首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A comparative study of nucleolar organization in the somatic nuclei of the ciliate Didinium nasutum was carried out using 3D reconstruction on the basis of serial ultrathin sections. Recently fed interphase ciliates, starved interphase ciliates and cysts were studied. The nucleoli at the interphase stage were shown to have a complex architecture: the fibrillar component forms a complicated network, the granular component is located inside of it. It was shown that nucleoli, which look like individual structures in single sections, are in fact parts of branched nucleolar networks. A 30-h starvation doesn't lead to disintegration of these networks. However in the starved cells the granular component becomes more dense and vacuolized. In the fed ciliates there are many holes in the fibrillar component, whereas in starved ones the fibrillar component is virtually devoid of them. These holes can be proposed to ensure the transport of newly synthesized rRNP. The nucleolar networks didn't occur in D. nasutum cysts. Nucleoli in the cysts look like small individual structures, mainly consisting of fibrogranular component.  相似文献   

2.
The nucleolar organization in ciliate Didinium nasutum somatic interphase nuclei was studied using serial ultrathin sections and compared for various physiological states of the cell, namely, fed ciliates, starved ciliates, and dormant cysts. It has been shown that the interphase nucleoli are large structures with a complex architecture: the fibrillar component forms an intricate network in the macronucleus space, while the granular component is located inside this network. The structures looking as individual nucleoli in single sections are actually parts of branched nucleolar networks. The intricate nucleolar networks do not disintegrate after a 30-h starvation; however, the granular component becomes denser and develops numerous cavities filled with fine fibrils of a nonribonucleoprotein nature. In fed D. nasutum, the fibrillar structures on the periphery of nucleoli contain numerous pores (virtually absent in starved cell nucleoli), which can potentially serve for transporting newly synthesized rRNP. Branched nucleolar networks are undetectable in cysts. Their nucleoli are individual structures consisting mainly of the fibrogranular component.  相似文献   

3.
We showed earlier that nucleoli in interphase ciliates Didinium nasutum, appearing on single ultrathin sections as individual structures, actually are parts of more complex network-like structures in which fibrillar component is located on periphery, and granular--in the central part of a nucleolus. It is known, that nucleolar organizers in D. nasutum are represented by chromatin bodies connected with nucleoli. In this work we used 3D reconstruction on the basis of serial ultrathin sections to study localization of chromatin bodies which by morphological criteria might correspond to nucleolar organizers. Our data showed, that all such chromatin bodies settled down outside of nucleoli, near the periphery of fibrillar component. Even those chromatin bodies which on single sections looked completely surrounded by fibrillar nucleolar component, actually settled down in fibrillar component cavities open to nucleoplasm. Analysis of distribution of nucleolar chromatin bodies allowed us to conclude that activity in different parts of interphase complex network-like nucleoli of D. nasutum is approximately the same.  相似文献   

4.
According to our computer modeling data obtained earlier, nucleoli in interphase ciliates Didinium nasutum are complex netlike structures, in which the trabeculumor lamella-shaped fibrillar component is located on the periphery, and the granular component in the central part of the nucleolus. Chromatin bodies connected with nucleoli act as the nucleolar organizers in D. nasutum. In the present work, the arrangement of all chromatin bodies, which could correspond to nucleolar organizers by morphological criteria, is studied by means of a 3D-reconstruction. It is shown that all of these chromatin bodies are localized outside the nucleoli, on the fibrillar component’s periphery. Even those chromatin bodies which appeared to be completely surrounded by the fibrillar nucleolar component on single ultrathin sections are actually settled down in nucleolus cavities open to the nucleoplasm. This proves that the RNA processing in D. nasutum nucleoli is directed toward the center of nucleoli, where the granular component is located. The analysis of the nucleolar chromatin distribution made it possible to conclude that different parts of the complex interfase netlike nucleoli of D. nasutum have approximately the same activity.  相似文献   

5.
Bright nucleolar immunofluorescence was observed in HeLa S3 cells by immunostaining with a monoclonal antibody to the nucleolar phosphoprotein B23 (MW 37 kD/pI 5.1). After 48 h of incubation in a serum-free medium, the nucleolar fluorescence was diminished and a general nuclear immunofluorescence was observed. This change in localization of fluorescence indicated that protein B23 had migrated out of the nucleoli. No gross morphological change in nucleoli was observed by light microscopy and the immunolocalization of another nucleolar phosphoprotein, C23, was unaffected by serum deprivation. Relocation of protein B23 in nucleoli was observed after refeeding with serum-containing medium. This re-entry process was not observed after treatment with actinomycin D (50 ng/ml-5 micrograms/ml), but the process was unaffected by cycloheximide (0.2 mM). Quantitation of protein B23 in the nucleoli of the control (fed) or starved HeLa cells was done by ELISA immunoassay. A marked decrease in the amount of protein B23 occurred in the nucleoli of the starved cells (11.8 micrograms B23/mgDNA) as compared with the control nucleoli (20.8 micrograms B23/mgDNA). The amount of protein B23 in the nucleoplasm (excluding nucleoli) was 70% higher in the starved cells. Protein B23 was analysed by one- and two-dimensional PAGE. Three components of protein B23 with slightly different molecular weights and pIs (37 kD/5.1, 35 kD/5.1 and 35 kD/5.3) were observed in nucleoli. The lower molecular weight components were predominantly found in the nucleoplasm.  相似文献   

6.
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.  相似文献   

7.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

8.
9.
Nucleoli, the sites of rRNA synthesis, rRNA processing, and the assembly of ribosomes, are dynamic organelles that, in most cells, disperse and reform during mitosis. The mechanisms that regulate nucleolar formation are unknown as is the relationship between nucleolar morphology and the pathway of ribosome biogenesis. In this report we describe the in vitro formation of nucleolus-like particles (NLPs) from soluble extracts of nucleoli. NLPs, which reached sizes comparable to nucleoli (1-3 microns), were found to contain 40% of the nucleolar DNA, RNA, and protein. The ultrastructure of NLPs resembled that of a number of in vivo structures including compact nucleoli, prenucleolar bodies, and pseudonucleoli. The particles were composed of two morphologically distinct regions. The core resembled the dense fibrillar component (DFC) of nucleoli while the cortex resembled the granular component (GC) of nucleoli. The cortex of NLPs contained numerous 15-20 nm osmophilic granules that resembled the preribosomes found in the GC of nucleoli. The distribution of nucleolar proteins in NLPs also resembled that in nucleoli. BN46/51, a component of the GC of nucleoli, was restricted to the GC-like cortex of NLPs. A mAb that bound to the DFC of nucleoli, bound only to the DFC-like core of NLPs while a second mAb that bound to both the DFC and GC of nucleoli, bound to both the core and cortex of NLPs. Thus solubilized components of nucleoli can reassociate in vitro to produce particles that resemble nucleoli in their size, ultrastructure, and protein distribution.  相似文献   

10.
11.
The nucleoli of dictyate-stage growing oocytes in rat ovaries were examined both with routine electron microscopy and electron microscopy after silver nitrate and ammoniacal silver nitrate (Ag-AS) staining. The nucleoli of the unilaminar follicular oocytes consist of twisted strands of dense fibrillar components, aggregates of granular components, and small fibrillar centers. After Ag-AS staining, silver grains are numerous on the dense fibrillar strands, fewer on the fibrillar centers, and very sporadic on the granular aggregates. The same stainability of three nucleolar components with the Ag-AS method was also confirmed in the nucleoli segregated by actinomycin D. During the transition of growing oocytes from bilaminar to plurilaminar follicle stage, the nucleolar dense fibrillar strands gradually conglomerate and are transformed into large and compact spherules. The stainability of dense fibrillar components with the Ag-AS method was lost along with this nucleolar transformation. These results may provide some new clues on the functional significance of Ag-AS-positive proteins in the nucleoli.  相似文献   

12.
We have studied the relationship between the structural organization of intranucleolar chromatin and fibrillar nucleolar structures, fibrillar centers, and RNP fibrillar component, which are the interphase counterpart of metaphase nucleolar organizer regions (NORs), in regenerating rat hepatocytes and in a human tumor cell line (TG cells). These two cell types were characterized by a nucleolonema-like and compact nucleolar RNP distribution, respectively. We found that, in sections selectively stained for DNA, the intranucleolar chromatin composed of extended, nonnucleosomal DNA filaments formed roundish agglomerates with a spatial distribution which was superimposable on that of the fibrillar centers and the RNP fibrillar component around them and on sites of the silver reaction in samples selectively stained for Ag-NOR proteins. The agglomerates of extended nonnucleosomal DNA filaments were small and numerous in regenerating hepatocyte nucleoli, in which the RNP components had a nucleolonema-like distribution, whereas they were large and few in TG cell nucleoli, in which the RNP components showed a compact organization. Since the pattern of ribosomal RNA synthesis and processing was similar in the two cell types, a model was proposed in which the difference in size and shape of the agglomerates of extended DNA might be responsible for the different structural organization of the RNP components.  相似文献   

13.
14.
Changes in the structure of the nucleolus during the cell cycle of the Chinese hamster cell in vitro were studied. Quantitative electron microscopic techniques were used to establish the size and volume changes in nucleolar structures. In mitosis, nucleolar remnants, "persistent nucleoli," consisting predominantly of ribosome-like granular material, and a granular coating on the chromosomes were observed. Persistent nucleoli were also observed in some daughter nuclei as they were leaving telophase and entering G1. During very early G1, a dense, fibrous material characteristic of interphase nucleoli was noted in the nucleoplasm of the cells. As the cells progressed through G1, a granular component appeared which was intimately associated with the fibrous material. By the middle of G1, complete, mature nucleoli were present. The nucleolar volume enlarged by a factor of two from the beginning of G1 to the middle of S primarily due to the accumulation of the granular component. During the G2 period, there was a dissolution or breakdown of the nucleolus prior to the entry of the cells into mitosis. Correlations between the quantitative aspects of this study and biochemical and cytochemical data available in the literature suggest the following: nucleolar reformation following division results from the activation of the nucleolar organizer regions which transcribe for RNA first appearing in association with protein as a fibrous component (45S RNA) and then later as a granular component (28S and 32S RNA).  相似文献   

15.
The three-dimensional structure of the nucleolar argyrophilic components was studied by recording stereo-pairs of tilted thick sections--0.5-2 microns thick--observed with 200 and 300 kV high-voltage electron microscopy (HVEM). Using a very specific silver staining method, the argyrophilic components were stained with a high contrast relatively to the unstained background, thus allowing their study with a high resolution within thick sections. This study was performed on compact nucleoli (of HL60 and K562 cells), on reticulated nucleoli (of human breast cancerous cells) and on metaphasic nucleolar organizer regions (NORs). In compact nucleoli argyrophilic components show a 'knotted rope-like' structure in which knots are constituted of one central fibrillar centre surrounded at some distance by loops of the dense fibrillar component and in which the rope is constituted of dense fibrillar component. In reticulated nucleoli silver deposits are confined to the surface of the nucleolonema as several strands twisted at the periphery of the fibrillar component. During metaphase some NORs get a characteristic crescent-shaped structure disposed at the periphery of some chromosomes.  相似文献   

16.
17.
Two of the 36 chromosomes in Xenopus laevis are known to carry nucleolar organizer loci. Partitioning of the chromosomes of cultured, early-passage Xenopus cells among variable numbers of micronuclei could be induced by extended colcemid treatment. A large, obvious nucleolus occurred in a maximum of 4 micronuclei per colcemid-induced tetraploid cell. The large, deeply-stained nucleoli incorporated [3H]uridine and appeared by electron microscopy to have typical nucleolar morphology with fibrillar and granular areas disposed in nucleolonema. In situ hybridization to radioactive ribosomal RNA (rRNA) resulted in heavy labelling of nucleoli in no more than 4 micronuclei per cell. The other micronuclei generally contained small bodies (blobs) which stained for RNA and protein as well as with ammoniacal silver. In the electron microscope, these appeared as round, dense bodies resembling nucleoli segregated by actinomycin D treatment. Nucleoplasmic RNA synthesis occurred in all micronuclei regardless of whether they contained definitive nucleoli. These observations suggest that micronuclei which formed large, typical, RNA-synthesizing nucleoli contained nucleolar organizer chromosomes, while the other micronuclei, which contained nucleolus-like “blobs” probably lacked nucleolar organizer loci. It is possible that the nucleolus-like bodies may have been aggregates of previously synthesized nucleolar RNA and protein trapped in micronuclei after mitosis.  相似文献   

18.
Dynamics of structural changes of nucleoli, complex nucleolar aggregates and chromatin bodies in macronuclei (Ma) of ciliates Paramecium candatum and Bursaria truncatella under hypotonic conditions was studied. It was shown that after a 3 min hypotonic treatment nuclei swelled and became highly vacuolated. 3D-reconstruction showed that such nucleoli were formed by nucleolonema-like threads about 100-200 nm in thickness. Intranucleolar chromatin bodies decompacted, but remained bound with fibrillar component of the nucleolus by thin fibres about 10 nm thick. After 6 min hypotonic treatment the nucleolar material loosened and had a "gauze", or network-like appearence. After 10 min hypotonic treatment nucleoli dissociated completely. It was shown that a transition of chromatin bodies from completely compact to partially and fully decompacted state occurred cooperatively in different regions of Ma. In particular, chromatin bodies in the central part of complex nucleolar aggregates decompacted much faster than those in the Ma karyoplasm. It evidences for a specific, well-ordered chromatin organization in Ma. Prolonged hypotonic treatment led to a complete dissociation of Ma components; fibres 6-10 nm thick were solely observed in such preparations. Such fibres may represent remnant structures of the nuclear matrix. Dynamics of Ma chromatin bodies decompaction correlates well with that of chromomeres in the nuclei of higher eukaryotes. Our data confirm that chromatin 100-200 nm bodies in the ciliate Ma are analogues of chromomeres--looped discrete chromatin domains, observed in the nuclei of higher eukaryotes.  相似文献   

19.
Summary The evolution of nuclear and nucleolar sizes throughout interphase have been studied in synchronous caffeine-labeled binucleate cells of onion root meristems by using silver impregnation and stereological methods over semithin sections. Nucleus and nucleolus grow independently, since nucleolus enlarges at its fastest rate in G 1, while nucleus grows mostly in two periods: onset of replication and G 2. Nucleolar size in the cycle seems to be a genecontrolled function, hardly affected by protein synthesis inhibition. Hence, there is a biphasic response to cycloheximide (CHM) in the fast growing nucleoli of both early and late G 1 with an initial stimulation later counterbalanced by a depressed rate, so that nucleolar size in S was similar to control shortly afterwards the start of the CHM treatment. The initial enlargement under CHM was due to an increase of all nucleolar structural components, i.e., fibrillar, granular, vacuolar, and lacunar regions. No cycloheximide effect whatsoever was detected in S and G 2 nucleoli.Abbreviations CHM cycloheximide - F fibrillar component - G granular component - L lacunae - V vacuoles - VN nuclear volume - VNu nucleolar volume - VvNu volume density of the nucleoli  相似文献   

20.
Previously it has been found that in tobacco callus cells nucleolar vacuoles repeatedly form and contract. In this study, nucleolar vacuoles were investigated by using radioautography, actinomycin D, and electron microscopy. It was found, from grain counts of nucleoli labeled with uridine-3H, that nucleoli containing vacuoles had more than three times as many grains/µ2 of nucleolar substance as did nucleolei without vacuoles. Treatment of tobacco callus cells with various concentrations of actinomycin D caused the percentage of cells containing nucleolar vacuoles to decrease; with the highest concentration the percentage of these cells dropped from the normal level of about 70% to less than 10%. However, after removal of actinomycin D the cells regained nucleolar vacuoles up to the control level. When radioautography was used with actinomycin D, it was found that the actinomycin D inhibited the uptake of uridine-3H, i.e. inhibited RNA synthesis, in those nucleoli which lost their nucleolar vacuoles. In addition, after removal of the cells from actinomycin D, it was found that as the cells regained nucleolar vacuoles the nucleoli also began to incorporate uridine-3H. Electron micrographs showed the nucleoli to be composed of a compact, finely fibrous central portion surrounded by a layer of dense particles 100–150 A in diameter. Nucleolar vacuoles occurred in the fibrous central portion. Dense particles similar to those in the outer layer of the nucleoli were found scattered throughout the vacuoles and in a dense layer at their outer edge. These data suggest that in cultured tobacco callus cells the formation and contraction of nucleolar vacuoles is closely related to RNA synthesis in the nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号