首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intestinal cell growth and differentiation are tightly regulated by growth factors and extracellular matrix components along the crypt-villus axis. We previously described enterophilin-1 (Ent-1) as a new intestinal protein associated with growth arrest and enterocyte differentiation. Ent-1 interacted with sorting nexin 1 and decreased cell surface epidermal growth factor receptor. Because beta(1) integrins are mostly found in vivo in the proliferative crypt cells, we investigated the role of Ent-1 in the fate of beta(1) integrin subunits. In undifferentiated intestinal Caco-2 cells, overexpression of Ent-1 induces a marked decrease of alpha(5)beta(1) integrin pools, whereas alpha(2)beta(1) integrin is weakly affected. Conversely, overexpression of sorting nexin 1 has no effect on integrin levels despite its ability to interact with Ent-1. Interestingly, we identified focal adhesion kinase as a new Ent-1 partner using yeast two-hybrid screening and co-precipitation experiments. Furthermore by confocal microscopy, we observed that Ent-1 and beta(1) integrins partly co-localize on vesicular structures, suggesting a role for Ent-1 in integrin trafficking. Because focal adhesion kinase is able to bind both Ent-1 and beta(1) integrins, the kinase might act as a molecular bridge between the two proteins. Altogether, these results support a role of Ent-1 in regulating beta(1) integrin expression that could favor intestinal differentiation.  相似文献   

2.
Sorting nexin 1 (SNX1) and SNX2, homologues of the yeast vacuolar protein-sorting (Vps)5p, contain a phospholipid-binding motif termed the phox homology (PX) domain and a carboxyl terminal coiled-coil region. A role for SNX1 in trafficking of cell surface receptors from endosomes to lysosomes has been proposed; however, the function of SNX2 remains unknown. Toward understanding the function of SNX2, we first examined the distribution of endogenous protein in HeLa cells. We show that SNX2 resides primarily in early endosomes, whereas SNX1 is found partially in early endosomes and in tubulovesicular-like structures distributed throughout the cytoplasm. We also demonstrate that SNX1 interacts with the mammalian retromer complex through its amino terminal domain, whereas SNX2 does not. Moreover, activated endogenous epidermal growth factor receptor (EGFR) colocalizes markedly with SNX2-positive endosomes, but minimally with SNX1-containing vesicles. To assess SNX2 function, we examined the effect of a PX domain-mutated SNX2 that is defective in vesicle localization on EGFR trafficking. Mutant SNX2 markedly inhibited agonist-induced EGFR degradation, whereas internalization remained intact. In contrast, SNX1 PX domain mutants failed to effect EGFR degradation, whereas a SNX1 deletion mutant significantly inhibited receptor down-regulation. Interestingly, knockdown of SNX1 and SNX2 expression by RNA interference failed to alter agonist-induced EGFR down-regulation. Together, these findings suggest that both SNX1 and SNX2 are involved in regulating lysosomal sorting of internalized EGFR, but neither protein is essential for this process. These studies are the first to demonstrate a function for SNX2 in protein trafficking.  相似文献   

3.
The cellular mechanisms regulating intestinal differentiation are poorly understood. Sodium butyrate (NaBT), a short-chain fatty acid, increases p27 Kip1 expression and induces cell cycle arrest associated with intestinal cell differentiation. Here, we show that treatment of intestinal-derived cells with NaBT induced G0/G1 arrest and intestinal alkaline phosphatase, a marker of differentiation, activity and mRNA expression; this induction was attenuated by inhibition of glycogen synthase kinase-3 (GSK-3). Moreover, treatment with NaBT increased the nuclear, but not the cytosolic, expression and activity of GSK-3beta. NaBT decreased cyclin-dependent kinase CDK2 activity and induced p27 Kip1 expression; inhibition of GSK-3 rescued NaBT-inhibited CDK2 activity and blocked NaBT-induced p27 Kip1 expression in the nucleus but not in the cytoplasm. In addition, we demonstrate that NaBT decreased the expression of S-phase kinase-associated protein 2 (Skp2), and this decrease was attenuated by GSK-3 inhibition. Furthermore, NaBT increased p27 Kip1 binding to CDK2, which was completely abolished by GSK-3 inhibition. Overexpression of an active form of GSK-3beta reduced Skp2 expression, increased p27 Kip1 in the nucleus and increased p27 Kip1 binding to CDK2. Our results suggest that GSK-3 not only regulates nuclear p27 Kip1 expression through the downregulation of nuclear Skp2 expression but also functions to regulate p27 Kip1 assembly with CDK2, thereby playing a critical role in the G0/G1 arrest associated with intestinal cell differentiation.  相似文献   

4.
BACKGROUND INFORMATION: Loss of sensitivity to TGF-beta1 (transforming growth factor beta1)-induced growth arrest is an important step towards malignant transformation in human epithelial cells, and Id-1 (inhibitor of differentiation or DNA binding-1) has been associated with cell proliferation and cell-cycle progression. Here, we investigated the role of Id-1 in cellular sensitivity to TGF-beta1. RESULTS: Using an immortalized prostate epithelial cell line, NPTX cells, we suppressed Id-1 expression through antisense strategy. We found that inhibition of Id-1 expression suppressed cell proliferation and at the same time induced cellular senescence and G2/M cell-cycle arrest. In addition, inactivation of Id-1 made cells more vulnerable to TGF-beta1-induced growth arrest. The sensitization effect on TGF-beta1 was associated with up-regulation of two downstream effectors of the TGF-beta1 pathway, p21WAF1/Cip1 and p27KIP1. CONCLUSION: Our results indicate that endogenous Id-1 levels might be a crucial factor in the development of resistance to TGF-beta1-induced growth suppression in human prostate epithelial cells.  相似文献   

5.
Transforming growth factor beta1 (TGF beta 1) plays important roles in the regulation of cell growth and differentiation in both normal and malignant prostate epithelial cells. Although certain pathways have been suggested, the mechanisms responsible for the action of TGF beta 1 are not well understood. In the present study, using a human papilloma virus 16 E6/E7 immortalized prostate epithelial cell line, HPr-1, we report that TGF beta 1 was able to suppress the expression of Id-1, a helix-loop-helix (HLH) protein, which plays important roles in the inhibition of cell differentiation and growth arrest. In addition, a decrease at both Id-1 mRNA and protein expression levels was associated with TGF beta 1-induced growth arrest and differentiation, indicating that Id-1 may be involved in TGF beta 1 signaling pathway. The fact that up-regulation of p21(WAF1), one of the downstream effectors of Id-1, was observed after exposure to TGF beta 1 further indicates the involvement of Id-1 in the TGF beta 1-induced growth arrest in HPr-1 cells. However, increased expression of p27(KIP1) was also observed in the TGF beta 1-treated cells, suggesting that in addition to down-regulation of Id-1, other factors may be involved in the TGF beta 1-induced cell growth arrest and differentiation in prostate epithelial cells. Our results provide evidence for the first time that TGF beta 1 may be one of the upstream regulators of Id-1.  相似文献   

6.
Neuroendocrine‐associated phosphatase (NEAP), an atypical dual specificity phosphatase is preferentially expressed in neuroendocrine cells. In this study we found that NEAP, but not NEAP‐(C152S) mutant, evidently reduced epidermal growth factor (EGF) receptor (EGFR) downstream signaling, and impaired cell growth in response to EGF stimulation in PC12 cells. These phenomena were associated with NEAP‐mediated down‐regulation of EGFR mRNA and protein. NEAP had no significant effect on ErbB2/3 expression and phosphorylation levels in response to heregulin, indicating that the negative effect of NEAP on EGFR was selective. We showed that NEAP suppressed EGFR expression via decreasing the EGFR promoter activity and this was mediated through down‐regulations of the Akt pathway and Wilms’ tumor gene product (WT1). Consistent with these results, expression of WT1 reversed the suppressive effect of NEAP on EGFR promoter activity. Additionally, NEAP knockdown by RNA interference enhanced EGFR protein expression and nerve growth factor‐induced differentiation, and an EGFR‐specific inhibitor could reverse the later event. Taken together, our study indicated that NEAP modulates PC12 differentiation via suppression of EGFR expression and signaling.  相似文献   

7.
Alpha-tocopheryl succinate (alpha-TOS), a redox-inactive analog of vitamin E, induces cell cycle arrest, differentiation, and triggers apoptosis. We examined the ability of alpha-TOS to induce cytostasis and/or apoptosis in two human osteosarcoma cell lines, which carry wild-type pRb but differ in the p53 status. In the wt-p53 cells, alpha-TOS induced apoptosis, which was associated with p53 activation and enhanced E2F1 expression. Mutant p53 cells failed to undergo apoptosis when challenged with alpha-TOS. The cell growth arrest after alpha-TOS treatment was associated with a reduced expression of E2F1. Knocking down E2F1 rendered the alpha-TOS-sensitive cells rather resistant to the apoptotic stimulus inducing a marked and prolonged cell growth arrest. We conclude that alpha-TOS induces cell growth arrest or apoptosis involving E2F1.  相似文献   

8.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a mammalian homologue of yeast vacuolar protein sorting (Vps) protein Vps27p; however, the role of Hrs in lysosomal trafficking is unclear. Here, we report that Hrs interacts with sorting nexin 1 (SNX1), a recently identified mammalian homologue of yeast Vps5p that recognizes the lysosomal targeting code of epidermal growth factor receptor (EGFR) and participates in lysosomal trafficking of the receptor. Biochemical analyses demonstrate that Hrs and SNX1 are ubiquitous proteins that exist in both cytosolic and membrane-associated pools, and that the association of Hrs and SNX occurs on cellular membranes but not in the cytosol. Furthermore, endogenous SNX1 and Hrs form a approximately 550-kDa complex that excludes EGFR. Immunofluorescence and subcellular fractionation studies show that Hrs and SNX1 colocalize on early endosomes. By using deletion analysis, we have mapped the binding domains of Hrs and SNX1 that mediate their association. Overexpression of Hrs or its SNX1-binding domain inhibits ligand-induced degradation of EGFR, but does not affect either constitutive or ligand-induced receptor-mediated endocytosis. These results suggest that Hrs may regulate lysosomal trafficking through its interaction with SNX1.  相似文献   

9.
Sorting nexin 1 (SNX1) and SNX2 are the mammalian homologues of the yeast Vps5p retromer component that functions in endosome-to-Golgi trafficking. SNX1 is also implicated in endosome-to-lysosome sorting of cell surface receptors, although its requirement in this process remains to be determined. To assess SNX1 function in endocytic sorting of protease-activated receptor-1 (PAR1), we used siRNA to deplete HeLa cells of endogenous SNX1 protein. PAR1, a G-protein-coupled receptor, is proteolytically activated by thrombin, internalized, sorted predominantly to lysosomes, and efficiently degraded. Strikingly, depletion of endogenous SNX1 by siRNA markedly inhibited agonist-induced PAR1 degradation, whereas expression of a SNX1 siRNA-resistant mutant protein restored agonist-promoted PAR1 degradation in cells lacking endogenous SNX1, indicating that SNX1 is necessary for lysosomal degradation of PAR1. SNX1 is known to interact with components of the mammalian retromer complex and Hrs, an early endosomal membrane-associated protein. However, activated PAR1 degradation was not affected in cells depleted of retromer Vps26/Vps35 subunits, Hrs or Tsg101, an Hrs-interacting protein. We further show that SNX2, which dimerizes with SNX1, is not essential for lysosomal sorting of PAR1, but rather can regulate PAR1 degradation by disrupting endosomal localization of endogenous SNX1 when ectopically expressed. Together, our findings establish an essential role for endogenous SNX1 in sorting activated PAR1 to a distinct lysosomal degradative pathway that is independent of retromer, Hrs, and Tsg101.  相似文献   

10.
11.
During endochondral bone development, both the chondrogenic differentiation of mesenchyme and the hypertrophic differentiation of chondrocytes coincide with the proliferative arrest of the differentiating cells. However, the mechanisms by which differentiation is coordinated with cell cycle withdrawal, and the importance of this coordination for skeletal development, have not been defined. Through analysis of mice lacking the pRB-related p107 and p130 proteins, we found that p107 was required in prechondrogenic condensations for cell cycle withdrawal and for quantitatively normal alpha1(II) collagen expression. Remarkably, the p107-dependent proliferative arrest of mesenchymal cells was not needed for qualitative changes that are associated with chondrogenic differentiation, including production of Alcian blue-staining matrix and expression of the collagen IIB isoform. In chondrocytes, both p107 and p130 contributed to cell cycle exit, and p107 and p130 loss was accompanied by deregulated proliferation, reduced expression of Cbfa1, and reduced expression of Cbfa1-dependent genes that are associated with hypertrophic differentiation. Moreover, Cbfa1 was detected, and hypertrophic differentiation occurred, only in chondrocytes that had undergone or were undergoing a proliferative arrest. The results suggest that Cbfa1 links a p107- and p130-mediated cell cycle arrest to chondrocyte terminal differentiation.  相似文献   

12.
13.
Ceramide is a powerful regulator of cell fate, inducing either apoptosis or growth arrest. We have previously shown that an Ab to the gammadelta T cell-specific orphan receptor, WC1, is able to induce growth arrest in proliferating IL-2-dependent gammadelta T cells. We now show that this WC1-mediated growth arrest is associated with an increase in cellular ceramide, in the absence of any measurable changes in acidic/neutral sphingomyelinase activity. Moreover, cell-permeable analogues of ceramide also mimicked WC1-induced growth arrest along with an associated decrease in pocket protein expression and phosphorylation status. An important role for ceramide in WC1-induced growth arrest was confirmed by demonstrating that the specific ceramide synthase inhibitor fumonisin B1 blocked WC1-induced growth arrest and the associated molecular effects on the pocket proteins. Finally, we observed constitutive expression of both antiapoptotic factors bcl-2 and bcl-X, the former having increased expression upon WC1 stimulation. It is therefore proposed that ligation of WC1 leads to an accumulation in cellular ceramide through activation of ceramide synthase. This in turn results in a decreased overall expression of the pocket proteins pRb and p107, their hypophosphorylation, and an eventual growth arrest of the gammadelta T cell. To our knowledge, these results demonstrate for the first time that cell surface receptor-mediated ceramide synthase activation can affect cell fate through increases in cellular ceramide and provide further evidence that the orphan receptor WC1 regulates gammadelta T cell biology through a novel signaling pathway.  相似文献   

14.
15.
16.
Colorectal cancer is a leading cause of cancer-related morbidity and mortality in the United States. Curcumin, the yellow pigment in turmeric, possesses inhibitory effects on growth of a variety of tumor cells by reducing cell proliferation and inducing apoptosis. Effects of the peroxisome proliferator-activated receptor-gamma (PPARgamma) on stimulating cell differentiation and on inducing cell cycle arrest have attracted attention from the perspective of treatment and prevention of cancer. The aim of this study was to elucidate the mechanisms by which curcumin inhibits colon cancer cell growth. In the present report, we observed that curcumin, in a dose-dependent manner, inhibited the growth of Moser cells, a human colon cancer-derived cell line, and stimulated the trans-activating activity of PPARgamma. Further studies demonstrated that activation of PPARgamma was required for curcumin to inhibit Moser cell growth. Activation of PPARgamma mediated curcumin suppression of the expression of cyclin D1, a critical protein in the cell cycle, in Moser cells. In addition, curcumin blocked EGF signaling by inhibiting EGF receptor (EGFR) tyrosine phosphorylation and suppressing the gene expression of EGFR mediated by activation of PPARgamma. In addition to curcumin reduction of the level of phosphorylated PPARgamma, inhibition of cyclin D1 expression played a major and significant role in curcumin stimulation of PPARgamma activity in Moser cells. Taken together, our results demonstrated for the first time that curcumin activation of PPARgamma inhibited Moser cell growth and mediated the suppression of the gene expression of cyclin D1 and EGFR. These results provided a novel insight into the roles and mechanisms of curcumin in inhibition of colon cancer cell growth and potential therapeutic strategies for treatment of colon cancer.  相似文献   

17.
Despite the fact that tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and its receptors (TRAIL-Rs) are expressed in intestinal mucosa, little is known about the biological role of this system in intestinal cell physiology. The expression of surface TRAIL and TRAIL-R1, -R2, -R3, -R4 were examined by flow cytometry in the immortalized human cell line tsFHI under culture conditions promoting growth or growth arrest and expression of differentiated traits. A progressive increase of surface TRAIL expression paralleled tsFHI differentiation, consistently with immunohistochemistry analysis showing an increase of TRAIL immunostaining along the crypt-villus axis in normal jejuneal mucosa. In spite of the presence of TRAIL-R1 and TRAIL-R2 "death receptors," recombinant TRAIL was not cytotoxic for tsFHI cells. Exposure of tsFHI to recombinant TRAIL rather increased/anticipated the expression levels of the cyclin-dependent kinase inhibitors p21 and p27, which mediate the induction of growth arrest and the stabilization of differentiated traits, respectively, as well as of the canonical differentiation marker DPPIV. The differentiation inducing activity of TRAIL was abolished by pre-incubation with a Fc-TRAIL-R2 chimera. On the other hand, TRAIL did not significantly modulate the levels of osteoprotegerin (OPG), CXCL8/IL-8, CXCL9/MIG, and CXCL10/IP10 spontaneously released or induced by inflammatory cytokines. Taken together, these data suggest that TRAIL might act as a paracrine trophic cytokine on intestinal epithelium, promoting intestinal cell differentiation.  相似文献   

18.
The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these growth factor receptors.  相似文献   

19.
Angiogenesis, the formation of new blood vessels, is involved in a variety of diseases including the tumor growth. In response to various angiogenic stimulations, a number of proteins on the surface of vascular endothelial cells are activated to coordinate cell proliferation, migration, and spreading processes to form new blood vessels. Plasma membrane localization of these angiogenic proteins, which include vascular endothelial growth factor receptors and integrins, are warranted by intracellular membrane trafficking. Here, by using a siRNA library, we screened for the sorting nexin family that regulates intracellular trafficking and identified sorting nexin 9 (SNX9) as a novel angiogenic factor in human umbilical vein endothelial cells (HUVECs). SNX9 was essential for cell spreading on the Matrigel, and tube formation that mimics in vivo angiogenesis in HUVECs. SNX9 depletion significantly delayed the recycling of integrin β1, an essential adhesion molecule for angiogenesis, and reduced the surface levels of integrin β1 in HUVECs. Clinically, we showed that SNX9 protein was highly expressed in tumor endothelial cells of human colorectal cancer tissues. High-level expression of SNX9 messenger RNA significantly correlated with poor prognosis of the patients with colorectal cancer. These results suggest that SNX9 is an angiogenic factor and provide a novel target for the development of new antiangiogenic drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号