首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptic transmission at chemical synapses requires the removal of neurotransmitter from extracellular spaces. At synapses in the central nervous system, this is accomplished by sodium-coupled transport proteins, integral membrane proteins that thermodynamically couple the uptake of neurotransmitter to the uptake of sodium and, in some cases, the uptake and export of additional ions. Recent X-ray crystallographic studies have revealed the architecture of the two major families of neurotransmitter transporters and, together with additional biochemical and biophysical studies, have provided insights into mechanisms of ion coupling, substrate uptake, and inhibition of transport.  相似文献   

2.
Vacuolar-H+ATPase (V-ATPase) is a complex enzyme with numerous subunits organized in two domains. The membrane domain V0 contains a proteolipid hexameric ring that translocates protons when ATP is hydrolysed by the catalytic cytoplasmic sector (V1). In nerve terminals, V-ATPase generates an electrochemical proton gradient that is acid and positive inside synaptic vesicles. It is used by specific neurotransmitter-proton antiporters to accumulate neurotransmitters inside their storage organelles. During synaptic activity, neurotransmitters are released from synaptic vesicles docked at specialized portions of the presynaptic plasma membrane, the active zones. A fusion pore opens that allows the neurotransmitter to be released from the synaptic vesicle lumen into the synaptic cleft. We briefly review experimental data suggesting that the membrane domain of V-ATPase could be such a fusion pore.We also discuss the functional implications for quantal neurotransmitter release of the sequential use of the same V-ATPase membrane domain in two different events, neurotransmitter accumulation in synaptic vesicles first, and then release from these organelles during synaptic activity.  相似文献   

3.
Sodium-dependent beta-alanine uptake into dog renal brush-border membrane vesicles was studied. Kinetic analysis indicated a single transport system, highly specific for beta-amino acids, with Km = 35 microM at 100 mM NaCl. Sodium-dependent beta-alanine transport was markedly anion-dependent, being highest in the presence of chloride (Cl greater than Br greater than SCN greater than NO3 approximately I greater than F) and virtually nonexistent in the presence of gluconate and other nonphysiological chloride substitutes. In addition, it was observed that beta-alanine uptake could be driven against a concentration gradient by a chloride gradient. Similar results were found for sodium. Taken together, these observations provide strong evidence that beta-alanine transport across the renal brush-border membrane is coupled to both sodium and chloride. Studies of the dependence of beta-alanine flux on chloride and sodium concentrations indicated that one chloride ion and multiple sodium ions were involved in the beta-alanine transport event. beta-Alanine flux on chloride found to involve the net transfer of positive charge, consistent with these stoichiometric assignments. The hallucinogen harmaline inhibited beta-alanine uptake in a 1:1 fashion, presumably by acting at a single site on the transport molecule. The ability of harmaline to inhibit beta-alanine uptake was decreased when the chloride concentration was lowered but was unchanged when the sodium concentration was decreased. These results indicate that harmaline does not compete with sodium for a binding site on the carrier as has been suggested for other sodium-coupled transport systems, and that instead, chloride may be required for harmaline binding to the beta-alanine transporter.  相似文献   

4.
Synaptic vesicles are key organelles in chemical signal transmission allowing neurons to communicate with each other and neighboring cells. The numerous tasks of synaptic vesicles are governed by a unique set of proteins. Recently, proteomic studies have been performed by several laboratories employing mass spectrometry and immunoblotting in order to identify the complete proteinaceous inventory of the purified synaptic vesicle compartment. Surprisingly, several fold more proteins were assigned to the organelle than previously anticipated. Despite several novel candidates, a large variety of proteins assumed to be only transiently associated with the vesicular compartment turned out to be constitutive components of the synaptic vesicle proteome. In recent years, the focus on protein-protein interactions has led to a deeper understanding of functional aspects in cellular trafficking. Several proteins acting in concert in defined cellular processes build an interactome. This article will survey the interacting partners during the entire synaptic vesicle life cycle identified by proteomic approaches. This includes anterograde and retrograde axonal transport of the synaptic vesicle membrane compartment, transport within the presynapse to the active zone, priming, docking, exocytosis, endocytosis, recycling and neurotransmitter reuptake to replenish the pool of exocytosis-competent synaptic vesicles.  相似文献   

5.
Sodium‐chloride coupled neurotransmitter transporters achieve reuptake of their physiological substrate by exploiting the pre‐existing sodium‐gradient across the cellular membrane. This terminates the action of previously released substrate in the synaptic cleft. However, a change of the transmembrane ionic gradients or specific binding of some psychostimulant drugs to these proteins, like amphetamine and its derivatives, induce reverse operation of neurotransmitter:sodium symporters. This effect eventually leads to an increase in the synaptic concentration of non‐exocytotically released neurotransmitters [and – in the case of the norepinephrine transporters, underlies the well‐known indirect sympathomimetic activity]. While this action has long been appreciated, the underlying mechanistic details have been surprisingly difficult to understand. Some aspects can be resolved by incorporating insights into the oligomeric nature of transporters, into the nature of the accompanying ion fluxes, and changes in protein kinase activities.  相似文献   

6.
Neuroendocrine cells secrete hormones and polypeptides through a complex membrane trafficking process that involves the transport of specific organelles, called large dense core secretory granules, from the Golgi apparatus to specialised sites at the plasma membrane where these vesicles are successively exocytosed and recaptured by endocytosis through tightly coupled reactions. The minimal machinery required for exocytosis has been defined as SNARE proteins associated with few accessory proteins. On the other side, clathrin and dynamin constitute major components of some of the most important endocytotic pathways. Although many protein contributors of both exocytosis and endocytosis are now identified, their actual interplay is not well resolved. Furthermore, the necessary tight coupling of exocytosis and compensatory endocytosis to maintain membrane homeostasis in neuroendocrine cells is far from being understood. In this review, we focus on the more recently identified role of lipids in these important processes that are above all membrane remodelling events.  相似文献   

7.
Neurons of the visual, auditory and vestibular systems that signal through graded changes in membrane potential rely upon synaptic ribbons for the exquisite control of neurotransmitter release. Although clearly important for tonic neurotransmission, the precise role of synaptic ribbons remains elusive. In recent years, several genetic, biochemical, electrophysiological and optical approaches have begun to shed light on the functions of these enigmatic organelles.  相似文献   

8.
D. D. Hurd  W. M. Saxton 《Genetics》1996,144(3):1075-1085
Previous work has shown that mutation of the gene that encodes the microtubule motor subunit kinesin heavy chain (Khc) in Drosophila inhibits neuronal sodium channel activity, action potentials and neurotransmitter secretion. These physiological defects cause progressive distal paralysis in larvae. To identify the cellular defects that cause these phenotypes, larval nerves were studied by light and electron microscopy. The axons of Khc mutants develop dramatic focal swellings along their lengths. The swellings are packed with fast axonal transport cargoes including vesicles, synaptic membrane proteins, mitochondria and prelysosomal organelles, but not with slow axonal transport cargoes such as cytoskeletal elements. Khc mutations also impair the development of larval motor axon terminals, causing dystrophic morphology and marked reductions in synaptic bouton numbers. These observations suggest that as the concentration of maternally provided wild-type KHC decreases, axonal organelles transported by kinesin periodically stall. This causes organelle jams that disrupt retrograde as well as anterograde fast axonal transport, leading to defective action potentials, dystrophic terminals, reduced transmitter secretion and progressive distal paralysis. These phenotypes parallel the pathologies of some vertebrate motor neuron diseases, including some forms of amyotrophic lateral sclerosis (ALS), and suggest that impaired fast axonal transport is a key element in those diseases.  相似文献   

9.
The actin network has been implicated in the intracellular transport and positioning of the melanosomes, organelles that are specialized in the biosynthesis and the storage of melanin. It contributes also to molecular mechanisms that underlie the intracellular membrane dynamics and thereby can control the biogenesis of melanosomes. Two mechanisms for actin‐based movements have been identified: one is dependent on the motors associated to actin namely the myosins; the other is dependent on actin polymerization. This review will focus on to the role of the actin cytoskeleton and myosins in the transport and in the biogenesis of melanosomes. Myosins involved in membrane traffic are largely seen as transporters of organelles or membrane vesicles containing cargos along the actin networks. Yet increasing evidence suggests that some of the myosins contribute to the dynamics of internal membrane by using other mechanisms. The role of the myosins and the different molecular mechanisms by which they contribute or may contribute to the distribution, the movement and the biogenesis of the melanosomes in epidermal melanocytes and retinal pigmented epithelial (RPE) cells will be discussed.  相似文献   

10.
As investigations identify additional plasma membrane neurotransmitter transporters, attention has focused on the molecular basis of neurotransmitter transport into synaptic vesicles. The transport of biogenic amines into chromaffin granules has served as the paradigm for understanding vesicular transport. Recent work now describes the vesicular transport of other classical neurotransmitters, which occur by distinct but related mechanisms. To determine their biochemical basis, several of the transporters have been functionally reconstituted in liposomes. The ability of vesicular amine transport to protect against the neurotoxin MPP+ has permitted the isolation of the first cDNA clone for a member of this family, and the sequence establishes a relationship with drug-resistance transporters in bacteria.  相似文献   

11.
Myosins in melanocytes: to move or not to move?   总被引:2,自引:0,他引:2  
The actin network has been implicated in the intracellular transport and positioning of the melanosomes, organelles that are specialized in the biosynthesis and the storage of melanin. It contributes also to molecular mechanisms that underlie the intracellular membrane dynamics and thereby can control the biogenesis of melanosomes. Two mechanisms for actin-based movements have been identified: one is dependent on the motors associated to actin namely the myosins; the other is dependent on actin polymerization. This review will focus on to the role of the actin cytoskeleton and myosins in the transport and in the biogenesis of melanosomes. Myosins involved in membrane traffic are largely seen as transporters of organelles or membrane vesicles containing cargos along the actin networks. Yet increasing evidence suggests that some of the myosins contribute to the dynamics of internal membrane by using other mechanisms. The role of the myosins and the different molecular mechanisms by which they contribute or may contribute to the distribution, the movement and the biogenesis of the melanosomes in epidermal melanocytes and retinal pigmented epithelial (RPE) cells will be discussed.  相似文献   

12.
Many psychoactive drugs influence the transport of neurotransmitters across biological membranes, suggesting that the physiological regulation of neurotransmitter transport might contribute to normal and perhaps abnormal behaviour. Over the past few years, molecular characterization of the neurotransmitter transporters has enabled investigation of their subcellular location and regulation. The analysis of location suggests that membrane trafficking has an important role in the normal function of these proteins. One of the major regulatory mechanisms also involves changes in localization that might contribute to synaptic plasticity. This article discusses recent work on the membrane trafficking of neurotransmitter transporters and its role in regulating their activity.  相似文献   

13.
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K+ transport systems allowing K+ to move across the membrane. K+ transport systems in plant organelles act coordinately with the plasma membrane intrinsic K+ transport systems to maintain cytosolic K+ concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K+ channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K+ homeostasis of the cytoplasm. The initial electrophysiological measurements of K+ transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K+ transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K+ transport system has been isolated from cyanobacteria, which may add to our understanding of K+ flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K+ transport proteins.  相似文献   

14.
Ion-coupled secondary transport is utilized by a broad range of integral membrane proteins to catalyze the energetically unfavorable movement of solute molecules across a lipid bilayer. Members of the solute carrier 6 (SLC6) family, present in both prokaryotes and eukaryotes, are sodium-coupled symporters that play crucial roles in processes as diverse as nutrient uptake and neurotransmitter clearance. The crystal structure of LeuT, a bacterial member of this family, provided the first atomic-level glimpse into overall architecture, pinpointed the substrate and sodium binding sites and implicated candidate helices and residues in the “gating” conformational changes that accompany ion binding and release. The structure is consistent with a wealth of elegant biochemical data on the eukaryotic counterparts and has for the first time permitted the construction of accurate homology models that can be directly tested experimentally. Sequence identity is especially high near the substrate and sodium binding sites and, thus, molecular insights within these regions have been substantial. However, there are several topics relevant to transport mechanism, inhibition, and regulation that structure/functions studies of LeuT cannot adequately address, suggesting the need for a eukaryotic transporter crystal structure.  相似文献   

15.
神经递质转运体的研究进展   总被引:1,自引:0,他引:1  
Gao W  Rao ZR 《生理科学进展》1997,28(3):203-208
近年来,一种位于突触前膜、囊泡膜及神经胶质细胞膜上的糖蛋白-神经递质转运体,逐渐成为神经科学界研究的热点。它们能高选择性地与突触间的递质相结合,将递质运回细胞内,从而终止递质在细胞间的传递,并进而参与突触间信息的调控。有关神经递质转运体的研究国内尚未见报道。本文仅就近年来国外有关方面的研究概况,从分子结构、分型、研究方法、分布、功能、调节因素、基因调控、以及研究焦点和尚待解决的问题等诸方面做一综述  相似文献   

16.
Abstract: Mouse brain slices take up hypotaurine (2-aminoethanesulphinic acid) from medium by means of two concentrative low- and high-affinity transport systems. [35S]Hypotaurine uptake by the slices was significantly reduced in the absence of external potassium, calcium, or magnesium ions. An excess of potassium ions also inhibited hypotaurine uptake by one-half. Uptake was almost completely abolished on removal of sodium ions. The K m constants for both low- and high-affinity transport components increased in a low-sodium medium, suggesting that sodium ions are required when hypotaurine is attached to its possible carrier sites in plasma membranes. Sodium ions also mimicked allosteric effectors of hypotaurine transport, showing positive cooperativity. More than two sodium ions may be involved in the transport of one hypotaurine molecule across the cell membrane. The calculated activation energies of transport were fairly similar in normal and sodium-deficient media and thus sodium ions may not participate in the activation mechanisms of the transport. With respect to cation dependence, hypotaurine transport in brain slices exhibits features characteristic of neurotransmitter amino acids.  相似文献   

17.
The sodium- and chloride-dependent gamma-aminobutyric acid (GABA) transporter is essential for synaptic transmission by this neurotransmitter. GAT-1 expressed in Xenopus laevis oocytes exhibits sodium-dependent GABA-induced inward currents reflecting electrogenic sodium-coupled transport. In lithium-containing medium, GAT-1 mediates GABA-independent currents, the relationship of which to the physiological transport process is poorly understood. In this study, mutants are described that appear to be locked in this cation leak mode. When Gly(63), located in the middle of the highly conserved transmembrane domain I, was mutated to serine or cysteine, sodium-dependent GABA currents were abolished. Strikingly, these mutants exhibited robust inward currents in lithium- as well as potassium-containing media. Membrane-impermeant sulfhydryl reagents inhibited these currents of the cysteine but not of the serine mutant, indicating that this position was accessible to the external aqueous medium. The cation leak currents mediated by wild-type GAT-1 were inhibited by low millimolar sodium concentrations in a noncompetitive manner. Mutations at other positions of transmembrane domain I increased or decreased the apparent sodium affinity, as monitored by the sodium-dependent steady-state GABA currents or transient currents. In parallel, the ability of sodium to inhibit the cation leak currents was increased or decreased, respectively. Thus, transmembrane domain I of GAT-1 contains determinants controlling both sodium-coupled GABA flux and the cation leak pathway as well as the interconversion of these distinct modes. Our observations suggest the possibility that the permeation pathway in both modes shares common structural elements.  相似文献   

18.
In neurons, control of microtubule dynamics is required for multiple homeostatic and regulated activities. Over the past few decades, a great deal has been learned about the role of the microtubule cytoskeleton in axonal and dendritic transport, with a broad impact on neuronal health and disease. However, significantly less attention has been paid to the importance of microtubule dynamics in directly regulating synaptic function. Here, we review emerging literature demonstrating that microtubules enter synapses and control central aspects of synaptic activity, including neurotransmitter release and synaptic plasticity. The pleiotropic effects caused by a dysfunctional synaptic microtubule cytoskeleton may thus represent a key point of vulnerability for neurons and a primary driver of neurological disease.  相似文献   

19.
Peptide motifs     
Clathrin-coated vesicles (CCVs) form at the plasma membrane, where they select cargo for endocytic entry into cells, and at the trans-Golgi network (TGN) and the endosomal system, where they generate carrier vesicles that transport proteins between these compartments. We have used subcellular fractionation and tandem mass spectrometry to identify proteins associated with brain CCVs. The resulting proteome contained a near complete inventory of the major functional proteins of synaptic vesicles (SVs), suggesting that clathrin-mediated endocytosis provides a major mechanism to recycle SV membrane proteins following neurotransmitter release. Additionally, we identified several new components of the machineries for clathrin-mediated membrane budding, including enthoprotin/epsinR and NECAP 1/2. These proteins bind with high specificity to the ear domains of the clathrin adaptor proteins (APs)-1 and-2, and, intriguingly, they each utilize novel peptide motifs based around the core sequence ØXXØ. Detailed mutational analysis of these motifs, coupled with structural studies of the ear domains, has revealed the basis of their specificity for clathrin adaptors. Moreover, the motifs have now been recognized in multiple proteins functioning in clathrin-mediated membrane trafficking, revealing new mechanisms in the formation and function of CCVs. Thus, proteomics analysis of isolated organelles can provide insights ranging from peptide motifs to global organelle function.  相似文献   

20.
Synaptic function crucially relies on the constant supply and removal of neuronal membranes. The morphological complexity of neurons poses a significant challenge for neuronal protein transport since the machineries for protein synthesis and degradation are mainly localized in the cell soma. In response to this unique challenge, local micro‐secretory systems have evolved that are adapted to the requirements of neuronal membrane protein proteostasis. However, our knowledge of how neuronal proteins are synthesized, trafficked to membranes, and eventually replaced and degraded remains scarce. Here, we review recent insights into membrane trafficking at synaptic sites and into the contribution of local organelles and micro‐secretory pathways to synaptic function. We describe the role of endoplasmic reticulum specializations in neurons, Golgi‐related organelles, and protein complexes like retromer in the synthesis and trafficking of synaptic transmembrane proteins. We discuss the contribution of autophagy and of proteasome‐mediated and endo‐lysosomal degradation to presynaptic proteostasis and synaptic function, as well as nondegradative roles of autophagosomes and lysosomes in signaling and synapse remodeling. We conclude that the complexity of neuronal cyto‐architecture necessitates long‐distance protein transport that combines degradation with signaling functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号