首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J C Pena  A Kelekar  E V Fuchs    C B Thompson 《The EMBO journal》1999,18(13):3596-3603
Transgenic mice that overexpress the anti-apoptotic gene bcl-xL under the control of the keratin 14 promoter have significantly shorter hair than non-transgenic littermates. The deficit in hair length correlated with a decrease in the duration of anagen, the growth phase of the hair cycle. A prolongation in telogen, the resting phase of the hair cycle, was also observed in adult animals. In the developing hair bulb, bcl-xL transgene expression was observed exclusively in the outer root sheath (ORS) cells. Bcl-xL expression enhanced the survival of ORS cells treated with apoptotic stimuli. The results suggest that preventing the apoptotic death of ORS cells during anagen leads to a more rapid termination of progenitor cell commitment/proliferation, while the increased survival of ORS cells during telogen delays the initiation of a new hair cycle. ORS cells produce fibroblast growth factor-5 (FGF-5), which acts in a paracrine fashion to terminate precursor cell division during anagen. The short hair phenotype of bcl-xL transgenic mice was substantially reversed in FGF-5-deficient mice. Thus, the production of growth inhibitory factors by ORS cells may provide a mechanism through which the hair-growth cycle is regulated by cell survival.  相似文献   

2.
Localization of TIMP in cycling mouse hair   总被引:7,自引:0,他引:7  
TIMP (tissue inhibitor of metalloproteinase) is a glycoprotein inhibitor of metalloproteinases that we hypothesize to be involved in the tissue remodeling that occurs during each hair growth cycle. We examined this hypothesis by studying the expression of TIMP at selected times during a single hair cycle using TIMP-lacZ transgenic mice to localize TIMP gene activity in the hair follicle. TIMP gene induction was visualized by staining mouse back skin for beta-galactosidase (beta-gal) activity. Paraffin sections were analyzed for the localization of TIMP expression. TIMP gene activation appears in hair follicles only during the mid-anagen (the growing stage of the hair cycle) primarily in Henle's layer of the inner root sheath. Some expression of TIMP is also seen in a few connective tissue cells, in the sebaceous gland and in cells at the proximity of the dermal papilla cells in catagen (regressing) and telogen (resting) follicles. These results are consistent with a role for TIMP in cyclic remodeling of connective tissue in hair follicles.  相似文献   

3.
目的:探讨毛囊周期中,Wnt3a在毛囊及黑素细胞中的表达变化。方法:以DCT-LacZ转基因小鼠为动物模型,通过X-gal染色技术观察黑素细胞谱系在小鼠皮肤中的分布情况;采用X-gal染色结合免疫组化方法检测Wnt3a在毛囊及黑素细胞谱系中的表达情况;采用RT-PCR方法对小鼠皮肤全层Wnt3a和TYR的mRNA表达进行半定量分析。结果:在生长期毛囊中,Wnt3a蛋白在表皮、毛囊外根鞘Bulge区、内根鞘以及毛球部均有表达,在黑素干细胞与黑素细胞也观察到Wnt3a;在退化期,Wnt3a的表达逐渐减弱,仅在外根鞘有较弱的表达,但黑素干细胞中没有观察到Wnt3a;在静止期,几乎检测不到Wnt3a的表达;TYR mRNA与Wnt3a mRNA在毛囊周期中的表达模式一致,在生长期最强,退化期减弱,静止期最弱。结论:Wnt3a可能对黑素细胞谱系分化起到促进作用。  相似文献   

4.
毛囊生长周期中,真皮乳头和毛基质间的基质 上皮信号调控细胞的增殖和分化。多功能细胞调控因子胰岛素样生长因子1(IGF1)是该信号路径的成员之一。第1个毛囊生长周期决定着毛囊的正常生长和发育,但IGF1在此期的作用未见报道。实时荧光定量PCR结果显示,IGF1在生长期皮肤中的相对表达量最低,在退化期表达量最高,在静止期表达量又降低。与生长初期相比,IGF1在退化期和静止期的表达量呈差异极显著(P<0.01);胰岛素样生长因子1受体(IGF1R)在生长期皮肤中的相对表达量最高,在退化期表达量最低,而在静止期表达量又升高。与生长初期相比,IGF1R在退化期和静止期的表达量呈差异极显著(P<0.01)。Western 印迹结果显示,IGF1和IGF1R蛋白在小鼠皮肤第1个毛囊生长周期各阶段的表达趋势分别与其mRNA的表达趋势一致;免疫组织化学结果表明,IGF1主要分布在小鼠表皮,而IGF1R免疫阳性在小鼠毛囊毛球部、内外根鞘和毛乳头均有分布。以上实验结果揭示,IGF1和IGF1R在小鼠皮肤第1个毛囊生长周期的各阶段的差异性表达,可能在毛囊生长周期各阶段的转化过程中参与了黑色素的形成。然而,IGF1和IGF1R表达趋势不一致,提示IGF1在小鼠皮肤中发挥作用时,并非只与IGF1R结合才能发挥作用。  相似文献   

5.
The lowermost portion of the resting (telogen) follicle consists of the bulge and secondary hair germ. We previously showed that the progeny of stem cells in the bulge form the lower follicle and hair, but the relationship of the bulge cells with the secondary hair germ cells, which are also involved in the generation of the new hair at the onset of the hair growth cycle (anagen), remains unclear. Here we address whether secondary hair germ cells are derived directly from epithelial stem cells in the adjacent bulge or whether they arise from cells within the lower follicle that survive the degenerative phase of the hair cycle (catagen). We use 5-bromo-2'-deoxyuridine to label bulge cells at anagen onset, and demonstrate that the lowermost portion of the bulge collapses around the hair and forms the secondary hair germ during late catagen. During the first six days of anagen onset bulge cells proliferate and self-renew. Bulge cell proliferation at this time also generates cells that form the future secondary germ. As bulge cells form the secondary germ cells at the end of catagen, they lose expression of a biochemical marker, S100A6. Remarkably, however, following injury of bulge cells by hair depilation, progenitor cells in the secondary hair germ repopulate the bulge and re-express bulge cell markers. These findings support the notion that keratinocytes can "dedifferentiate" to a stem cell state in response to wounding, perhaps related to signals from the stem cell niche. Finally, we also present evidence that quiescent bulge cells undergo apoptosis during follicle remodeling in catagen, indicating that a subpopulation of bulge cells is not permanent.  相似文献   

6.
Hair follicle histophysiology importance isn't limited by hair role in psychosocial consequences. More scientists consider the hair follicle as an attractive system for studying major biological phenomena because the hair follicle is a regenerating system. In this review we revisit the current information about histophysiology and control of hair follicle cycling. All mature follicles undergo a growth cycle consisting of following phases: growth (anagen), regression (catagen) and rest (telogen). We attempt to integrate the morphology with the physiology and molecular biology. Hair follicles are influenced by environmental, systemic and local factors. The most interesting point of this problem is discussed--an integral regulation of hair follicle cycle by systemic, intertissue and intercellular interactions.  相似文献   

7.
The hair growth cycle consists of three stages known as the anagen (growing), catagen (involution), and telogen (resting) phases. This cyclical growth of hair is regulated by a diversity of growth factors. Although normal expression of both epidermal growth factor and its receptor (EGFR) in the outer root sheath is down-regulated with the completion of follicular growth, here we show that continuous expression of epidermal growth factor in hair follicles of transgenic mice arrested follicular development at the final stage of morphogenesis. Data from immunoprecipitation and immunoblotting showed that epidermal growth factor signals through EGFR/ErbB2 heterodimers in skin. Furthermore, topical application of tyrphostin AG1478 or AG825, specific inhibitors of EGFR and ErbB2, respectively, completely inhibited new hair growth in wild type mice but not in transgenic mice. When the transgenic mice were crossed with waved-2 mice, which possess a lower kinase activity of EGFR, the hair phenotype was rescued in the offspring. Taken together, these data suggest that EGFR signaling is indispensable for the initiation of hair growth. On the other hand, continuous expression of epidermal growth factor prevents entry into the catagen phase. We propose that epidermal growth factor functions as a biologic switch that is turned on and off in hair follicles at the beginning and end of the anagen phase of the hair cycle, guarding the entry to and exit from the anagen phase.  相似文献   

8.
Recent studies using transgenic animals have revealed a crucial role for polyamines in the development and the growth of skin and hair follicles. In mammals, the growth of hair is characterized by three main cyclic phases of transformation, including a rapid growth phase (anagen), an apoptosis-driven regression phase (catagen) and a relatively quiescent resting phase (telogen). The polyamine pool during the anagen phase is higher than in telogen and catagen phases. In this study, we used α-methylspermidine, a metabolically stable polyamine analog, to artificially elevate the polyamine pool during telogen. This manipulation was sufficient to induce hair growth in telogen phase mice after 2 weeks of daily topical application. The application site was characterized by typical features of anagen, such as pigmentation, growing hair follicles, proliferation of follicular keratinocytes and upregulation of β-catenin. The analog penetrated the protective epidermal layer of the skin and could be detected in dermis. The natural polyamines were partially replaced by the analog in the application site. However, the combined pool of natural spermidine and α-methylspermidine exceeded the physiological spermidine pool in telogen phase skin. These results highlight the role of polyamines in hair cycle regulation and show that it is possible to control the process of hair growth using physiologically stable polyamine analogs.  相似文献   

9.
Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo.   总被引:14,自引:0,他引:14  
The regression phase of the hair cycle (catagen) is an apoptosis-driven process accompanied by terminal differentiation, proteolysis, and matrix remodeling. As an inhibitor of keratinocyte proliferation and inductor of keratinocyte apoptosis, transforming growth factor beta1 (TGF-beta1) has been proposed to play an important role in catagen regulation. This is suggested, for example, by maximal expression of TGF-beta1 and its receptors during late anagen and the onset of catagen of the hair cycle. We examined the potential involvement of TGF-beta1 in catagen control. We compared the first spontaneous entry of hair follicles into catagen between TGF-beta1 null mice and age-matched wild-type littermates, and assessed the effects of TGF-beta1 injection on murine anagen hair follicles in vivo. At day 18 p.p., hair follicles in TGF-beta1 -/- mice were still in early catagen, whereas hair follicles of +/+ littermates had already entered the subsequent resting phase (telogen). TGF-beta1-/- mice displayed more Ki-67-positive cells and fewer apoptotic cells than comparable catagen follicles from +/+ mice. In contrast, injection of TGF-beta1 into the back skin of mice induced premature catagen development. In addition, the number of proliferating follicle keratinocytes was reduced and the number of TUNEL + cells was increased in the TGF-beta1-treated mice compared to controls. Double visualization of TGF-beta type II receptor (TGFRII) and TUNEL reactivity revealed colocalization of apoptotic nuclei and TGFRII in catagen follicles. These data strongly support that TGF-beta1 ranks among the elusive endogenous regulators of catagen induction in vivo, possibly via the inhibition of keratinocyte proliferation and induction of apoptosis. Thus, TGF-betaRII agonists and antagonists may provide useful therapeutic tools for human hair growth disorders based on premature or retarded catagen development (effluvium, alopecia, hirsutism).  相似文献   

10.
Alopecia impairs the physical and mental health of patients. We have previously shown that 8-week-old ob/ob mice have no reactivity to depilation, which is a stimulus that induces anagen transition in normal mice, while no hair cycle abnormalities have been reported in other studies until mice reach 7 weeks of age. Therefore, we hypothesized that ob/ob mice have abnormalities in hair cycle progression beyond 7 weeks of age. We examined 6- to 24-week-old ob/ob and 6- to 10-week-old normal mice. After acclimation, the dorsal skin was harvested and the hair cycle phase was identified histologically and immunohistochemically. Normal mice showed catagen–telogen and telogen–anagen transitions at 6 and 8–9 weeks old, respectively. In contrast, the anagen–catagen transition was observed in 7-week-old mice and the telogen phase was maintained from 10 to 24 weeks in most ob/ob mice. These results suggests that ob/ob mice are a possible model animal for telogen effluvium.  相似文献   

11.
HM Hu  SB Zhang  XH Lei  ZL Deng  WX Guo  ZF Qiu  S Liu  XY Wang  H Zhang  EK Duan 《PloS one》2012,7(7):e40124
Estrogen dysregulation causes hair disorder. Clinical observations have demonstrated that estrogen raises the telogen/anagen ratio and inhibits hair shaft elongation of female scalp hair follicles. In spite of these clinical insights, the properties of estrogen on hair follicles are poorly dissected. In the present study, we show that estrogen induced apoptosis of precortex cells and caused premature catagen by up-regulation of TGF β2. Immediately after the premature catagen, the expression of anagen chalone BMP4 increased. The up-regulation of BMP4 may further function to prevent anagen transition and maintain telogen. Interestingly, the hair follicle stem cell niche was not destructed during these drastic structural changes caused by estrogen. Additionally, dermal papilla cells, the estrogen target cells in hair follicles, kept their signature gene expressions as well as their hair inductive potential after estrogen treatment. Retention of the characteristics of both hair follicle stem cells and dermal papilla cells determined the reversibility of the hair cycle suppression. These results indicated that estrogen causes reversible hair cycle retardation by inducing premature catagen and maintaining telogen.  相似文献   

12.
目的探讨常见毛囊细胞角蛋白在毛囊周期中的表达特征。 方法取毛囊发育期、生长期启动、生长期、退化期和静止期的小鼠皮肤,石蜡切片后通过免疫荧光的方法,检测细胞角蛋白Krt5、Krt6、Krt10、Krt14、Krt15和Krt19的表达情况。 结果Krt5在静止期和生长期启动表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt6表达于所有时期的外根鞘细胞和内根鞘细胞;Krt10表达于生长期和退化期的毛母质和内根鞘细胞,在其他时期表达不一致;Krt14在生长期和退化期表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt15和Krt19表达于毛囊发育期、生长期启动和静止期的毛囊隆突区细胞,在生长期和退化期表达不一致。 结论角蛋白作为毛囊结构或毛囊干细胞标记物仅适用于特定的毛囊周期。研究者在使用毛囊角蛋白作为标记物时,应首先明确其在毛囊周期中的表达情况。  相似文献   

13.
小眼畸形转录因子(MITF)不仅是黑色素细胞发育、增殖和存活的必要调节因子,而且对调节相关酶和黑素体蛋白表达来确保黑色素产生具有至关重要的作用。MITF下游色素相关基因在小鼠毛囊生长周期中的表达及相关性仍有待研究。HE染色结果表明不同毛囊时期的小鼠毛囊呈现典型的组织形态学结构;免疫组织化学显示,MITF、GPNMB、OA1、TYR、TYRP2在不同毛囊生长周期中的毛基质及内外毛根鞘均有不同程度的阳性表达。黑色素测定结果表明,在毛囊生长初期和中期,碱性可溶性总黑色素(ASM)、真黑素(EM)以及褐黑素(PM)相对含量高于毛囊生长末期。蛋白免疫印迹结果表明,MITF、GPNMB、OA1、TYR、TYRP2在毛囊生长初期和中期蛋白质相对水平明显高于毛囊生长末期。实时荧光定量PCR结果表明, MITF、GPNMB、OA1、TYR、TYRP2、PMEL在毛囊生长初期和中期,mRNA相对表达量显著高于毛囊生长末期。在不同毛囊生长周期小鼠皮肤的MITF下游色素相关基因表达存在显著差异,表明上述因子在维持黑色素细胞色素生成是不可或缺的因素。  相似文献   

14.
The radiation depigmentation of mouse hair has been studied by a technique enabling melanocyte per follicle counts to be made. Distributions for normal skin show a large peak corresponding to the zigzag hair type. Changes in the frequency distributions of melanocytes per follicle after irradiation are presented for Strong F and DBA-1 mice irradiated in anagen or telogen stages of hair growth. These distributions clearly suggest the existence of some precursor cells, and the dose-response curves obtained by defining radiation survivors as follicles containing more than ten melanocytes gives the sensitivity of these cells to inactivation. D0 values are 180–220 rads. A melanocyte-melanoblast model is proposed for the follicular melanocyte cycle which can be outlined as follows: The telogen follicle contains a small number of amelanotic melanocytes that survived through catagen. These cells possess the ability to repopulate the follicle with melanocytes. In catagen functional and/or amelanotic melanocytes are lost at random. Genes for dilution (possibly only when modified by other coat colour genes) and radiation both increase the chance of melanocyte loss at catagen by altering the melanocyte-dermal papilla relationship. One way in which this is affected is by a shortening of the dendrites. A feedback may operate in the follicle so that the full complement of melanocytes is achieved whatever number of melanocytes persists in telogen.  相似文献   

15.
Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.  相似文献   

16.
Hasse S  Chernyavsky AI  Grando SA  Paus R 《Life sciences》2007,80(24-25):2248-2252
Cholinergic receptors of the muscarinic class (M1-M5) are expressed in epidermal keratinocytes and melanocytes as well as in the hair follicle. Knockout (KO) mice of all five receptors have been created and resulted in different phenotypes. KO mice with a deletion of the M4 muscarinic acetylcholine receptor (M4R) present a striking hair phenotype, which we have analyzed here in greater detail by quantitative histomorphometry. Earlier studies revealed a retarded hair follicle morphogenesis in M4R KO mice, compared to age-matched wild type controls. On day 17, when mice enter the first hair growth cycle, the KO mice still showed a slightly retarded catagen phase. Subsequently, hair follicles of the KO mice stayed in a highly significantly prolonged telogen phase, while wild type mice had already far progressed in the hair cycle by entry into anagen. Most strikingly, the M4R KO mice did not engage in follicular melanogenesis and failed to produce pigmented hair shafts. The current pilot study suggests that the M4R plays a fundamental role in the control of the murine hair follicle cycling and is an essential signaling element in the control of hair follicle pigmentation.  相似文献   

17.
Although protein-carbohydrate interactions are supposed to play key roles in cell adhesion, signalling and growth control. Their exact role in skin physiology has only recently been investigated. The endogenous lectins galectin-1 and galectin-3 have been identified in skin including hair follicles. Here, we analyzed the expression and distribution of these galectins and their binding sites in C57BL/6 mice during hair cycle. The expression of galectin-1 and galectin-3 binding sites was found to be predominantly hair cycle-dependent showing some overlapping to the expression of galectin-1 and -3. The outer root sheath (ORS) expressed galectin-1 binding sites during anagen IV to VI and in early catagen, whereas galectin-1 was expressed from early anagen to late catagen. The ORS expressed galectin-3 binding sites during catagen transition corresponding to a galectin-3 expression during anagen V and catagen. The innermost layer of the ORS expressed galectin-3 binding sites during anagen VI until catagen VIII, but galectin-3 during anagen III to IV and catagen. The inner root sheath (IRS) expressed galectin-3 binding sites only in anagen IV but missed expression of any of the two galectins. The matrix cells expressed galectin-3 binding sites in catagen II-III as well as galectin-3 during anagen V to catagen IV. The present study provides the first evidence for a cycle-related expression of both galectin-1 and -3 and their binding sites during murine hair cycle.  相似文献   

18.
19.
Kim SH  Kim KS  Lee EJ  Kim MO  Park JH  Cho KI  Imakawa K  Hyun BH  Chang KT  Lee HT  Ryoo ZY 《Life sciences》2004,75(25):3035-3042
Human papillomavirus type 16 (HPV16) has been known as a major causative factor for the development of uterine cervical carcinomas. To investigate the in vivo activity of HPV16 expressed in squamous epithelia, transgenic mice harboring HPV16 E6/E7 with human keratin 14 (hK14) promoter were generated. Grossly, hK14 driven HPV16 E6/E7 transgenic mice exhibited multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair in neonates, thickened ears, and loss of hair in adults. Transgenic mice with phenotype exhibiting severe wrinkled skin and a lack of hair growth died at the age of 3-4 weeks. Histological analysis revealed that in transgenic mice survived beyond the initial 3-4 weeks, HPV16 E6/E7 causes epidermal hyperplasia in multiple transgenic lineages with high incidence of transgene penetration. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and keratinocytes, and was associated with hyperkeratosis. Such activities were significantly higher in the skin of transgenic mice than that of the normal mice. Thus, these transgenic mice appeared to be useful for the expression of HPV16 E6/E7 gene and subsequent analysis on hyperkeratosis.  相似文献   

20.
Urokinase plasminogen activator (uPA), a serine proteinase, is important in the development and epidermal wound healing, and seems to play a regulatory role in the proliferation of mouse epidermal keratinocytes (KC). In the present study, we found detectable uPA expression in outer root sheath (ORS) KC in the early anagen phase in mouse vibrissa follicles, but not in the late anagen or in the telogen and categen phases. uPA was also detected in ORS KC cultured from neonatal mice vibrissa. Specific exogenous inhibitors of uPA, amiloride and uPA antibody, significantly reduced the proliferation of ORS KC. Thus uPA is consistently elevated in the hyperproliferative hair follicle KC, and inhibition of the enzyme decreases hair follicle KC proliferation. We deduce that uPA is a very important mediator of the hair follicle cycle because its activity correlates with ORS KC proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号