首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macaranga (Euphorbiaceae) includes about 280 species with a palaeotropic distribution. The genus not only comprises some of the most prominent pioneer tree species in Southeast Asian lowland dipterocarp forests, it also exhibits a substantial radiation of ant-plants (myrmecophytes). Obligate ant-plant mutualisms are formed by about 30 Macaranga species and 13 ant species of the genera Crematogaster or Camponotus. To improve our understanding of the co-evolution of the ants and their host plants, we aim at reconstructing comparative organellar phylogeographies of both partners across their distributional range. Preliminary evidence indicated that chloroplast DNA introgression among closely related Macaranga species might occur. We therefore constructed a comprehensive chloroplast genealogy based on DNA sequence data from the noncoding ccmp2, ccmp6, and atpB-rbcL regions for 144 individuals from 41 Macaranga species, covering all major evolutionary lineages within the three sections that contain myrmecophytes. A total of 88 chloroplast haplotypes were identified, and grouped into a statistical parsimony network that clearly distinguished sections and well-defined subsectional groups. Within these groups, the arrangement of haplotypes followed geographical rather than taxonomical criteria. Thus, up to six chloroplast haplotypes were found within single species, and up to seven species shared a single haplotype. The spatial distribution of the chloroplast types revealed several dispersals between the Malay Peninsula and Borneo, and a deep split between Sabah and the remainder of Borneo. Our large-scale chloroplast genealogy highlights the complex history of migration, hybridization, and speciation in the myrmecophytes of the genus Macaranga. It will serve as a guideline for adequate sampling and data interpretation in phylogeographic studies of individual Macaranga species and species groups.  相似文献   

2.
Cereal species of the grass tribe Triticeae are economically important and provide staple food for large parts of the human population. The Fertile Crescent of Southwest Asia harbors high genetic and morphological diversity of these species. In this study, we analyzed genetic diversity and phylogenetic relationships among D genome-bearing species of the wheat relatives of the genus Aegilops from Iran and adjacent areas using allelic diversity at 25 nuclear microsatellite loci, nuclear rDNA ITS, and chloroplast trnL-F sequences. Our analyses revealed high microsatellite diversity in Aegilops tauschii and the D genomes of Triticum aestivum and Ae. ventricosa, low genetic diversity in Ae. cylindrica, two different Ae. tauschii gene pools, and a close relationship among Ae. crassa, Ae. juvenalis, and Ae. vavilovii. In the latter species group, cloned sequences revealed high diversity at the ITS region, while in most other polyploids, homogenization of the ITS region towards one parental type seems to have taken place. The chloroplast genealogy of the trnL-F haplotypes showed close relationships within the D genome Aegilops species and T. aestivum, the presence of shared haplotypes in up to three species, and up to three different haplotypes within single species, and indicates chloroplast capture from an unidentified species in Ae. markgrafii. The ITS phylogeny revealed Triticum as monophyletic and Aegilops as monophyletic when Amblyopyrum muticum is included.  相似文献   

3.
Wittzell H 《Molecular ecology》1999,8(12):2023-2035
Sequencing of the trnL-trnF intergenic spacer in chloroplast DNA (cpDNA) from 237 sexual and apomictic species of dandelions (genus Taraxacum) from Europe, Asia and arctic North America revealed 46 haplotypes, which differed mainly by a variable number of polymorphic tRNA pseudogenes next to the trnF gene. The haplotypes could be divided into 20 cpDNA lineages, but independent duplications and deletions of the pseudogene copies made it difficult to further reconstruct the phylogeny. Intraspecific cpDNA variation was found in the primitive sexual T. serotinum. However, in contrast to a recent study, no cpDNA variation was detected within 12 apomictic species representing a variety of haplotypes. The cpDNA haplotype may therefore help to define these critical apomicts. On the other hand, the genetic variation may easily be overestimated, if the clones are not correctly identified, because some morphologically similar microspecies carried very different haplotypes. In all, 36 sections of the genus were sampled. Four primitive, mainly sexual, sections only displayed a group of ancient haplotypes, whereas morphologically more advanced sections often exhibited many different haplotypes from up to seven cpDNA lineages. In the latter cases, the lineages were rarely unique to a certain section. For example, the two most widespread haplotypes, belonging to different lineages, were found together in nine sections. This suggests that significant gene flow has occurred among the advanced sections, although sexual reproduction is not currently known in several of them. The result is consistent with the reticulate distribution of morphological characters among the sections.  相似文献   

4.
Phylogenetic relationships for Hieracium subgen. Pilosella were inferred from chloroplast (trnT-trnL, matK) and nuclear (ITS) sequence data. Chloroplast markers revealed the existence of two divergent haplotype groups within the subgenus that did not correspond to presumed relationships. Furthermore, chloroplast haplotypes of the genera Hispidella and Andryala nested each within one of these groups. In contrast, ITS data were generally in accord with morphology and other evidence and were therefore assumed to reflect the true phylogeny. They revealed a sister relationship between Pilosella and Hispidella and a joint clade of Hieracium subgenera Hieracium and Chionoracium (Stenotheca) while genus Andryala represented a third major lineage of the final ingroup cluster. Detailed analysis of trnT-trnL character state evolution along the ITS tree suggested two intergeneric hybridization events between ancestral lineages that resulted in cytoplasmic transfer (from Hieracium/Chionoracium to Pilosella, and from the introgressed Pilosella lineage to Andryala). These chloroplast capture events, the first of which involved a now extinct haplotype, are the most likely explanation for the observed incongruencies between plastid and nuclear DNA markers.  相似文献   

5.
Quercus is one of the most abundant and economically important genera of woody plants in the Northern Hemisphere. To infer phylogenetic relationships within Quercus subgenus Quercus, chloroplast DNA (cpDNA) restriction sites and nucleotide sequences of the internal transcribed spacers (ITS) and the 5.8S coding region of the nuclear ribosomal DNA repeat were obtained for 44 individuals, including 25 species, intraspecific samples, and three outgroups. Separate parsimony analyses of each data set showed that individual gene trees were congruent and often complementary in supporting clades that generally corresponded to previously recognized taxonomic groups. Only one instance of strongly supported gene tree incongruence was detected and this anomalous pattern was explained best by ancient introgression of cpDNA across sectional boundaries. Simultaneous parsimony analysis of the pruned data sets supported the recognition of the strictly Eurasian section Cerris and resolved a novel hypothesis for the major infrageneric groups (Cerris- (Lobatae- (Protobalanus + Quercus sensu stricto))). The biogeographic hypothesis that all major oak lineages evolved locally at middle latitudes within the general distribution of their fossil ancestors was fully supported. This set of relationships also suggested a New World origin for the widespread white oaks of the Northern Hemisphere (section Quercus s. s.). For both data sets, inter- and intraspecific sampling within section Protobalanus showed little correspondence to morphological species. Greater cladistic structure among the samples was obtained by cpDNA restriction sites and two well-delimited plastomes types comprising a total of 15 distinct haplotypes were resolved. Haplotypes of 2 of the peripheral species in this species complex occupy terminal portions of one of the plastome clades, suggesting a more recent origin relative to those of more widespread species. The phylogeography of the two divergent plastome types suggested a north-south pattern, consistent with a Late Tertiary disjunction in the ancestral distribution of section Protobalanus.  相似文献   

6.
This study analyzes intra- and interspecific variation in chloroplast DNA (cpDNA) in diploid Triticum-Aegilops species. This analysis focused on DNA sequence variation in noncoding regions of cpDNA, which included base-pair substitutions, insertion/deletions (indels, 50 loci pooled), microsatellites (7 loci pooled), and inversions. Nine of 13 Triticum-Aegilops species were successfully identified and genotyped using these data. Sixty-two haplotypes were detected in 115 accessions of 13 diploid species. Because of the large number of characters examined, novel deep relationships within and among Triticum-Aegilops species could be identified and evaluated. Phylogenetic trees for the genus Triticum-Aegilops were constructed with Hordeum vulgare and Dasypyrum villosum as outgroups, and the results were compared to previous studies. These data support the following inferences: (1) Aegilops species should be included in Triticum; (2) groups D, T, M, N, U, and section Sitopsis (except Ae. speltoides) underwent speciation concurrently, but most diploid species evolved independently; (3) Ae. mutica does not occupy a basal position in Triticum-Aegilops; (4) Ae. speltoides is in a basal position and differs significantly from other Sitopsis species; (5) Ae. caudata is polyphyletic in all trees; (6) the genus Aegilops is paraphyletic with Secale.  相似文献   

7.
The origin and maintenance of a plastidic tandem repeat next to the TRNF (UUC) gene were analyzed in the genus BOECHERA in a phylogenetic context and were compared to published analogous examples that emerged in parallel in the Asteraceae and Juncaceae, respectively. Although we identified some features common to these taxonomic groups with respect to structure and origin of the region, obvious differences were encountered, which argue against a specific mechanism or evolutionary principle underlying the parallel origin and maintenance of the TRNF-tandem repeats in those families. In contrast to the situation in the Asteraceae, no reciprocal recombinant repeat types have been observed in the Brassicaceae. Forty copy types, classified into three groups, were isolated from 103 chloroplast haplotypes of BOECHERA and it was demonstrated that they are composed of four subregions of various origins. We discuss various mutation mechanisms such as DNA replication slippage, and inter- and intrachromosomal recombination which were reported to mediate variation in copy numbers and other types of observed sequence length polymorphism. It is shown that the observed molecular structure of the tandem repeat region did not fully fit the particular patterns expected under a scenario of evolution including any of the known mechanisms. Nevertheless, it appeared that intermolecular unequal crossing-over is most likely the driving force in the evolution of this tandem repeat. However, it remains to be explained, why no reciprocal recombinant copy types have been observed. The reconstructed phylogenetic relationships among copies reflected different evolutionary scenarios as follows: (1) A single and ancient origin of copies pre-dates the radiation of BOECHERA. (2) Parallel expansion and shortening of the tandem repeat within different BOECHERA lineages. (3) Conservation of the first copy, as it was the only one present in all chloroplast haplotypes.  相似文献   

8.
The alpine genus Chionohebe is one of seven genera in the southern hemisphere Hebe complex. The main aims of this study were to infer the evolutionary relationships and assess phylogeographic patterns among the six species of Chionohebe, determine the origin of the two species with trans-Tasman distributions, and test species delimitations and specimen identifications based on morphology. Analyses of AFLP data recovered five major lineages within Chionohebe, some of which corresponded to species and varieties as currently circumscribed. Although the cushion chionohebes were strongly supported as monophyletic, the sole non-cushion species, C. densifolia, was sister to Parahebe trifida, and thus the AFLP data do not support a monophyletic Chionohebe as usually circumscribed. Strong north/south and west/east phylogeographic patterns were found among and within the main AFLP lineages in New Zealand. Analyses of chloroplast DNA (cpDNA) revealed eight haplotypes in Chionohebe, but these did not correspond to current taxonomy or geography due to widespread interspecific haplotype sharing. Based on both AFLP and cpDNA results, the two trans-Tasman species are shown to have originated in New Zealand and dispersed to Australia independently.  相似文献   

9.
Taxonomic relationships within the Old World fruit bat genus, Cynopterus, have been equivocal for the better part of a century. While nomenclature has been revised multiple times on the basis of phenotypic characters, evolutionary relationships among taxa representing the entire geographic range of the genus have not been determined. We used mitochondrial DNA sequence data to infer phylogenetic relationships among the three most broadly distributed members of the genus: C. brachyotis, C. horsfieldi, and C. sphinx, and to assess whether C. brachyotis represents a single widespread species, or a complex of distinct lineages. Results clearly indicate that C. brachyotis is a complex of lineages. C. sphinx and C. horsfieldi haplotypes formed monophyletic groups nested within the C. brachyotis species complex. We identified six divergent mitochondrial lineages that are currently referred to C. brachyotis. Lineages from India, Myanmar, Sulawesi, and the Philippines are geographically well-defined, while in Malaysia two lineages, designated Sunda and Forest, are broadly sympatric and may be ecologically distinct. Demographic analyses of the Sunda and Forest lineages suggest strikingly different population histories, including a recent and rapid range expansion in the Sunda lineage, possibly associated with changes in sea levels during the Pleistocene. The resolution of the taxonomic issues raised in this study awaits combined analysis of morphometric characters and molecular data. However, since both the Indian and Malaysian Forest C. brachyotis lineages are apparently ecologically restricted to increasingly fragmented forest habitat, we suggest that reevaluation of the conservation status of populations in these regions should be an immediate goal.  相似文献   

10.
Wang H  Sun D  Sun G 《Génome》2011,54(12):986-992
The phylogeny of diploid Hordeum species has been studied using both chloroplast and nuclear gene sequences. However, the studies of different nuclear datasets of Hordeum species often arrived at similar conclusions, whereas the studies of different chloroplast DNA data generally resulted in inconsistent conclusions. Although the monophyly of the genus is well supported by both morphological and molecular data, the intrageneric phylogeny is still a matter of controversy. To better understand the evolutionary history of Hordeum species, two chloroplast gene loci (trnD-trnT intergenic spacer and rps16 gene) and one nuclear marker (thioreoxin-like gene (HTL)) were used to explore the phylogeny of Hordeum species. Two obviously different types of trnD-trnT sequences were observed, with an approximately 210 base pair difference between these two types: one for American species, another for Eurasian species. The trnD-trnT data generally separated the diploid Hordeum species into Eurasian and American clades, with the exception of Hordeum marinum subsp. gussoneanum. The rps16 data also grouped most American species together and suggested that Hordeum flexuosum has a different plastid type from the remaining American species. The nuclear gene HTL data clearly divided Hordeum species into two clades: the Xu+H genome clade and the Xa+I genome clade. Within clades, H genome species were well separated from the Xu species, and the I genome species were well separated from the Xa genome species. The incongruence between chloroplast and nuclear datasets was found and discussed.  相似文献   

11.
Knowledge of the evolutionary history of plants that are ecologically dominant in modern ecosystems is critical to understanding the historical development of those ecosystems. Metrosideros is a plant genus found in many ecological and altitudinal zones throughout the Pacific. In the Hawaiian Islands, Metrosideros polymorpha is an ecologically dominant species and is also highly polymorphic in both growth form and ecology. Using 10 non-coding chloroplast regions, we investigated haplotype diversity in the five currently recognized Hawaiian Metrosideros species and an established out-group, Metrosideros collina, from French Polynesia. Multiple haplotype groups were found, but these did not match morphological delimitations. Alternative morphologies sharing the same haplotype, as well as similar morphologies occurring within several distinct island clades, could be the result of developmental plasticity, parallel evolution or chloroplast capture. The geographical structure of the data is consistent with a pattern of age progressive island colonizations and suggests de novo intra-island diversification. If single colonization events resulted in a similar array of morphologies on each island, this would represent parallel radiations within a single, highly polymorphic species. However, we were unable to resolve whether the pattern is instead explained by ancient introgression and incomplete lineage sorting resulting in repeated chloroplast capture. Using several calibration methods, we estimate the colonization of the Hawaiian Islands to be potentially as old as 3.9 (-6.3) Myr with an ancestral position for Kaua'i in the colonization and evolution of Metrosideros in the Hawaiian Islands. This would represent a more ancient arrival of Metrosideros to this region than previous studies have suggested.  相似文献   

12.
Portulaca is the only genus in Portulacaceae and has ca. 100 species distributed worldwide, mainly in the tropics and subtropics. Molecular data place the genus as one of the closest relatives of Cactaceae, but phylogenetic relationships within Portulaca are barely known. This study samples 59 species of Portulaca, 10 infraspecific taxa, and three cultivars, including multiple samples of widespread species. The sampled taxa represent all subgenera in the classifications of von Poellnitz (1934), Legrand (1958), and Geesink (1969) and come from around the world. Nuclear ITS and chloroplast ndhF, trnT-psbD intergenic spacer, and ndhA intron DNA sequences were analyzed using maximum likelihood and Bayesian methods to produce a hypothesis of relationships within Portulaca. Divergence times were estimated using Hawaiian endemics for calibration, and biogeographical patterns were examined using a Bayes-DIVA approach. In addition, the evolution of chromosome numbers in the genus was investigated using probabilistic models. The analyses strongly support the monophyly of Portulaca, with an age of the most recent common ancestor (MRCA) of 23 Myr. Within Portulaca are two major lineages: the OL clade (comprising opposite-leaved species) distributed in Africa, Asia, and Australia, and the AL clade (comprising alternate to subopposite-leaved species), which is more widespread and originated in the New World. Sedopsis, a genus sometimes recognized as distinct from Portulaca based on a long corolla tube, is nested within the OL clade and does not merit taxonomic recognition. Samples of Portulaca grandiflora, Portulaca halimoides, and Portulaca oleracea were found to be non-monophyletic. It is hypothesized that the ancestral distribution area of Portulaca included southern hemisphere continents and Asia. The OL clade remained restricted to the Old World (except Portulaca quadrifida, a pantropical weed), while the AL clade, with a South American origin, was able to disperse multiple times to other continents. The base chromosome number for Portulaca is inferred to be x=9, although the analysis was primarily based on the available data for the AL clade. A number of chromosome number change events (polyploidization, demi-polyploidization, gain, and loss) were shown to have occurred in the genus, especially within the Oleracea clade.  相似文献   

13.
The genus Phragmites includes several species, of which only Phragmites australis has a worldwide distribution. It has been several decades since the last formal taxonomic examination of the genus and a number of recent genetic studies have revealed novel diversity and unique lineages within the genus. In my initial work on genetic variation in Phragmites (Saltonstall in Proc Nat Acad Sci 99:2445–2449, 2002), I came up with a naming scheme for identifying chloroplast DNA haplotypes which combined unique sequences at two loci, designated by numbers, to form haplotypes, designated by letters. Here I describe this naming system in more detail, explain how it has evolved over time as more genetic data has become available, provide a summary of all haplotypes currently available on GenBank, and address some common misunderstandings about how the haplotypes are named.  相似文献   

14.
Phylogeography allows the inference of evolutionary processes that have shaped the current distribution of genealogical lineages across a landscape. In this perspective, comparative phylogeographical analyses are useful in detecting common historical patterns by either comparing different species within the same area within a continent or by comparing similar species in different areas. Here, we analyse one taxon (the white oak, genus Quercus, subgenus Quercus, section Quercus) that is widespread worldwide, and we evaluate its phylogeographical pattern on two different continents: western North America and Western Europe. The goals of the present study are: (i) to compare the chloroplast genetic diversity found in one California oak species vs. that found in the extensively studied European oak species (in France and the Iberian Peninsula); (ii) to contrast the geographical structure of haplotypes between these two taxa and test for a phylogeographical structure for the California species. For this purpose, we used the same six maternally inherited chloroplast microsatellite markers and a similar sampling strategy. The haplotype diversity within site as well as the differentiation among sites was alike in both taxa, but the Californian species has higher allelic richness with a greater number of haplotypes (39 vs. 11 in the European white oak complex). Furthermore, in California these 39 haplotypes are distributed locally in patches while in the European oaks haplotypes are distributed into lineages partitioned longitudinally. These contrasted patterns could indicate that gene movement in California oak populations have been more stable in response to past climatic and geological events, in contrast to their European counterparts.  相似文献   

15.
The freshwater sculpins, genus Cottus (Teleostei; Cottidae), comprise bottom-dwelling fishes that exhibit various life-history styles, having radiated throughout Northern Hemisphere freshwater habitats. The phylogenetic relationships among Cottus and related taxa were estimated from mitochondrial DNA 12S rRNA and control region (CR) sequences, the freshwater sculpins examined falling into five lineages (A-E). Lineage A consisted of Trachidermus fasciatus and C. kazika, both having a catadromous life-history. The remaining species (lineages B-E) spawn in freshwater habitats regardless of life-history (amphidromous, lacustrine or fluvial), suggesting that the various life-history types post-dated a common ancestor of lineages B-E. Molecular clock estimates suggested a Pliocene-Pleistocene radiation (or Miocene-Pliocene from the alternative clock) of lineages B-E. In eastern Eurasia, speciation with life-history changes to amphidromous or fluvial styles has apparently occurred independently in some lineages, as a general pattern. Mitochondrial DNA CR phylogeny showed the monophyletic Baikalian cottoids (Cottoidei) to be nested within Cottus and Trachidermus, suggesting that the former ecologically and morphologically divergent cottoids may have originated from a single lineage which invaded the ancient lake.  相似文献   

16.
Artemisia is the largest genus (ca. 350-500+ spp.) in the tribe Anthemideae and is composed of ecologically, morphologically, and chemically diverse species that are found primarily throughout the Northern Hemisphere. Two major centers of diversity for the genus are located in Eurasia and western North America, but phytogeographic links connecting these two regions are observed all across the North Pacific Rim and adjacent areas in the Arctic, including many islands and archipelagos. Previous phylogenetic studies have helped to clarify major lineages and identify likely sister relationships, but many questions remain unanswered regarding the relationships and migration history of New and Old World species. Here we investigate the phylogenetics of Artemisia within a biogeographic context centered in the Beringian Region and offer new hypotheses concerning species relationships, migration history, and the likely role of reticulate evolution in the genus. Our sampling included many new taxa and emphasized multiple accessions of widespread species, species from proposed refugia, and species with disjunct/vicariant distributions. The ITS phylogeny contained 173 accessions (94 new and 79 from GenBank) and indicated that Artemisia is paraphyletic by the exclusion of several small Asian genera and the North American genus Sphaeromeria. Following a survey of thirteen chloroplast loci, phylogenies based on two plastid markers (psbA-trnH and rpl32-trnL spacers) were constructed with a reduced data set, and though largely consistent with the ITS topology, revealed several cases of possible introgression among New World and Beringian species. Our analysis reveals that North American Artemisia species have multiple origins, and that western North America has served as a source for some colonizing elements in eastern Asia and South America.  相似文献   

17.
Hayakawa T  Aki I  Varki A  Satta Y  Takahata N 《Genetics》2006,172(2):1139-1146
The human CMP-N-acetylneuraminic acid hydroxylase gene (CMAH) suffered deletion of an exon that encodes an active center for the enzyme approximately 3.2 million years ago (MYA). We analyzed a 7.3-kb intronic region of 132 CMAH genes to explore the fixation process of this pseudogene and the demographic implication of its haplotype diversity. Fifty-six variable sites were sorted into 18 different haplotypes with significant linkage disequilibrium. Despite the rather low nucleotide diversity, the most recent common ancestor at CMAH dates to 2.9 MYA. This deep genealogy follows shortly after the original exon deletion, indicating that the deletion has fixed in the population, although whether this fixation was facilitated by natural selection remains to be resolved. Remarkable features are exceptionally long persistence of two lineages and the confinement of one lineage in Africa, implying that some African local populations were in relative isolation while others were directly involved in multiple African exoduses of the genus Homo. Importantly, haplotypes found in Eurasia suggest interbreeding between then-contemporaneous human species. Although population structure within Africa complicates the interpretation of phylogeographic information of haplotypes, the data support a single origin of modern humans, but not with complete replacement of archaic inhabitants by modern humans.  相似文献   

18.
Identification of species in natural populations has recently received increased attention with a number of investigators proposing rigorous methods for species delimitation. Morphologically conservative species (or species complexes) with deep phylogenetic histories (and limited gene flow) are likely to pose particular problems when attempting to delimit species, yet this is crucial to comparative studies of the geography of speciation. We apply two methods of species delimitation to an ancient group of lizards (genus Xantusia) that occur throughout southwestern North America. Mitochondrial cytochrome b and nicotinamide adenine dinucleotide dehydrogenase subunit 4 gene sequences were generated from samples taken throughout the geographic range of Xantusia. Maximum likelihood, Bayesian, and nested cladogram analyses were used to estimate relationships among haplotypes and to infer evolutionary processes. We found multiple well-supported independent lineages within Xantusia, for which there is considerable discordance with the currently recognized taxonomy. High levels of sequence divergence (21.3%) suggest that the pattern in Xantusia may predate the vicariant events usually hypothesized for the fauna of the Baja California peninsula, and the existence of deeply divergent clades (18.8%-26.9%) elsewhere in the complex indicates the occurrence of ancient sundering events whose genetic signatures were not erased by the late Wisconsin vegetation changes. We present a revised taxonomic arrangement for this genus consistent with the distinct mtDNA lineages and discuss the phylogeographic history of this genus as a model system for studies of speciation in North American deserts.  相似文献   

19.
In this work we report on the phylogeography of the endangered tree species Caryocar brasiliense based on variability in two classes of maternally inherited chloroplast DNA sequences with different rates of molecular evolution. Eleven sequence haplotypes of a noncoding region between the genes trnT and trnF and 21 distinct 10-locus microsatellite haplotypes could be identified in a total of 160 individuals, collected in 10 widespread populations of C. brasiliense. An amova indicated that most of the variation can be attributed to differences among populations, both for DNA sequence (87.51%) and microsatellites (84.38%). Phylogeography based on a median-joining network analysis of the noncoding region showed a sharp difference from the analysis of microsatellite haplotypes. Nevertheless, both analyses indicated that multiple lineages may have contributed to the origin of C. brasiliense populations in Brazilian Cerrado. Incongruences in the microsatellite haplotypes network suggest that homoplasy, which emerged from recurrent and independent mutations, greatly influenced the evolution of the C. brasiliense chloroplast genome. We hypothesize that our results may show the outcome of the restriction of ancient relic populations to moist refugias during extended droughts coinciding with glaciation in the northern hemisphere. The subsequent spread to favourable areas throughout Central Brazil may have caused contact between different lineages during the interglacial periods. The extinction of megafauna dispersers in the last glaciation may have caused a restriction in seed movement and currently, gene flow has been occurring mainly by pollen movement.  相似文献   

20.
The PCR-RFLP technique was used to detect chloroplast DNA diversity in wild populations of Prunus avium from five European deciduous forests and some cultivars. A study of 10.8% of the total chloroplast genome detected eight insertion-deletion (indel) mutations, distributed over 12 haplotypes. Six haplotypes (H1, H2, H3, H4, H5 and H6) were found in wild populations and eight (H2, H6, H7, H8, H9, H10, H11 and H12) in the cultivars. Only two haplotypes (H2 and H6) are shared by the wild populations and the cultivars. The most-abundant and frequent haplotype in wild populations is H2 (frequency=78%). The wider geographical distribution along with the high frequency reflects its ancient origin. Of the five populations, three are polymorphic. Populations GA (Scotland) and KE (Germany) have unique haplotypes. The total cpDNA diversity in wild populations is hT=0.40, and a major portion of it is within populations (hS=0.37). The genetic differentiation among populations was low (GSTC=0.08) and no genetic structure among wild populations was observed. A minimum-length spanning tree, demonstrating relationships among the haplotypes in wild populations, indicated two possible chloroplast lineages. The ten identified cultivars were represented by seven haplotypes; this result proposes the possible utilisation of the PCR-RFLP technique for the characterisation of sweet cherry cultivars. The cpDNA diversity in P. avium should be considered carefully for phylogenetic studies involving this species. Received: 10 July 2000 / Accepted: 19 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号