首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal human cells (keratinocytes) differently interact with extracellular matrix proteins of the skin basal membrane depending on the stages of their differentiation. The pool of basal keratinocytes commonly includes stem cells and transient amplifying cells. They directly attach to the skin basal membrane. Keratinocytes change their adhesive properties during differentiation, lose direct interaction with the basal membrane and move to suprabasal epidermal strata. From this, it is suggested that basal and primarily stem cells can be isolated from a heterogenous keratinocyte population due to their selective adhesion to the extracellular matrix proteins. In the current study, we analysed the specificity of interaction between primary keratinocytes and extracellular matrix proteins (collagens of I and IV types, laminin-2/4, fibronectin and matrigel). We have demonstrated that the basal keratinocytes extracted from the skin have different adhesive abilities. The rapidly spreading cells usually interacted with collagen and fibronectin rather that with laminin-2/4 or matrigel. The majority of these cells being represented by basal keratinocytes. Our data demonstrate that the applied method of keratinocyte selection may be directed for precise isolation of skin stem from a common cell population.  相似文献   

2.
We have shown in a variety of human wounds that collagenase-1 (MMP-1), a matrix metalloproteinase that cleaves fibrillar type I collagen, is invariably expressed by basal keratinocytes migrating across the dermal matrix. Furthermore, we have demonstrated that MMP-1 expression is induced in primary keratinocytes by contact with native type I collagen and not by basement membrane proteins or by other components of the dermal or provisional (wound) matrix. Based on these observations, we hypothesized that the catalytic activity of MMP-1 is necessary for keratinocyte migration on type I collagen. To test this idea, we assessed keratinocyte motility on type I collagen using colony dispersion and colloidal gold migration assays. In both assays, primary human keratinocytes migrated efficiently on collagen. The specificity of MMP-1 in promoting cell movement was demonstrated in four distinct experiments. One, keratinocyte migration was completely blocked by peptide hydroxymates, which are potent inhibitors of the catalytic activity of MMPs. Two, HaCaTs, a line of human keratinocytes that do not express MMP-1 in response to collagen, did not migrate on a type I collagen matrix but moved efficiently on denatured type I collagen (gelatin). EGF, which induces MMP-I production by HaCaT cells, resulted in the ability of these cells to migrate across a type I collagen matrix. Three, keratinocytes did not migrate on mutant type I collagen lacking the collagenase cleavage site, even though this substrate induced MMP-1 expression. Four, cell migration on collagen was completely blocked by recombinant tissue inhibitor of metalloproteinase-1 (TIMP-1) and by affinity-purified anti–MMP-1 antiserum. In addition, the collagen-mediated induction of collagenase-1 and migration of primary keratinocytes on collagen was blocked by antibodies against the α2 integrin subunit but not by antibodies against the α1 or α3 subunits. We propose that interaction of the α2β1 integrin with dermal collagen mediates induction of collagenase-1 in keratinocytes at the onset of healing and that the activity of collagenase-1 is needed to initiate cell movement. Furthermore, we propose that cleavage of dermal collagen provides keratinocytes with a mechanism to maintain their directionality during reepithelialization.  相似文献   

3.
Pieces of trypsin-isolated 14-day embryonic mouse epidermis were recombined with various living or non-living dermal or non-dermal substrates, in order to analyse the reconstruction of the dermal-epidermal junction. The constitution and ultrastructure of the epidermal basement membrane were characterized by immunolabelling of laminin, type IV collagen and bullous pemphigoid antigen, and by transmission electron microscopy. Trypsin treatment of dorsal skin followed by dermal-epidermal separation does not visibly damage the epidermal basement membrane, which remains attached to the lower face of epidermis. When freshly isolated epidermis is reassociated with dermis, the basement membrane is first degraded during the first 4 h of culture, then reconstituted within 24 h. When epidermis is cultured in isolation the basement membrane disappears within 4 h and is not reconstructed. Epidermis, precultured for 4 h and thus deprived of its basement membrane prior to reassociation, is able to reconstruct an antigenically and ultrastructurally normal basement membrane, when recombined with living or frozen-killed (-20 degrees C) dermis, with muscle tissue, or with a film of fibrous type I collagen. No basement membrane is reconstituted when the epidermis is recombined with heat (100 degrees C) killed dermis. It is concluded that, in the reconstituted epidermal basement membrane, laminin, type IV collagen, bullous pemphigoid antigen, and lamina densa are of exclusive epidermal origin.  相似文献   

4.
Using human type IV and type I + III collagens and a new, nontoxic cross-linking procedure, we have developed a cell-free bilayered human dermal substitute for organotypic culture and transplantation of human skin keratinocytes. We have studied the formation of the basement membrane, and the differentiation of keratinocytes grown on the type IV collagen layer of this dermal substitute, in vitro and after grafting onto nude mice. These studies demonstrated the formation of essential constituents of the basement membrane in culture: hemidesmosomes and deposition of extracellular matrix on the top of the type IV collagen were observed as early as 6 days after plating of human keratinocytes. Although the keratinocytes formed a well-organized multilayered epithelium, they exhibited limited differentiation when grown submerged in liquid medium. However, the multilayered sheet obtained after 14 days in submerged culture was composed of a regular basal cell layer, several nucleated suprabasal cell layers containing granular cells, and several dense, anucleated cell layers. The grafting experiments have shown a good biocompatibility of the dermal substitute. It is repopulated by fibroblasts, newly synthesized collagen, vessels, and a few mononuclear cells. At Day 14 after grafting, the type IV collagen layer was still present and very dense, and the basement membrane appeared as in culture, with numerous well-structured hemidesmosomes and deposition of extracellular matrix resembling lamina densa. At Day 55 after transplantation, even if the epidermal graft did not exhibit all the characteristics of the normal epidermis in vivo, it was very close to it. At this stage, the basement membrane was complete, with structures clearly indicative of anchoring fibrils. This new dermal substitute offers many advantages. It is stable and easy to handle. Its production is standardized. The oxidation induced by periodic acid led to a nontoxic cross-linked matrix. This dermal substitute is the first one entirely composed of human collagens. The type I + III collagen underlayer is reorganized when grafted. It supports a type IV collagen top layer which offers an excellent substrate for keratinocytes, favors their anchorage, and favors the formation of the basement membrane in vitro. This dermal substitute could be useful for wound coverage or as an in vitro model for toxicological and pharmacological studies.  相似文献   

5.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize alpha 2 beta 1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

6.
7.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize α2β1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

8.
The present study shows the localization of epidermal and dermal proteins produced in lizard skin cultivated in vitro. Cells from the skin have been cultured for up to one month to detect the expression of keratins, actin, vimentin and extracellular matrix proteins (fibronectin, chondroitin sulphate proteoglycan, elastin and collagen I). Keratinocytes and dermal cells weakly immunoreact for Pan-Cytokeratin but not with the K17-antibody at the beginning of the cell culture when numerous keratin bundles are present in keratinocyte cytoplasm. The dense keratin network disappears after 7-12 days in culture, and K17 becomes detectable in both keratinocytes and mesenchymal cells isolated from the dermis. While most epidermal cells are lost after 2 weeks of in vitro cultivation dermal cells proliferate and form a pellicle of variable thickness made of 3-8 cell layers. The fibroblasts of this dermal equivalent produces an extracellular matrix containing chondroitin sulphate proteoglycan, collagen I, elastic fibers and fibronectin, explaining the attachment of the pellicle to the substratum. The study indicates that after improving keratinocyte survival a skin equivalent for lizard epidermis would be feasible as a useful tool to analyze the influence of the dermis on the process of epidermal differentiation and the control of the shedding cycle in squamates.  相似文献   

9.
Integrin expression during human epidermal development in vivo and in vitro.   总被引:15,自引:0,他引:15  
In order to investigate the role of extracellular matrix receptors of the integrin family in establishing the spatial organization of epidermal kerotinocytes, we used immunofluorescence microscopy to examine the expression of a range of integrin subunits during development of human palm and sole skin. All of the integrins expressed during development were also present in mature epidermis and were largely confined to the basal layer of keratinocytes in a pericellular distribution. The alpha 3 and beta 1 subunits were expressed prior to the initiation of stratification and did not change in abundance or distribution during subsequent development. alpha 4 and beta 3 were not detected at any time in the epidermis. Every other subunit examined showed spatial or temporal changes in expression. Staining for alpha 1 was strong before stratification and until mid-development, but was greatly decreased in neonatal epidermis. alpha 2 was first detected in small patches of basal cells prior to stratification, and thereafter was found in the entire basal layer, with greater staining in developing sweat glands. alpha 5 was not expressed until mid-development, and then primarily in developing sweat glands, with faint expression in neonatal epidermis. alpha v was detected following stratification, in developing sweat glands, and occasionally in neonatal epidermis. alpha 6 and beta 4 were peribasally expressed before stratification, but thereafter became concentrated at the basal cell surface in contact with the basement membrane, co-localizing with hemidesmosomes as determined by staining with bullous pemphigoid antiserum. We also examined the distribution of three known ligands for keratinocyte integrins: laminin and collagen type IV were present in the basement membrane zone at all stages of development, whereas fibronectin was only evident there until about 13 weeks estimated gestational age. Finally, we found that the changes in integrin expression that occur on initiation of stratification in vivo could be reproduced in organ cultures of developing skin; such cultures therefore provided a useful experimental model for further studies of the role of integrins in epidermal stratification.  相似文献   

10.
Mice lacking the alpha6 integrin chain die at birth with severe skin blistering. To further study the function of alpha6 integrin in skin, we generated conditionally immortalized cell lines from the epidermis of wild-type and alpha6 deficient mouse embryos. Mutant cells presented a decreased adhesion on laminin 5, the major component of the basement membrane in the skin, and on laminins 10/11 and 2. A DNA array analysis revealed alterations in the expression of extracellular matrix (ECM) components including laminin 5, cytoskeletal elements, but also membrane receptors like the hemidesmosomal components integrin beta4 and collagen XVII, or growth factors and signaling molecules of the TGFbeta, EGF, and Wnt pathways. Finally, an increase of several epidermal differentiation markers was observed in cells and tissue at the protein level. Further examination of the mutant tissue revealed alterations in the filaggrin signal. These differences may be linked to an upregulation of the TGFbeta and the Jun/Fos pathways in mutant keratinocytes. These results are in favor of a role for integrin alpha6beta4 in the maintenance of basal keratinocyte properties and epidermal homeostasis.  相似文献   

11.
Laminin-5 (previously known as kalinin, epiligrin, and nicein) is an adhesive protein localized to the anchoring filaments within the lamina lucida space of the basement membrane zone lying between the epidermis and dermis of human skin. Anchoring filaments are structures within the lamina lucida and lie immediately beneath the hemidesmosomes of the overlying basal keratinocytes apposed to the basement membrane zone. Human keratinocytes synthesize and deposit laminin-5. Laminin-5 is present at the wound edge during reepithelialization. In this study, we demonstrate that laminin-5, a powerful matrix attachment factor for keratinocytes, inhibits human keratinocyte migration. We found that the inhibitory effect of laminin-5 on keratinocyte motility can be reversed by blocking the α3 integrin receptor. Laminin-5 inhibits keratinocyte motility driven by a collagen matrix in a concentration-dependent fashion. Using antisense oligonucleotides to the α3 chain of laminin-5 and an antibody that inhibits the cell binding function of secreted laminin-5, we demonstrated that the endogenous laminin-5 secreted by the keratinocyte also inhibits the keratinocyte's own migration on matrix. These findings explain the hypermotility that characterizes keratinocytes from patients who have forms of junctional epidermolysis bullosa associated with defects in one of the genes encoding for laminin-5 chains, resulting in low expression and/or functional inadequacy of laminin-5 in these patients. These studies also suggest that during reepithelialization of human skin wounds, the secreted laminin-5 stabilizes the migrating keratinocyte to establish the new basement membrane zone.  相似文献   

12.
Reconstituted skin from murine embryonic stem cells   总被引:16,自引:0,他引:16  
Embryonic stem (ES) cell lines can be expanded indefinitely in culture while maintaining their potential to differentiate into any cell type. During embryonic development, the skin forms as a result of reciprocal interactions between mesoderm and ectoderm. Here, we report the in vitro differentiation and enrichment of keratinocytes from murine ES cells seeded on extracellular matrix (ECM) in the presence of Bone Morphogenic Protein-4 (BMP-4) or ascorbate. The enriched preparation of keratinocytes was able to form an epidermal equivalent composed of a stratified epithelium when cultured at the air-liquid interface on a collagen-coated acellular substratum. Interestingly, an underlying cellular compartment that belongs to the fibroblast lineage was systematically formed between the reconstituted epidermis and the inert membrane. The resulting tissue displayed morphological patterns similar to normal embryonic skin, as evidenced by light and transmission electron microscopy. Immunohistochemical studies revealed expression patterns of cytokeratins, basement membrane (BM) proteins and late differentiation markers of epidermis, as well as fibroblast markers, similar to native skin. The results demonstrate the capacity of ES cells to reconstitute in vitro a fully differentiated skin. This ES-derived bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling epidermal and dermal commitments.  相似文献   

13.
The sequence of events leading to the reconstruction of a fibre-producing hair follicle, after microsurgical amputation of the lower follicle bulb, has been detailed by immunohistology and electron microscopy. The initial response was essentially found to be a wound reaction, in that hyperproliferative follicle epidermis quickly spread to below the level of amputation--associated with downward movement of mesenchymal (or dermal) sheath cells. Fibronectin was prominent in both dermis and epidermis at this stage and, as in wound repair, preceded laminin and type IV collagen in covering the lower dermal-epidermal junction. Once a new basal line of epidermis and a complete basement membrane were established, laminin and type IV collagen were detected below this junction and within the prospective papilla-forming mesenchyme. This coincided with ultrastructural observations of profuse sub-basement membrane extracellular material in the region of new papilla formation. The glassy membrane displayed extensive ultrastructural modifications at its lower level, and these corresponded with localized variations in staining intensities for all three antibodies over time. The membrane hung below the level of the epidermis, and was crossed by migrating cells from the mesenchymal dermal sheath of the follicle - it acted to segregate the inner group of follicular dermal cells from wound fibroblasts. Extracellular matrix may be a mediator of the dermal-epidermal interactions associated with this hair follicle regeneration phenomenon.  相似文献   

14.
Most in vitro studies in experimental skin biology have been done in 2-dimensional (2D) monocultures, while accumulating evidence suggests that cells behave differently when they are grown within a 3D extra-cellular matrix and also interact with other cells (1-5). Mouse models have been broadly utilized to study tissue morphogenesis in vivo. However mouse and human skin have significant differences in cellular architecture and physiology, which makes it difficult to extrapolate mouse studies to humans. Since melanocytes in mouse skin are mostly localized in hair follicles, they have distinct biological properties from those of humans, which locate primarily at the basal layer of the epidermis. The recent development of 3D human skin reconstruct models has enabled the field to investigate cell-matrix and cell-cell interactions between different cell types. The reconstructs consist of a "dermis" with fibroblasts embedded in a collagen I matrix, an "epidermis", which is comprised of stratified, differentiated keratinocytes and a functional basement membrane, which separates epidermis from dermis. Collagen provides scaffolding, nutrient delivery, and potential for cell-to-cell interaction. The 3D skin models incorporating melanocytic cells recapitulate natural features of melanocyte homeostasis and melanoma progression in human skin. As in vivo, melanocytes in reconstructed skin are localized at the basement membrane interspersed with basal layer keratinocytes. Melanoma cells exhibit the same characteristics reflecting the original tumor stage (RGP, VGP and metastatic melanoma cells) in vivo. Recently, dermal stem cells have been identified in the human dermis (6). These multi-potent stem cells can migrate to the epidermis and differentiate to melanocytes.  相似文献   

15.
Cultures of human epidermal keratinocytes obtained from adult epidermis were initiated using irradiated BALB/3T3 cells as feeder layers. At different stages of confluence of the epidermal islands, feeder cells were removed and the extracellular matrix proteins of both pure component cells and cocultures were analyzed biochemically and by immunochemical methods and compared to those of skin fibroblasts of the same donors. The keratinocytes synthesized and secreted fibronectin and small amounts of laminin and type IV collagen. In addition, a nondisulfide-linked collagenous polypeptide (Mr = 120,000) was synthesized by the keratinocytes and was confined to the cell layers. Collagenous polypeptides with Mr = 120,000 were also synthesized by organ cultures of epidermal tissue and were detected in its acid or detergent extracts but again no secretion to culture medium was found. The Mr = 120,000 collagen had biochemical and immunological properties distinct from those of types I-V collagens. In immunofluorescence of keratinocyte cultures, fibronectin staining was prominent in the lining marginal cells of the expanding periphery of the epidermal cell islands but was not detected in the terminally differentiating cells in the upper layers of stratified colonies. Very little type IV collagen was found deposited in pericellular matrix form by the keratinocytes. In contrast, the mouse 3T3 feeder cells were found to produce both type IV collagen and laminin in addition to the previously identified connective tissue glycoproteins of fibroblasts, interstitial procollagens, and fibronectin. Basement membrane collagen of the 3T3 cells was found deposited as apparently unprocessed procollagen alpha 1(IV) and alpha 2(IV) chains. The production in culture conditions of basal lamina glycoproteins by the fibroblastic feeder cells may promote the attachment and growth of the cocultured keratinocytes.  相似文献   

16.
17.
Summary Many of the morphologic and biochemical changes that occur during human fetal skin development have been described, yet there has been little experimental analysis of the processes that regulate the development of human fetal skin. This is due in part to difficulties in culturing human fetal epidermal keratinocytes. We have successfully cultured fetal keratinocytes in two different in vitro systems; in a serum-free keratinocyte growth medium (KGM) on tissue culture plastic and cocultured with dermal fibroblasts as spheroidal aggregates. To characterize these fetal keratinocytes in vitro we have assessed their ability to express several markers of epidermal differentiation. Human fetal keratinocytes grown on plastic in KGM stratify and express some of the components of the differentiated epidermis, such as involucrin and the high molecular weight keratins. However, these keratinocytes co-express keratins and vimentin and do not form a structured basement membrane. More characteristics of fetal skin are preserved in mixed aggregates of epidermal keratinocytes and dermal fibroblasts including epidermal stratification, synthesis of basement membrane components, tissue-specific expression of intermediate filaments, involucrin, and expression of high molecular weight keratins. The maintenance of human fetal epidermal keratinocytes in these two in vitro systems and their ability to express many differentiated characteristics suggests that these cultures will be valuable for studies of the molecular mechanisms that regulate the regionally specific differentiation of the human fetal epidermis. This work was supported by the Dermatology Foundation Fellowships funded by Herbert Laboratories and The Upjohn Company and awarded to A. R. H., NIH Training Program in Dermatological Research #5T32AR07472, and NIH grant #5R01HD20996 to A. T. L. Publication no. 74 of the Dermatology Department, University of Rochester, Rochester, NY.  相似文献   

18.
Epithelial-mesenchymal interactions control epidermal growth and differentiation, but little is known about the mechanisms of this interaction. We have examined the effects of human dermal microvascular endothelial cells (DMEC) and fibroblasts on keratinocytes in conventional (feeder layer) and organotypic cocultures (lifted collagen gels) and demonstrated the induction of paracrine growth factor gene expression. Clonal keratinocyte growth was similarly stimulated in cocultures with irradiated DMEC and fibroblasts as feeder cells. This effect is most probably caused by induction of growth factor expression in cocultured dermal cells. Keratinocytes stimulated mRNA levels for KGF and IL-6 in both mesenchymal cell types and GM-CSF in fibroblasts. The feeder effect could not be replaced by conditioned media or addition of isolated growth factors. In organotypic cocultures with keratinocytes growing on collagen gels (repopulated with dermal cells), a virtually normal epidermis was formed within 7 to 10 d. Keratinocyte proliferation was drastically stimulated by dermal cells (histone 3 mRNA expression and BrdU labeling) which continued to proliferate as well in the gel. Expression of all typical differentiation markers was provoked in the reconstituted epithelium, though with different localization as compared to normal epidermis. Keratins K1 and K10 appeared coexpressed but delayed, reflecting conditions in epidermal hyperplasia. Keratin localization and proliferation were normalized under in vivo conditions, i.e., in surface transplants on nude mice. From these data it is concluded that epidermal homeostasis is in part controlled by complex reciprocally induced paracrine acting factors in concert with cell-cell interactions and extracellular matrix influences.  相似文献   

19.
The interfollicular dermis of adult human skin is partitioned into histologically and physiologically distinct papillary and reticular zones. Each of these zones contains a unique population of fibroblasts that differ in respect to their proliferation kinetics, rates at which they contract type I collagen gels, and in their relative production of decorin and versican. Here, site-matched papillary and reticular dermal fibroblasts couples were compared to determine whether each population interacted with keratinocytes in an equivalent or different manner. Papillary and reticular fibroblasts grown in monolayer culture differed significantly from each other in their release of keratinocyte growth factor (KGF) and granulocyte-macrophage colony stimulating factor (GM-CSF) into culture medium. Some matched fibroblast couples also differed in their constitutive release of interleukin-6 (IL-6). Papillary fibroblasts produced a higher ratio of GM-CSF to KGF than did corresponding reticular fibroblasts. Interactions between site-matched papillary and reticular couples were also assayed in a three-dimensional culture system where fibroblasts and keratinocytes were randomly mixed, incorporated into type I collagen gels, and allowed to sort. Keratinocytes formed distinctive cellular masses in which the keratinocytes were organized such that the exterior most layer of cells exhibited characteristics of basal keratinocytes and the interior most cells exhibited characteristics of terminally differentiated keratinocytes. In the presence of papillary dermal fibroblasts, keratinocyte masses were highly symmetrical and cells expressed all levels of differentiation markers. In contrast, keratinocyte masses that formed in the presence of reticular fibroblasts tended to have irregular shapes, and terminal differentiation was suppressed. Furthermore, basement membrane formation was retarded in the presence of reticular cells. These studies indicate that site-matched papillary and reticular dermal fibroblasts qualitatively differ in their support of epidermal cells, with papillary cells interacting more effectively than corresponding reticular cells.  相似文献   

20.
A morphological study of in vitro wound healing has been performed by light, transmission and scanning electron microscopy in dorsal thoraco-lumbar skin of 7-day chick embryos. A circular wound, 750 microns in diameter, was punched out of dorsal skin, removing epidermis and the underlying dense dermis. Wound closure was completed within 96 to 120 hours. Feather bud development was not observed at the wound site. The epidermis began to migrate some 24 h after the wounding; the migration of peridermal cells preceded that of basal epidermal cells by some 12 hours. Mechanisms of the epidermal migration were similar to those observed in situ during wound healing of the integument in 5-day chick embryos (THEVENET, 1981), Superficial epithelization of bare dermis occurred as soon as 12 h after the injury. Cytoplasm of dermal cells exhibited many microtubules and a dilated rough endoplasmic reticulum. During the first 48 h, the epidermal cells established direct contacts and zones of close parallel apposition with epithelized dermal cell processes. The basement membrane lamina densa was maintained at the edges of the wound without retraction or ruffling. It was reconstituted concomitantly with the epidermal migration within 72 h. Cytoplasm of migratory epidermal and epithelized dermal cells exhibited many cytoskeleton structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号