, and that diversity effects are likely to be environmentally context dependent.  相似文献   

13.
高寒草地植物物种多样性与功能多样性的关系   总被引:5,自引:0,他引:5  
物种多样性与功能多样性的关系是生态学当前研究的热点问题之一,不同区域典型生态系统物种多样性和功能多样性的关系研究有利于生物多样性保护理论的全面发展。以青藏高原地区的主要草地生态系统—高寒草甸和高寒草原为研究对象,采用4个物种多样性指数(Patrick丰富度指数、Shannon-Weiner多样性指数、Pielou均匀度指数和Simpson优势度指数)和9个功能多样性指数(FAD功能性状距离指数、MFAD功能性状平均距离指数、基于样地的FDp和基于群落的FDc功能树状图指数、FRic功能体积指数、FEve功能均匀度指数、Rao功能离散度常二次熵指数、FDiv功能离散指数、FDis功能分散指数),分析了高寒草地植物物种多样性、功能多样性关系及其与初级生产力的关系,以期阐明3个科学问题:不同草地类型的高寒草地生态系统植物物种多样性和功能多样性有何差异?高寒草地生态系统的植物物种多样性和功能多样性有何关系?高寒草地生态系统物种多样性、功能多样性对生态系统功能的影响有何异同?研究结果表明:(1)与高寒草原相比,高寒草甸具有更高的物种多样性、功能丰富度和功能离散度;(2)高寒草甸中,Patrick丰富度与功能丰富度指数(FAD、MFAD、FDp、FDc)和功能离散度指数(FDiv)的具有较强的相关性,最优拟合方程分别为幂函数和二次多项式函数;(3)高寒草原中,Patrick丰富度与功能丰富度指数(FAD、MFAD、FDp、FDc、FRic)、Shannon指数和Simpson指数与FEve指数的相关性较强,最优拟合方程为二次多项式函数,Pielou指数与FEve指数的相关性较强,最优拟合方程为指数函数;(4)高寒草甸的初级生产力分别与物种丰富度指数Patrick、功能离散指数FDiv具有较强的相关性;而高寒草原的初级生产力与4个物种多样性指数间均具有较强的相关性,与功能离散指数FDiv具有较强的相关性,最佳拟合方程均为二次多项式函数。研究的总体结论为:物种多样性、功能多样性、二者之间的关系以及二者与生态系统服务功能(以初级生产力为例)之间的关系在高寒草甸和高寒草原群落中表现迥异,因此在研究青藏高原高寒草地的生态功能时,不能仅仅测度传统的物种多样性,还应测度与物种多样性、生态功能密切相关的功能多样性。  相似文献   

14.
For many taxa, diversity, often measured as species richness, decreases with latitude. In this report patterns of diversity (species richness, species diversity, and evenness) in groundfish assemblages were investigated in relation to depth (200–1200 m) and latitude (33–47°N) on the continental slope of the U.S. Pacific coast. The data originated from the 1999–2002 upper continental slope groundfish surveys conducted by the National Marine Fisheries Service. When the data were pooled across depths, species density and evenness were found to decline with latitude. All three diversity measures declined with depth, with the lowest overall diversity in the 600- to 900-m depth range where longspine thornyhead Sebastolobus altivelis constituted close to 70% of the catch. When latitudinal gradients were examined within four depth zones (200–300 m, 400–500 m, 600–900 m, and 1000–1200 m) more complex patterns emerged. At depth species richness and evenness were inversely correlated with latitude as longspine thornyhead dominated catches to the north. However, in shallower areas of the slope, species richness and evenness were positively correlated with latitude. Latitudinal patterns of diversity in the deeper zones and when pooled across depths were positively correlated with temperature and broadly consistent with the Ambient Energy hypothesis discussed by Willig et al. [Annu Rev Ecol System 34:273–309 (2003)].  相似文献   

15.
万木林中亚热带常绿阔叶林物种多样性林隙梯度变化   总被引:1,自引:0,他引:1  
根据万木林中亚热带常绿阔叶林林隙内外物种的调查数据,研究了林隙各区物种多样性的梯度变化及物种多样性随林隙级的梯度变化.结果表明,从林隙中心区到非林隙区,物种丰富度指数和物种多样性指数逐渐降低;生态优势度呈中间高、两端低的变化趋势;均匀度呈中间低、两端高的变化趋势.林隙各区的物种多样性在林隙面积为200~300 m2时均达到最大.  相似文献   

16.
Plant performance is determined by the balance of intra‐ and interspecific neighbors within an individual's zone of influence. If individuals interact over smaller scales than the scales at which communities are measured, then altering neighborhood interactions may fundamentally affect community responses. These interactions can be altered by changing the number (species richness), abundances (species evenness), and positions (species pattern) of the resident plant species, and we aimed to test whether aggregating species at planting would alter effects of species richness and evenness on biomass production at a common scale of observation in grasslands. We varied plant species richness (2, 4, or 8 species and monocultures), evenness (0.64, 0.8, or 1.0), and pattern (planted randomly or aggregated in groups of four individuals) within 1 × 1 m plots established with transplants from a pool of 16 tallgrass prairie species and assessed plot‐scale biomass production and diversity over the first three growing seasons. As expected, more species‐rich plots produced more biomass by the end of the third growing season, an effect associated with a shift from selection to complementarity effects over time. Aggregating conspecifics at a 0.25‐m scale marginally reduced biomass production across all treatments and increased diversity in the most even plots, but did not alter biodiversity effects or richness–productivity relationships. Results support the hypothesis that fine‐scale species aggregation affects diversity by promoting species coexistence in this system. However, results indicate that inherent changes in species neighborhood relationships along grassland diversity gradients may only minimally affect community (meter) – scale responses among similarly designed biodiversity–ecosystem function studies. Given that species varied in their responses to local aggregation, it may be possible to use such species‐specific results to spatially design larger‐scale grassland communities to achieve desired diversity and productivity responses.  相似文献   

17.
Range expansions of species comprise a pervasive environmental problem worldwide and can cause substantial ecological and economic impact. However, the magnitude of impact may vary across habitats, highlighting the need to account for spatial heterogeneity in assessment studies. Here we compare invertebrate community structure in three habitats (littoral, sublittoral, and profundal) of boreal lakes that suffer recurring blooms of a regionally expanding, nuisance flagellate, Gonyostomum semen (Raphidophyta), with the assemblage structure in lakes were no blooms occur. We contrast community structure over a 6-year period using univariate metrics (total abundance, community evenness, species richness, and Simpson diversity) and multivariate community similarity to infer habitat-specific associations of local (alpha) diversity. We also calculated indices of multivariate dispersion to infer associations with beta diversity; i.e., whether or not habitats in bloom lakes show faunal homogenisation. Results show that the magnitude of assemblage alteration in bloom relative to bloom-free lakes varied with habitat and increased from the littoral to the profundal habitats. Littoral assemblages in bloom and bloom-free lakes shared similar alpha (taxon richness, evenness and Simpson diversity) and beta diversity characteristics, despite differing in multivariate community similarity. By contrast, alteration of assemblage structure was most severe in the profundal and manifested in reduced diversity and faunal homogenisation (i.e. decreased beta diversity) in bloom relative to bloom-free lakes. This was due to numerical dominance of the predatory phantom midge, Chaoborus flavicans, in the profundal of bloom lakes. Not only do the results highlight that spatial heterogeneity should be accounted for to assess the potential broader impact of nuisance species on biodiversity within lakes; more generally, the dominance of a single species suggests a reduced overall resilience of bloom lakes, making them more susceptible to environmental perturbation.  相似文献   

18.
We studied evenness and species richness in two assemblages of soil arthropods at six contiguous study plots in Mediterranean ecosystems of central Italy, three of these plots being burnt and three unburnt. We analysed these aspects of community structure by diversity–dominance diagrams comparisons made through analysis of covariance on respective slopes and ordinate intercepts. We observed consistent patterns in both Collembola and Oniscidea assemblages, either in burnt and unburnt plots. Evenness did not change among study plots and across habitats, either before or after fire, whereas species' composition was significantly altered by fire. Results from our study implied that evenness and species diversity are clearly affected in a different and independent way by fire. Hence, it is not acceptable to focus on only the evenness when looking at the effects of controlled fires for environmental management reasons.  相似文献   

19.
 对不同海拔梯度高寒草甸群落植物多样性和初级生产力关系的研究结果表明:1)不同海拔梯度上,中间海拔梯度群落植物多样性最高,即物种丰富度、均匀度和多样性最大;2)不同海拔梯度上,群落生产力水平和物种丰富度中等时,物种多样性最高;3)随着海拔的逐渐升高,地上生物量逐渐减少;4)地下生物量具有“V”字形季节变化规律,在牧草返青期和枯黄期地下生物量最大,7月最小,且地下生物量主要分布在0~10 cm的土层中。地下生物量垂直分布呈明显的倒金字塔特征。  相似文献   

20.
Microbial biogeography is gaining increasing attention due to recent molecular methodological advance. However, the diversity patterns and their environmental determinants across taxonomic scales are still poorly studied. By sampling along an extensive elevational gradient in subarctic ponds of Finland and Norway, we examined the diversity patterns of aquatic bacteria and fungi from whole community to individual taxa across taxonomic coverage and taxonomic resolutions. We further quantified cross‐phylum congruence in multiple biodiversity metrics and evaluated the relative importance of climate, catchment and local pond variables as the hierarchical drivers of biodiversity across taxonomic scales. Bacterial community showed significantly decreasing elevational patterns in species richness and evenness, and U‐shaped patterns in local contribution to beta diversity (LCBD). Conversely, no significant species richness and evenness patterns were found for fungal community. Elevational patterns in species richness and LCBD, but not in evenness, were congruent across bacterial phyla. When narrowing down the taxonomic scope towards higher resolutions, bacterial diversity showed weaker and more complex elevational patterns. Taxonomic downscaling also indicated a notable change in the relative importance of biodiversity determinants with stronger local environmental filtering, but decreased importance of climatic variables. This suggested that niche conservatism of temperature preference was phylogenetically deeper than that of water chemistry variables. Our results provide novel perspectives for microbial biogeography and highlight the importance of taxonomic scale dependency and hierarchical drivers when modelling biodiversity and species distribution responses to future climatic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号